Revert "Rewritten F7 dshot to LL (draft)" (#5430)

This reverts commit fa3c7e0833.
This commit is contained in:
Dominic Clifton 2018-03-09 21:39:04 +01:00 committed by Andrey Mironov
parent f00575ef76
commit aa42a69d2f
4 changed files with 160 additions and 164 deletions

View File

@ -110,12 +110,14 @@ typedef enum {
typedef struct { typedef struct {
TIM_TypeDef *timer; TIM_TypeDef *timer;
#if defined(USE_DSHOT) && defined(USE_DSHOT_DMAR) #if defined(USE_DSHOT) && defined(USE_DSHOT_DMAR)
#if !defined(USE_HAL_DRIVER)
#ifdef STM32F3 #ifdef STM32F3
DMA_Channel_TypeDef *dmaBurstRef; DMA_Channel_TypeDef *dmaBurstRef;
#else #else
DMA_Stream_TypeDef *dmaBurstRef; DMA_Stream_TypeDef *dmaBurstRef;
#endif #endif
uint16_t dmaBurstLength; uint16_t dmaBurstLength;
#endif
uint32_t dmaBurstBuffer[DSHOT_DMA_BUFFER_SIZE * 4]; uint32_t dmaBurstBuffer[DSHOT_DMA_BUFFER_SIZE * 4];
#endif #endif
uint16_t timerDmaSources; uint16_t timerDmaSources;
@ -136,6 +138,11 @@ typedef struct {
#else #else
uint8_t dmaBuffer[DSHOT_DMA_BUFFER_SIZE]; uint8_t dmaBuffer[DSHOT_DMA_BUFFER_SIZE];
#endif #endif
#if defined(USE_HAL_DRIVER)
TIM_HandleTypeDef TimHandle;
DMA_HandleTypeDef hdma_tim;
uint16_t timerDmaIndex;
#endif
} motorDmaOutput_t; } motorDmaOutput_t;
motorDmaOutput_t *getMotorDmaOutput(uint8_t index); motorDmaOutput_t *getMotorDmaOutput(uint8_t index);

View File

@ -58,243 +58,232 @@ void pwmWriteDshotInt(uint8_t index, uint16_t value)
} }
uint16_t packet = prepareDshotPacket(motor, value); uint16_t packet = prepareDshotPacket(motor, value);
uint8_t bufferSize; uint8_t bufferSize;
#ifdef USE_DSHOT_DMAR #ifdef USE_DSHOT_DMAR
if (useBurstDshot) { if (useBurstDshot) {
bufferSize = loadDmaBuffer(&motor->timer->dmaBurstBuffer[timerLookupChannelIndex(motor->timerHardware->channel)], 4, packet); bufferSize = loadDmaBuffer(&motor->timer->dmaBurstBuffer[timerLookupChannelIndex(motor->timerHardware->channel)], 4, packet);
motor->timer->dmaBurstLength = bufferSize * 4; if (HAL_DMA_STATE_READY == motor->TimHandle.hdma[motor->timerDmaIndex]->State) {
HAL_DMA_Start_IT(motor->TimHandle.hdma[motor->timerDmaIndex], (uint32_t)motor->timer->dmaBurstBuffer, (uint32_t)&motor->TimHandle.Instance->DMAR, bufferSize * 4);
}
} else } else
#endif #endif
{ {
bufferSize = loadDmaBuffer(motor->dmaBuffer, 1, packet); bufferSize = loadDmaBuffer(motor->dmaBuffer, 1, packet);
motor->timer->timerDmaSources |= motor->timerDmaSource;
// @todo LL_DMA_SetDataLength if (DMA_SetCurrDataCounter(&motor->TimHandle, motor->timerHardware->channel, motor->dmaBuffer, bufferSize) != HAL_OK) {
MODIFY_REG(motor->timerHardware->dmaRef->NDTR, DMA_SxNDT, bufferSize); /* DMA set error */
// @todo LL_DMA_EnableStream return;
SET_BIT(motor->timerHardware->dmaRef->CR, DMA_SxCR_EN); }
} }
} }
void pwmCompleteDshotMotorUpdate(uint8_t motorCount) void pwmCompleteDshotMotorUpdate(uint8_t motorCount)
{ {
UNUSED(motorCount); UNUSED(motorCount);
for (int i = 0; i < dmaMotorTimerCount; i++) { for (int i = 0; i < dmaMotorTimerCount; i++) {
#ifdef USE_DSHOT_DMAR #ifdef USE_DSHOT_DMAR
if (useBurstDshot) { if (useBurstDshot) {
// @todo LL_DMA_SetDataLength
MODIFY_REG(dmaMotorTimers[i].dmaBurstRef->NDTR, DMA_SxNDT, dmaMotorTimers[i].dmaBurstLength);
// @todo LL_DMA_EnableStream
SET_BIT(dmaMotorTimers[i].dmaBurstRef->CR, DMA_SxCR_EN);
/* configure the DMA Burst Mode */ /* configure the DMA Burst Mode */
LL_TIM_ConfigDMABurst(dmaMotorTimers[i].timer, LL_TIM_DMABURST_BASEADDR_CCR1, LL_TIM_DMABURST_LENGTH_4TRANSFERS); LL_TIM_ConfigDMABurst(dmaMotorTimers[i].timer, LL_TIM_DMABURST_BASEADDR_CCR1, LL_TIM_DMABURST_LENGTH_4TRANSFERS);
/* Enable the TIM DMA Request */ /* Enable the TIM DMA Request */
LL_TIM_EnableDMAReq_UPDATE(dmaMotorTimers[i].timer); LL_TIM_EnableDMAReq_UPDATE(dmaMotorTimers[i].timer);
/* Reset timer counter */
LL_TIM_SetCounter(dmaMotorTimers[i].timer, 0);
if(IS_TIM_ADVANCED_INSTANCE(dmaMotorTimers[i].timer) != RESET) {
/* Enable the main output */
LL_TIM_EnableAllOutputs(dmaMotorTimers[i].timer);
}
/* Enable the counter */
LL_TIM_EnableCounter(dmaMotorTimers[i].timer);
} else } else
#endif #endif
{ {
/* Reset timer counter */ /* Reset timer counter */
LL_TIM_SetCounter(dmaMotorTimers[i].timer, 0); LL_TIM_SetCounter(dmaMotorTimers[i].timer, 0);
/* Enable channel DMA requests */ /* Enable channel DMA requests */
SET_BIT(dmaMotorTimers[i].timer->DIER, dmaMotorTimers[i].timerDmaSources); dmaMotorTimers[i].timer->DIER |= dmaMotorTimers[i].timerDmaSources;
dmaMotorTimers[i].timerDmaSources = 0;
} }
} }
} }
static void motor_DMA_IRQHandler(dmaChannelDescriptor_t* descriptor) static void motor_DMA_IRQHandler(dmaChannelDescriptor_t* descriptor)
{ {
if (DMA_GET_FLAG_STATUS(descriptor, DMA_IT_TCIF)) { motorDmaOutput_t * const motor = &dmaMotors[descriptor->userParam];
motorDmaOutput_t * const motor = &dmaMotors[descriptor->userParam]; HAL_DMA_IRQHandler(motor->TimHandle.hdma[motor->timerDmaIndex]);
#ifdef USE_DSHOT_DMAR #ifdef USE_DSHOT_DMAR
if (useBurstDshot) { if (useBurstDshot) {
// @todo LL_DMA_DisableStream LL_TIM_DisableCounter(motor->timerHardware->tim);
CLEAR_BIT(motor->timerHardware->dmaTimUPRef->CR, DMA_SxCR_EN); LL_TIM_DisableDMAReq_UPDATE(motor->timerHardware->tim);
LL_TIM_DisableDMAReq_UPDATE(motor->timerHardware->tim); } else
} else
#endif #endif
{ {
// @todo LL_DMA_DisableStream __HAL_DMA_DISABLE(&motor->hdma_tim);
CLEAR_BIT(motor->timerHardware->dmaRef->CR, DMA_SxCR_EN); TIM_DMACmd(&motor->TimHandle, motor->timerHardware->channel, DISABLE);
CLEAR_BIT(motor->timerHardware->tim->DIER, motor->timerDmaSource);
}
DMA_CLEAR_FLAG(descriptor, DMA_IT_TCIF);
} }
} }
void pwmDshotMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, motorPwmProtocolTypes_e pwmProtocolType, uint8_t output) void pwmDshotMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, motorPwmProtocolTypes_e pwmProtocolType, uint8_t output)
{ {
DMA_Stream_TypeDef *dmaRef;
#ifdef USE_DSHOT_DMAR #ifdef USE_DSHOT_DMAR
if (useBurstDshot) { if (useBurstDshot && timerHardware->dmaTimUPRef == NULL) {
dmaRef = timerHardware->dmaTimUPRef; return;
} else } else
#endif #endif
{ if (timerHardware->dmaRef == NULL) {
dmaRef = timerHardware->dmaRef;
}
if (dmaRef == NULL) {
return; return;
} }
LL_TIM_OC_InitTypeDef oc_init;
LL_DMA_InitTypeDef dma_init;
motorDmaOutput_t * const motor = &dmaMotors[motorIndex]; motorDmaOutput_t * const motor = &dmaMotors[motorIndex];
motor->timerHardware = timerHardware; motor->timerHardware = timerHardware;
TIM_TypeDef *timer = timerHardware->tim; TIM_TypeDef *timer = timerHardware->tim;
const IO_t motorIO = IOGetByTag(timerHardware->tag); const IO_t motorIO = IOGetByTag(timerHardware->tag);
const uint8_t timerIndex = getTimerIndex(timer); IOConfigGPIOAF(motorIO, IO_CONFIG(GPIO_MODE_AF_PP, GPIO_SPEED_FREQ_VERY_HIGH, GPIO_PULLDOWN), timerHardware->alternateFunction);
const bool configureTimer = (timerIndex == dmaMotorTimerCount-1);
IOConfigGPIOAF(motorIO, IO_CONFIG(GPIO_MODE_AF_PP, GPIO_SPEED_FREQ_VERY_HIGH, GPIO_PULLUP), timerHardware->alternateFunction); __DMA1_CLK_ENABLE();
if (configureTimer) { RCC_ClockCmd(timerRCC(timer), ENABLE);
LL_TIM_InitTypeDef init;
LL_TIM_StructInit(&init);
RCC_ClockCmd(timerRCC(timer), ENABLE); motor->TimHandle.Instance = timerHardware->tim;
LL_TIM_DisableCounter(timer); motor->TimHandle.Init.Prescaler = lrintf((float) timerClock(timer) / getDshotHz(pwmProtocolType) + 0.01f) - 1;
motor->TimHandle.Init.Period = pwmProtocolType == PWM_TYPE_PROSHOT1000 ? MOTOR_NIBBLE_LENGTH_PROSHOT : MOTOR_BITLENGTH;
motor->TimHandle.Init.RepetitionCounter = 0;
motor->TimHandle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
motor->TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
motor->TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
init.Prescaler = (uint16_t)(lrintf((float) timerClock(timer) / getDshotHz(pwmProtocolType) + 0.01f) - 1); if (HAL_TIM_PWM_Init(&motor->TimHandle) != HAL_OK) {
init.Autoreload = pwmProtocolType == PWM_TYPE_PROSHOT1000 ? MOTOR_NIBBLE_LENGTH_PROSHOT : MOTOR_BITLENGTH; /* Initialization Error */
init.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1; return;
init.RepetitionCounter = 0;
init.CounterMode = LL_TIM_COUNTERMODE_UP;
LL_TIM_Init(timer, &init);
} }
LL_TIM_OC_StructInit(&oc_init); // Note that a timer and an associated DMA are initialized more than once.
oc_init.OCMode = LL_TIM_OCMODE_PWM1; // To fix it, getTimerIndex must be expanded to return if a new timer has been requested.
if (output & TIMER_OUTPUT_N_CHANNEL) { // However, since the initialization is idempotent, it is left as is in a favor of flash space (for now).
oc_init.OCNState = LL_TIM_OCSTATE_ENABLE;
oc_init.OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
oc_init.OCNPolarity = (output & TIMER_OUTPUT_INVERTED) ? LL_TIM_OCPOLARITY_LOW : LL_TIM_OCPOLARITY_HIGH;
} else {
oc_init.OCState = LL_TIM_OCSTATE_ENABLE;
oc_init.OCIdleState = LL_TIM_OCIDLESTATE_HIGH;
oc_init.OCPolarity = (output & TIMER_OUTPUT_INVERTED) ? LL_TIM_OCPOLARITY_LOW : LL_TIM_OCPOLARITY_HIGH;
}
oc_init.CompareValue = 0;
uint32_t channel; motor->timer = &dmaMotorTimers[getTimerIndex(timer)];
switch (timerHardware->channel) {
case TIM_CHANNEL_1: channel = LL_TIM_CHANNEL_CH1; break;
case TIM_CHANNEL_2: channel = LL_TIM_CHANNEL_CH2; break;
case TIM_CHANNEL_3: channel = LL_TIM_CHANNEL_CH3; break;
case TIM_CHANNEL_4: channel = LL_TIM_CHANNEL_CH4; break;
}
LL_TIM_OC_Init(timer, channel, &oc_init);
LL_TIM_OC_EnablePreload(timer, channel);
if (output & TIMER_OUTPUT_N_CHANNEL) { /* Set the common dma handle parameters to be configured */
// @todo quick hack to get TIM_CCER_CCxNE from TIM_CCER_CCxE motor->hdma_tim.Init.Direction = DMA_MEMORY_TO_PERIPH;
LL_TIM_CC_EnableChannel(timer, 4 * channel); motor->hdma_tim.Init.PeriphInc = DMA_PINC_DISABLE;
} else { motor->hdma_tim.Init.MemInc = DMA_MINC_ENABLE;
LL_TIM_CC_EnableChannel(timer, channel); motor->hdma_tim.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
} motor->hdma_tim.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
motor->hdma_tim.Init.Mode = DMA_NORMAL;
if (configureTimer) { motor->hdma_tim.Init.Priority = DMA_PRIORITY_HIGH;
LL_TIM_EnableAllOutputs(timer); motor->hdma_tim.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
LL_TIM_EnableARRPreload(timer); motor->hdma_tim.Init.MemBurst = DMA_MBURST_SINGLE;
LL_TIM_EnableCounter(timer); motor->hdma_tim.Init.PeriphBurst = DMA_PBURST_SINGLE;
}
motor->timer = &dmaMotorTimers[timerIndex];
#ifdef USE_DSHOT_DMAR #ifdef USE_DSHOT_DMAR
if (useBurstDshot) { if (useBurstDshot) {
motor->timer->dmaBurstRef = dmaRef; motor->timerDmaIndex = TIM_DMA_ID_UPDATE;
/* Set the DMAR specific dma handle parameters to be configured */
motor->hdma_tim.Init.Channel = timerHardware->dmaTimUPChannel;
motor->hdma_tim.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
if (!configureTimer) { /* Set hdma_tim instance */
motor->configured = true; motor->hdma_tim.Instance = timerHardware->dmaTimUPRef;
return;
}
} else
#endif
{
motor->timerDmaSource = timerDmaSource(timerHardware->channel);
motor->timer->timerDmaSources &= ~motor->timerDmaSource;
}
DMA_TypeDef *dma; /* Link hdma_tim to hdma[x] (channelx) */
uint32_t stream; __HAL_LINKDMA(&motor->TimHandle, hdma[motor->timerDmaIndex], motor->hdma_tim);
if (dmaRef == DMA1_Stream0) { dma = DMA1; stream = LL_DMA_STREAM_0; }
else if (dmaRef == DMA1_Stream1) { dma = DMA1; stream = LL_DMA_STREAM_1; }
else if (dmaRef == DMA1_Stream2) { dma = DMA1; stream = LL_DMA_STREAM_2; }
else if (dmaRef == DMA1_Stream3) { dma = DMA1; stream = LL_DMA_STREAM_3; }
else if (dmaRef == DMA1_Stream4) { dma = DMA1; stream = LL_DMA_STREAM_4; }
else if (dmaRef == DMA1_Stream5) { dma = DMA1; stream = LL_DMA_STREAM_5; }
else if (dmaRef == DMA1_Stream6) { dma = DMA1; stream = LL_DMA_STREAM_6; }
else if (dmaRef == DMA1_Stream7) { dma = DMA1; stream = LL_DMA_STREAM_7; }
else if (dmaRef == DMA2_Stream0) { dma = DMA2; stream = LL_DMA_STREAM_0; }
else if (dmaRef == DMA2_Stream1) { dma = DMA2; stream = LL_DMA_STREAM_1; }
else if (dmaRef == DMA2_Stream2) { dma = DMA2; stream = LL_DMA_STREAM_2; }
else if (dmaRef == DMA2_Stream3) { dma = DMA2; stream = LL_DMA_STREAM_3; }
else if (dmaRef == DMA2_Stream4) { dma = DMA2; stream = LL_DMA_STREAM_4; }
else if (dmaRef == DMA2_Stream5) { dma = DMA2; stream = LL_DMA_STREAM_5; }
else if (dmaRef == DMA2_Stream6) { dma = DMA2; stream = LL_DMA_STREAM_6; }
else if (dmaRef == DMA2_Stream7) { dma = DMA2; stream = LL_DMA_STREAM_7; }
LL_DMA_DisableStream(dma, stream);
//CLEAR_BIT(dmaRef->CR, DMA_SxCR_EN);
LL_DMA_DeInit(dma, stream);
LL_DMA_StructInit(&dma_init);
#ifdef USE_DSHOT_DMAR
if (useBurstDshot) {
dmaInit(timerHardware->dmaTimUPIrqHandler, OWNER_TIMUP, timerGetTIMNumber(timerHardware->tim)); dmaInit(timerHardware->dmaTimUPIrqHandler, OWNER_TIMUP, timerGetTIMNumber(timerHardware->tim));
dmaSetHandler(timerHardware->dmaTimUPIrqHandler, motor_DMA_IRQHandler, NVIC_BUILD_PRIORITY(1, 2), motorIndex); dmaSetHandler(timerHardware->dmaTimUPIrqHandler, motor_DMA_IRQHandler, NVIC_BUILD_PRIORITY(1, 2), motorIndex);
dma_init.Channel = timerHardware->dmaTimUPChannel;
dma_init.MemoryOrM2MDstAddress = (uint32_t)motor->timer->dmaBurstBuffer;
dma_init.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
dma_init.FIFOMode = LL_DMA_FIFOMODE_ENABLE;
dma_init.FIFOThreshold = LL_DMA_FIFOTHRESHOLD_FULL;
dma_init.MemBurst = LL_DMA_MBURST_SINGLE;
dma_init.PeriphBurst = LL_DMA_PBURST_SINGLE;
dma_init.PeriphOrM2MSrcAddress = (uint32_t)&timerHardware->tim->DMAR;
dma_init.NbData = (pwmProtocolType == PWM_TYPE_PROSHOT1000) ? PROSHOT_DMA_BUFFER_SIZE : DSHOT_DMA_BUFFER_SIZE; // XXX
dma_init.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
dma_init.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
dma_init.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
dma_init.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
dma_init.Mode = LL_DMA_MODE_NORMAL;
dma_init.Priority = LL_DMA_PRIORITY_HIGH;
} else } else
#endif #endif
{ {
motor->timerDmaIndex = timerDmaIndex(timerHardware->channel);
motor->timer->timerDmaSources |= timerDmaSource(timerHardware->channel);
/* Set the non-DMAR specific dma handle parameters to be configured */
motor->hdma_tim.Init.Channel = timerHardware->dmaChannel;
motor->hdma_tim.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
/* Set hdma_tim instance */
motor->hdma_tim.Instance = timerHardware->dmaRef;
/* Link hdma_tim to hdma[x] (channelx) */
__HAL_LINKDMA(&motor->TimHandle, hdma[motor->timerDmaIndex], motor->hdma_tim);
dmaInit(timerHardware->dmaIrqHandler, OWNER_MOTOR, RESOURCE_INDEX(motorIndex)); dmaInit(timerHardware->dmaIrqHandler, OWNER_MOTOR, RESOURCE_INDEX(motorIndex));
dmaSetHandler(timerHardware->dmaIrqHandler, motor_DMA_IRQHandler, NVIC_BUILD_PRIORITY(1, 2), motorIndex); dmaSetHandler(timerHardware->dmaIrqHandler, motor_DMA_IRQHandler, NVIC_BUILD_PRIORITY(1, 2), motorIndex);
dma_init.Channel = timerHardware->dmaChannel;
dma_init.MemoryOrM2MDstAddress = (uint32_t)motor->dmaBuffer;
dma_init.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
dma_init.FIFOMode = LL_DMA_FIFOMODE_ENABLE;
dma_init.FIFOThreshold = LL_DMA_FIFOTHRESHOLD_1_4;
dma_init.MemBurst = LL_DMA_MBURST_SINGLE;
dma_init.PeriphBurst = LL_DMA_PBURST_SINGLE;
dma_init.PeriphOrM2MSrcAddress = (uint32_t)timerChCCR(timerHardware);
dma_init.NbData = pwmProtocolType == PWM_TYPE_PROSHOT1000 ? PROSHOT_DMA_BUFFER_SIZE : DSHOT_DMA_BUFFER_SIZE;
dma_init.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
dma_init.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
dma_init.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
dma_init.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
dma_init.Mode = LL_DMA_MODE_NORMAL;
dma_init.Priority = LL_DMA_PRIORITY_HIGH;
} }
// XXX Consolidate common settings in the next refactor /* Initialize TIMx DMA handle */
LL_DMA_Init(dma, stream, &dma_init); if (HAL_DMA_Init(motor->TimHandle.hdma[motor->timerDmaIndex]) != HAL_OK) {
LL_DMA_EnableIT_TC(dma, stream); /* Initialization Error */
return;
}
TIM_OC_InitTypeDef TIM_OCInitStructure;
/* PWM1 Mode configuration: Channel1 */
TIM_OCInitStructure.OCMode = TIM_OCMODE_PWM1;
TIM_OCInitStructure.OCIdleState = TIM_OCIDLESTATE_SET;
TIM_OCInitStructure.OCPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCPOLARITY_LOW : TIM_OCPOLARITY_HIGH;
TIM_OCInitStructure.OCNIdleState = TIM_OCNIDLESTATE_SET;
TIM_OCInitStructure.OCNPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCNPOLARITY_LOW : TIM_OCNPOLARITY_HIGH;
TIM_OCInitStructure.OCFastMode = TIM_OCFAST_DISABLE;
TIM_OCInitStructure.Pulse = 0;
if (HAL_TIM_PWM_ConfigChannel(&motor->TimHandle, &TIM_OCInitStructure, motor->timerHardware->channel) != HAL_OK) {
/* Configuration Error */
return;
}
#ifdef USE_DSHOT_DMAR
if (useBurstDshot) {
/* Enable the Output compare channel */
uint32_t channels = 0;
if(output & TIMER_OUTPUT_N_CHANNEL) {
switch(motor->timerHardware->channel) {
case TIM_CHANNEL_1:
channels = LL_TIM_CHANNEL_CH1N;
break;
case TIM_CHANNEL_2:
channels = LL_TIM_CHANNEL_CH2N;
break;
case TIM_CHANNEL_3:
channels = LL_TIM_CHANNEL_CH3N;
break;
}
} else {
switch(motor->timerHardware->channel) {
case TIM_CHANNEL_1:
channels = LL_TIM_CHANNEL_CH1;
break;
case TIM_CHANNEL_2:
channels = LL_TIM_CHANNEL_CH2;
break;
case TIM_CHANNEL_3:
channels = LL_TIM_CHANNEL_CH3;
break;
case TIM_CHANNEL_4:
channels = LL_TIM_CHANNEL_CH4;
break;
}
}
LL_TIM_CC_EnableChannel(motor->timerHardware->tim, channels);
} else
#endif
{
if (output & TIMER_OUTPUT_N_CHANNEL) {
if (HAL_TIMEx_PWMN_Start(&motor->TimHandle, motor->timerHardware->channel) != HAL_OK) {
/* Starting PWM generation Error */
return;
}
} else {
if (HAL_TIM_PWM_Start(&motor->TimHandle, motor->timerHardware->channel) != HAL_OK) {
/* Starting PWM generation Error */
return;
}
}
}
motor->configured = true; motor->configured = true;
} }

View File

@ -161,7 +161,7 @@
#define PREFETCH_ENABLE 1U #define PREFETCH_ENABLE 1U
#define ART_ACCLERATOR_ENABLE 1U /* To enable instruction cache and prefetch */ #define ART_ACCLERATOR_ENABLE 1U /* To enable instruction cache and prefetch */
#define INSTRUCTION_CACHE_ENABLE 1U #define INSTRUCTION_CACHE_ENABLE 1U
#define DATA_CACHE_ENABLE 1U #define DATA_CACHE_ENABLE 0U
/* ########################## Assert Selection ############################## */ /* ########################## Assert Selection ############################## */
/** /**

View File

@ -294,7 +294,7 @@ void OverclockRebootIfNecessary(uint32_t overclockLevel)
const pllConfig_t * const pll = overclockLevels + overclockLevel; const pllConfig_t * const pll = overclockLevels + overclockLevel;
// Reboot to adjust overclock frequency // Reboot to adjust overclock frequency
if (SystemCoreClock != (pll->n / pll->p) * 1000000) { if (SystemCoreClock != ((pll->n / pll->p) * 1000000UL)) {
REQUEST_OVERCLOCK = REQUEST_OVERCLOCK_MAGIC_COOKIE; REQUEST_OVERCLOCK = REQUEST_OVERCLOCK_MAGIC_COOKIE;
CURRENT_OVERCLOCK_LEVEL = overclockLevel; CURRENT_OVERCLOCK_LEVEL = overclockLevel;
__disable_irq(); __disable_irq();
@ -366,7 +366,7 @@ void SystemInit(void)
/* Configure the system clock to specified frequency */ /* Configure the system clock to specified frequency */
SystemClock_Config(); SystemClock_Config();
if (SystemCoreClock != (pll_n / pll_p) * 1000000) { if (SystemCoreClock != (pll_n / pll_p) * 1000000UL) {
// There is a mismatch between the configured clock and the expected clock in portable.h // There is a mismatch between the configured clock and the expected clock in portable.h
while (1); while (1);
} }