new printf() is too fucking fast, causing DMA buffer overrun in UART transmit. fixed that. Doesn't affect GCC targets.

got rid of more 16bit ints in new pid controller.

git-svn-id: https://afrodevices.googlecode.com/svn/trunk/baseflight@348 7c89a4a9-59b9-e629-4cfe-3a2d53b20e61
This commit is contained in:
timecop@gmail.com 2013-06-19 03:10:45 +00:00
parent 76617bc7e4
commit ab75f221bb
4 changed files with 27 additions and 16 deletions

View File

@ -8,10 +8,11 @@
// Receive buffer, circular DMA
volatile uint8_t rxBuffer[UART_BUFFER_SIZE];
uint32_t rxDMAPos = 0;
volatile uint32_t rxDMAPos = 0;
volatile uint8_t txBuffer[UART_BUFFER_SIZE];
uint32_t txBufferTail = 0;
uint32_t txBufferHead = 0;
volatile uint32_t txBufferTail = 0;
volatile uint32_t txBufferHead = 0;
volatile bool txDMAEmpty = false;
static void uartTxDMA(void)
{
@ -23,7 +24,7 @@ static void uartTxDMA(void)
DMA1_Channel4->CNDTR = UART_BUFFER_SIZE - txBufferTail;
txBufferTail = 0;
}
txDMAEmpty = false;
DMA_Cmd(DMA1_Channel4, ENABLE);
}
@ -34,6 +35,8 @@ void DMA1_Channel4_IRQHandler(void)
if (txBufferHead != txBufferTail)
uartTxDMA();
else
txDMAEmpty = true;
}
void uartInit(uint32_t speed)
@ -109,6 +112,11 @@ uint16_t uartAvailable(void)
return (DMA_GetCurrDataCounter(DMA1_Channel5) != rxDMAPos) ? true : false;
}
bool uartTransmitDMAEmpty(void)
{
return txDMAEmpty;
}
bool uartTransmitEmpty(void)
{
return (txBufferTail == txBufferHead);

View File

@ -4,6 +4,7 @@
void uartInit(uint32_t speed);
uint16_t uartAvailable(void);
bool uartTransmitEmpty(void);
bool uartTransmitDMAEmpty(void);
uint8_t uartRead(void);
uint8_t uartReadPoll(void);
void uartWrite(uint8_t ch);

View File

@ -18,6 +18,8 @@ static void _putc(void *p, char c)
// keil/armcc version
int fputc(int c, FILE *f)
{
// let DMA catch up a bit when using set or dump, we're too fast.
while (!uartTransmitDMAEmpty());
uartWrite(c);
return c;
}

View File

@ -342,13 +342,13 @@ static void pidMultiWii(void)
static void pidRewrite(void)
{
int16_t errorAngle;
int32_t errorAngle;
int axis;
int16_t delta, deltaSum;
static int16_t delta1[3], delta2[3];
int16_t PTerm, ITerm, DTerm;
static int16_t lastError[3] = { 0, 0, 0 };
int16_t AngleRateTmp, RateError;
int32_t delta, deltaSum;
static int32_t delta1[3], delta2[3];
int32_t PTerm, ITerm, DTerm;
static int32_t lastError[3] = { 0, 0, 0 };
int32_t AngleRateTmp, RateError;
// ----------PID controller----------
for (axis = 0; axis < 3; axis++) {
@ -358,16 +358,16 @@ static void pidRewrite(void)
errorAngle = constrain((rcCommand[axis] << 1) + GPS_angle[axis], -500, +500) - angle[axis] + cfg.angleTrim[axis]; // 16 bits is ok here
}
if (axis == 2) { // YAW is always gyro-controlled (MAG correction is applied to rcCommand)
AngleRateTmp = (((int32_t) (cfg.yawRate + 27) * rcCommand[2]) >> 5);
AngleRateTmp = (((int32_t)(cfg.yawRate + 27) * rcCommand[2]) >> 5);
} else {
if (!f.ANGLE_MODE) { //control is GYRO based (ACRO and HORIZON - direct sticks control is applied to rate PID
AngleRateTmp = ((int32_t) (cfg.rollPitchRate + 27) * rcCommand[axis]) >> 4;
if (f.HORIZON_MODE) {
// mix up angle error to desired AngleRateTmp to add a little auto-level feel
AngleRateTmp += ((int32_t) errorAngle * cfg.I8[PIDLEVEL]) >> 8;
AngleRateTmp += (errorAngle * cfg.I8[PIDLEVEL]) >> 8;
}
} else { // it's the ANGLE mode - control is angle based, so control loop is needed
AngleRateTmp = ((int32_t) errorAngle * cfg.P8[PIDLEVEL]) >> 4;
AngleRateTmp = (errorAngle * cfg.P8[PIDLEVEL]) >> 4;
}
}
@ -378,13 +378,13 @@ static void pidRewrite(void)
RateError = AngleRateTmp - gyroData[axis];
// -----calculate P component
PTerm = ((int32_t)RateError * cfg.P8[axis]) >> 7;
PTerm = (RateError * cfg.P8[axis]) >> 7;
// -----calculate I component
// there should be no division before accumulating the error to integrator, because the precision would be reduced.
// Precision is critical, as I prevents from long-time drift. Thus, 32 bits integrator is used.
// Time correction (to avoid different I scaling for different builds based on average cycle time)
// is normalized to cycle time = 2048.
errorGyroI[axis] = errorGyroI[axis] + (((int32_t)RateError * cycleTime) >> 11) * cfg.I8[axis];
errorGyroI[axis] = errorGyroI[axis] + ((RateError * cycleTime) >> 11) * cfg.I8[axis];
// limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated.
// I coefficient (I8) moved before integration to make limiting independent from PID settings
@ -397,7 +397,7 @@ static void pidRewrite(void)
// Correct difference by cycle time. Cycle time is jittery (can be different 2 times), so calculated difference
// would be scaled by different dt each time. Division by dT fixes that.
delta = ((int32_t) delta * ((uint16_t)0xFFFF / (cycleTime >> 4))) >> 6;
delta = (delta * ((uint16_t)0xFFFF / (cycleTime >> 4))) >> 6;
// add moving average here to reduce noise
deltaSum = delta1[axis] + delta2[axis] + delta;
delta2[axis] = delta1[axis];