some more minor updates from 2.2

added variable for gyro_cmpfm factor (mag) to configurables
changed gyro_cmpf factor to 600 (higher gyro influence)
got rid of GYRO_INTERLEAVE stuff (didn't work, obsolete)
got rid of applyDeadband hacks, invsqrt hacks, and other shit. ifdef'd original baseflight attitude/heading calcs w/new 2.2 routines
fixed cockup in altitude calculation w/applyDeadband
remaining: GPS

git-svn-id: https://afrodevices.googlecode.com/svn/trunk/baseflight@304 7c89a4a9-59b9-e629-4cfe-3a2d53b20e61
This commit is contained in:
timecop@gmail.com 2013-05-02 14:07:52 +00:00
parent f2c7ad585a
commit c26603dd72
6 changed files with 3911 additions and 3334 deletions

View File

@ -971,7 +971,7 @@
<DriverSelection>4096</DriverSelection> <DriverSelection>4096</DriverSelection>
</Flash1> </Flash1>
<Flash2>BIN\UL2CM3.DLL</Flash2> <Flash2>BIN\UL2CM3.DLL</Flash2>
<Flash3></Flash3> <Flash3>"" ()</Flash3>
<Flash4></Flash4> <Flash4></Flash4>
</Utilities> </Utilities>
<TargetArmAds> <TargetArmAds>

File diff suppressed because it is too large Load Diff

View File

@ -131,6 +131,7 @@ const clivalue_t valueTable[] = {
{ "moron_threshold", VAR_UINT8, &mcfg.moron_threshold, 0, 128 }, { "moron_threshold", VAR_UINT8, &mcfg.moron_threshold, 0, 128 },
{ "gyro_lpf", VAR_UINT16, &mcfg.gyro_lpf, 0, 256 }, { "gyro_lpf", VAR_UINT16, &mcfg.gyro_lpf, 0, 256 },
{ "gyro_cmpf_factor", VAR_UINT16, &mcfg.gyro_cmpf_factor, 100, 1000 }, { "gyro_cmpf_factor", VAR_UINT16, &mcfg.gyro_cmpf_factor, 100, 1000 },
{ "gyro_cmpfm_factor", VAR_UINT16, &mcfg.gyro_cmpfm_factor, 100, 1000 },
{ "gps_type", VAR_UINT8, &mcfg.gps_type, 0, 3 }, { "gps_type", VAR_UINT8, &mcfg.gps_type, 0, 3 },
{ "deadband", VAR_UINT8, &cfg.deadband, 0, 32 }, { "deadband", VAR_UINT8, &cfg.deadband, 0, 32 },

View File

@ -170,7 +170,8 @@ static void resetConf(void)
// global settings // global settings
mcfg.current_profile = 0; // default profile mcfg.current_profile = 0; // default profile
mcfg.gyro_cmpf_factor = 400; // default MWC mcfg.gyro_cmpf_factor = 600; // default MWC
mcfg.gyro_cmpfm_factor = 250; // default MWC
mcfg.gyro_lpf = 42; // supported by all gyro drivers now. In case of ST gyro, will default to 32Hz instead mcfg.gyro_lpf = 42; // supported by all gyro drivers now. In case of ST gyro, will default to 32Hz instead
mcfg.accZero[0] = 0; mcfg.accZero[0] = 0;
mcfg.accZero[1] = 0; mcfg.accZero[1] = 0;

145
src/imu.c
View File

@ -48,8 +48,6 @@ void computeIMU(void)
static uint32_t timeInterleave = 0; static uint32_t timeInterleave = 0;
static int16_t gyroYawSmooth = 0; static int16_t gyroYawSmooth = 0;
#define GYRO_INTERLEAVE
if (sensors(SENSOR_ACC)) { if (sensors(SENSOR_ACC)) {
ACC_getADC(); ACC_getADC();
getEstimatedAttitude(); getEstimatedAttitude();
@ -57,18 +55,11 @@ void computeIMU(void)
Gyro_getADC(); Gyro_getADC();
for (axis = 0; axis < 3; axis++) { for (axis = 0; axis < 3; axis++)
#ifdef GYRO_INTERLEAVE
gyroADCp[axis] = gyroADC[axis]; gyroADCp[axis] = gyroADC[axis];
#else
gyroData[axis] = gyroADC[axis];
#endif
if (!sensors(SENSOR_ACC))
accADC[axis] = 0;
}
timeInterleave = micros(); timeInterleave = micros();
annexCode(); annexCode();
#ifdef GYRO_INTERLEAVE
if ((micros() - timeInterleave) > 650) { if ((micros() - timeInterleave) > 650) {
annex650_overrun_count++; annex650_overrun_count++;
} else { } else {
@ -84,7 +75,6 @@ void computeIMU(void)
if (!sensors(SENSOR_ACC)) if (!sensors(SENSOR_ACC))
accADC[axis] = 0; accADC[axis] = 0;
} }
#endif
if (feature(FEATURE_GYRO_SMOOTHING)) { if (feature(FEATURE_GYRO_SMOOTHING)) {
static uint8_t Smoothing[3] = { 0, 0, 0 }; static uint8_t Smoothing[3] = { 0, 0, 0 };
@ -128,12 +118,6 @@ void computeIMU(void)
//****** advanced users settings ******************* //****** advanced users settings *******************
/* Set the Low Pass Filter factor for Magnetometer */
/* Increasing this value would reduce Magnetometer noise (not visible in GUI), but would increase Magnetometer lag time*/
/* Comment this if you do not want filter at all.*/
/* Default WMC value: n/a*/
//#define MG_LPF_FACTOR 4
/* Set the Gyro Weight for Gyro/Magnetometer complementary filter */ /* Set the Gyro Weight for Gyro/Magnetometer complementary filter */
/* Increasing this value would reduce and delay Magnetometer influence on the output of the filter*/ /* Increasing this value would reduce and delay Magnetometer influence on the output of the filter*/
/* Default WMC value: n/a*/ /* Default WMC value: n/a*/
@ -142,7 +126,7 @@ void computeIMU(void)
//****** end of advanced users settings ************* //****** end of advanced users settings *************
#define INV_GYR_CMPF_FACTOR (1.0f / ((float)mcfg.gyro_cmpf_factor + 1.0f)) #define INV_GYR_CMPF_FACTOR (1.0f / ((float)mcfg.gyro_cmpf_factor + 1.0f))
#define INV_GYR_CMPFM_FACTOR (1.0f / (GYR_CMPFM_FACTOR + 1.0f)) #define INV_GYR_CMPFM_FACTOR (1.0f / ((float)mcfg.gyro_cmpfm_factor + 1.0f))
// #define GYRO_SCALE ((1998 * M_PI)/((32767.0f / 4.0f ) * 180.0f * 1000000.0f)) // 32767 / 16.4lsb/dps for MPU3000 // #define GYRO_SCALE ((1998 * M_PI)/((32767.0f / 4.0f ) * 180.0f * 1000000.0f)) // 32767 / 16.4lsb/dps for MPU3000
@ -164,11 +148,6 @@ void rotateV(struct fp_vector *v, float *delta)
{ {
struct fp_vector v_tmp = *v; struct fp_vector v_tmp = *v;
#if INACCURATE
v->Z -= delta[ROLL] * v_tmp.X + delta[PITCH] * v_tmp.Y;
v->X += delta[ROLL] * v_tmp.Z - delta[YAW] * v_tmp.Y;
v->Y += delta[PITCH] * v_tmp.Z + delta[YAW] * v_tmp.X;
#else
// This does a "proper" matrix rotation using gyro deltas without small-angle approximation // This does a "proper" matrix rotation using gyro deltas without small-angle approximation
float mat[3][3]; float mat[3][3];
float cosx, sinx, cosy, siny, cosz, sinz; float cosx, sinx, cosy, siny, cosz, sinz;
@ -200,7 +179,6 @@ void rotateV(struct fp_vector *v, float *delta)
v->X = v_tmp.X * mat[0][0] + v_tmp.Y * mat[1][0] + v_tmp.Z * mat[2][0]; v->X = v_tmp.X * mat[0][0] + v_tmp.Y * mat[1][0] + v_tmp.Z * mat[2][0];
v->Y = v_tmp.X * mat[0][1] + v_tmp.Y * mat[1][1] + v_tmp.Z * mat[2][1]; v->Y = v_tmp.X * mat[0][1] + v_tmp.Y * mat[1][1] + v_tmp.Z * mat[2][1];
v->Z = v_tmp.X * mat[0][2] + v_tmp.Y * mat[1][2] + v_tmp.Z * mat[2][2]; v->Z = v_tmp.X * mat[0][2] + v_tmp.Y * mat[1][2] + v_tmp.Z * mat[2][2];
#endif
} }
static int16_t _atan2f(float y, float x) static int16_t _atan2f(float y, float x)
@ -209,18 +187,26 @@ static int16_t _atan2f(float y, float x)
return (int16_t)(atan2f(y, x) * (180.0f / M_PI * 10.0f)); return (int16_t)(atan2f(y, x) * (180.0f / M_PI * 10.0f));
} }
// Use original baseflight angle calculation
// #define BASEFLIGHT_CALC
static float invG;
static void getEstimatedAttitude(void) static void getEstimatedAttitude(void)
{ {
uint32_t axis; uint32_t axis;
int32_t accMag = 0; int32_t accMag = 0;
static t_fp_vector EstM; static t_fp_vector EstM;
#if defined(MG_LPF_FACTOR)
static int16_t mgSmooth[3];
#endif
static float accLPF[3]; static float accLPF[3];
static uint32_t previousT; static uint32_t previousT;
uint32_t currentT = micros(); uint32_t currentT = micros();
float scale, deltaGyroAngle[3]; float scale, deltaGyroAngle[3];
#ifndef BASEFLIGHT_CALC
float sqGZ;
float sqGX;
float sqGY;
float sqGX_sqGZ;
float invmagXZ;
#endif
scale = (currentT - previousT) * gyro.scale; scale = (currentT - previousT) * gyro.scale;
previousT = currentT; previousT = currentT;
@ -236,15 +222,6 @@ static void getEstimatedAttitude(void)
} }
accLPFVel[axis] = accLPFVel[axis] * (1.0f - (1.0f / cfg.acc_lpf_for_velocity)) + accADC[axis] * (1.0f / cfg.acc_lpf_for_velocity); accLPFVel[axis] = accLPFVel[axis] * (1.0f - (1.0f / cfg.acc_lpf_for_velocity)) + accADC[axis] * (1.0f / cfg.acc_lpf_for_velocity);
accMag += (int32_t)accSmooth[axis] * accSmooth[axis]; accMag += (int32_t)accSmooth[axis] * accSmooth[axis];
if (sensors(SENSOR_MAG)) {
#if defined(MG_LPF_FACTOR)
mgSmooth[axis] = (mgSmooth[axis] * (MG_LPF_FACTOR - 1) + magADC[axis]) / MG_LPF_FACTOR; // LPF for Magnetometer values
#define MAG_VALUE mgSmooth[axis]
#else
#define MAG_VALUE magADC[axis]
#endif
}
} }
accMag = accMag * 100 / ((int32_t)acc_1G * acc_1G); accMag = accMag * 100 / ((int32_t)acc_1G * acc_1G);
@ -258,35 +235,39 @@ static void getEstimatedAttitude(void)
f.SMALL_ANGLES_25 = 0; f.SMALL_ANGLES_25 = 0;
// Apply complimentary filter (Gyro drift correction) // Apply complimentary filter (Gyro drift correction)
// If accel magnitude >1.4G or <0.6G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation. // If accel magnitude >1.15G or <0.85G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation.
// To do that, we just skip filter, as EstV already rotated by Gyro // To do that, we just skip filter, as EstV already rotated by Gyro
if ((36 < accMag && accMag < 196) || f.SMALL_ANGLES_25) { if (72 < accMag && accMag < 133) {
for (axis = 0; axis < 3; axis++) for (axis = 0; axis < 3; axis++)
EstG.A[axis] = (EstG.A[axis] * (float)mcfg.gyro_cmpf_factor + accSmooth[axis]) * INV_GYR_CMPF_FACTOR; EstG.A[axis] = (EstG.A[axis] * (float)mcfg.gyro_cmpf_factor + accSmooth[axis]) * INV_GYR_CMPF_FACTOR;
} }
if (sensors(SENSOR_MAG)) { if (sensors(SENSOR_MAG)) {
for (axis = 0; axis < 3; axis++) for (axis = 0; axis < 3; axis++)
EstM.A[axis] = (EstM.A[axis] * GYR_CMPFM_FACTOR + MAG_VALUE) * INV_GYR_CMPFM_FACTOR; EstM.A[axis] = (EstM.A[axis] * (float)mcfg.gyro_cmpfm_factor + magADC[axis]) * INV_GYR_CMPFM_FACTOR;
} }
// Attitude of the estimated vector // Attitude of the estimated vector
#if INACCURATE #ifdef BASEFLIGHT_CALC
angle[ROLL] = _atan2f(EstG.V.X, EstG.V.Z);
angle[PITCH] = _atan2f(EstG.V.Y, EstG.V.Z);
#else
// This hack removes gimbal lock (sorta) on pitch, so rolling around doesn't make pitch jump when roll reaches 90deg // This hack removes gimbal lock (sorta) on pitch, so rolling around doesn't make pitch jump when roll reaches 90deg
angle[ROLL] = _atan2f(EstG.V.X, EstG.V.Z); angle[ROLL] = _atan2f(EstG.V.X, EstG.V.Z);
angle[PITCH] = -asinf(EstG.V.Y / -sqrtf(EstG.V.X * EstG.V.X + EstG.V.Y * EstG.V.Y + EstG.V.Z * EstG.V.Z)) * (180.0f / M_PI * 10.0f); angle[PITCH] = -asinf(EstG.V.Y / -sqrtf(EstG.V.X * EstG.V.X + EstG.V.Y * EstG.V.Y + EstG.V.Z * EstG.V.Z)) * (180.0f / M_PI * 10.0f);
#else
// MW2.2 version
sqGZ = EstG.V.Z * EstG.V.Z;
sqGX = EstG.V.X * EstG.V.X;
sqGY = EstG.V.Y * EstG.V.Y;
sqGX_sqGZ = sqGX + sqGZ;
invmagXZ = 1.0f / sqrtf(sqGX_sqGZ);
invG = 1.0f / sqrtf(sqGX_sqGZ + sqGY);
angle[ROLL] = _atan2f(EstG.V.X, EstG.V.Z);
angle[PITCH] = _atan2f(EstG.V.Y, invmagXZ * sqGX_sqGZ);
#endif #endif
#ifdef MAG #ifdef MAG
if (sensors(SENSOR_MAG)) { if (sensors(SENSOR_MAG)) {
#if INACCURATE #ifdef BASEFLIGHT_CALC
heading = _atan2f(EstG.V.X * EstM.V.Z - EstG.V.Z * EstM.V.X, EstG.V.Z * EstM.V.Y - EstG.V.Y * EstM.V.Z); // baseflight calculation
heading = heading + magneticDeclination;
heading = heading / 10;
#else
float rollRAD = (float)angle[ROLL] * RADX10; float rollRAD = (float)angle[ROLL] * RADX10;
float pitchRAD = -(float)angle[PITCH] * RADX10; float pitchRAD = -(float)angle[PITCH] * RADX10;
float magX = EstM.A[1]; // Swap X/Y float magX = EstM.A[1]; // Swap X/Y
@ -300,6 +281,11 @@ static void getEstimatedAttitude(void)
float Yh = magY * cr - magZ * sr; float Yh = magY * cr - magZ * sr;
float hd = (atan2f(-Yh, Xh) * 1800.0f / M_PI + magneticDeclination) / 10.0f; float hd = (atan2f(-Yh, Xh) * 1800.0f / M_PI + magneticDeclination) / 10.0f;
heading = hd; heading = hd;
#else
// MW 2.2 calculation
heading = _atan2f(EstM.V.Z * EstG.V.X - EstM.V.X * EstG.V.Z, EstM.V.Y * invG * sqGX_sqGZ - (EstM.V.X * EstG.V.X + EstM.V.Z * EstG.V.Z) * invG * EstG.V.Y);
heading = heading + magneticDeclination;
heading = heading / 10;
#endif #endif
if (heading > 180) if (heading > 180)
heading = heading - 360; heading = heading - 360;
@ -313,7 +299,7 @@ static void getEstimatedAttitude(void)
#define UPDATE_INTERVAL 25000 // 40hz update rate (20hz LPF on acc) #define UPDATE_INTERVAL 25000 // 40hz update rate (20hz LPF on acc)
#define INIT_DELAY 4000000 // 4 sec initialization delay #define INIT_DELAY 4000000 // 4 sec initialization delay
int16_t applyDeadband16(int16_t value, int16_t deadband) int16_t applyDeadband(int16_t value, int16_t deadband)
{ {
if (abs(value) < deadband) { if (abs(value) < deadband) {
value = 0; value = 0;
@ -325,54 +311,16 @@ int16_t applyDeadband16(int16_t value, int16_t deadband)
return value; return value;
} }
float applyDeadbandFloat(float value, int16_t deadband)
{
if (abs(value) < deadband) {
value = 0;
} else if (value > 0) {
value -= deadband;
} else if (value < 0) {
value += deadband;
}
return value;
}
float InvSqrt(float x)
{
union {
int32_t i;
float f;
} conv;
conv.f = x;
conv.i = 0x5f3759df - (conv.i >> 1);
return 0.5f * conv.f * (3.0f - x * conv.f * conv.f);
}
int32_t isq(int32_t x)
{
return x * x;
}
#define applyDeadband(value, deadband) \
if(abs(value) < deadband) { \
value = 0; \
} else if(value > 0){ \
value -= deadband; \
} else if(value < 0){ \
value += deadband; \
}
int getEstimatedAltitude(void) int getEstimatedAltitude(void)
{ {
static int32_t baroGroundPressure; static int32_t baroGroundPressure;
static uint16_t previousT; static uint32_t previousT;
uint16_t currentT = micros(); uint32_t currentT = micros();
uint16_t dTime; uint32_t dTime;
float invG;
int16_t error16; int16_t error16;
int16_t baroVel; int16_t baroVel;
int16_t accZ; int16_t accZ;
static int16_t accZoffset = 0; // = acc_1G*6; //58 bytes saved and convergence is fast enough to omit init static int16_t accZoffset = 0;
static float vel = 0.0f; static float vel = 0.0f;
static int32_t lastBaroAlt; static int32_t lastBaroAlt;
int16_t vel_tmp; int16_t vel_tmp;
@ -390,12 +338,12 @@ int getEstimatedAltitude(void)
// pressure relative to ground pressure with temperature compensation (fast!) // pressure relative to ground pressure with temperature compensation (fast!)
// baroGroundPressure is not supposed to be 0 here // baroGroundPressure is not supposed to be 0 here
// see: https://code.google.com/p/ardupilot-mega/source/browse/libraries/AP_Baro/AP_Baro.cpp // see: https://code.google.com/p/ardupilot-mega/source/browse/libraries/AP_Baro/AP_Baro.cpp
BaroAlt = log(baroGroundPressure * (cfg.baro_tab_size - 1) / (float)baroPressureSum) * (baroTemperature + 27315) * 29.271267f; // in cemtimeter BaroAlt = logf(baroGroundPressure * (cfg.baro_tab_size - 1) / (float)baroPressureSum) * (baroTemperature + 27315) * 29.271267f; // in cemtimeter
EstAlt = (EstAlt * 6 + BaroAlt * 2) >> 3; // additional LPF to reduce baro noise EstAlt = (EstAlt * 6 + BaroAlt * 2) >> 3; // additional LPF to reduce baro noise
//P //P
error16 = constrain(AltHold - EstAlt, -300, 300); error16 = constrain(AltHold - EstAlt, -300, 300);
applyDeadband(error16, 10); // remove small P parametr to reduce noise near zero position error16 = applyDeadband(error16, 10); // remove small P parametr to reduce noise near zero position
BaroPID = constrain((cfg.P8[PIDALT] * error16 >> 7), -150, +150); BaroPID = constrain((cfg.P8[PIDALT] * error16 >> 7), -150, +150);
//I //I
@ -404,8 +352,7 @@ int getEstimatedAltitude(void)
BaroPID += errorAltitudeI >> 9; // I in range +/-60 BaroPID += errorAltitudeI >> 9; // I in range +/-60
// projection of ACC vector to global Z, with 1G subtructed // projection of ACC vector to global Z, with 1G subtructed
// Math: accZ = A * G / |G| - 1G // Math: accZ = A * G / |G| - 1G (invG is calculated in getEstimatedAttitude)
invG = InvSqrt(isq(EstG.V.X) + isq(EstG.V.Y) + isq(EstG.V.Z));
accZ = (accSmooth[ROLL] * EstG.V.X + accSmooth[PITCH] * EstG.V.Y + accSmooth[YAW] * EstG.V.Z) * invG; accZ = (accSmooth[ROLL] * EstG.V.X + accSmooth[PITCH] * EstG.V.Y + accSmooth[YAW] * EstG.V.Z) * invG;
if (!f.ARMED) { if (!f.ARMED) {
@ -413,7 +360,7 @@ int getEstimatedAltitude(void)
accZoffset += accZ; accZoffset += accZ;
} }
accZ -= accZoffset >> 3; accZ -= accZoffset >> 3;
applyDeadband(accZ, cfg.accz_deadband); accZ = applyDeadband(accZ, cfg.accz_deadband);
// Integrator - velocity, cm/sec // Integrator - velocity, cm/sec
vel += accZ * accVelScale * dTime; vel += accZ * accVelScale * dTime;
@ -422,7 +369,7 @@ int getEstimatedAltitude(void)
lastBaroAlt = EstAlt; lastBaroAlt = EstAlt;
baroVel = constrain(baroVel, -300, 300); // constrain baro velocity +/- 300cm/s baroVel = constrain(baroVel, -300, 300); // constrain baro velocity +/- 300cm/s
applyDeadband(baroVel, 10); // to reduce noise near zero baroVel = applyDeadband(baroVel, 10); // to reduce noise near zero
// apply Complimentary Filter to keep the calculated velocity based on baro velocity (i.e. near real velocity). // apply Complimentary Filter to keep the calculated velocity based on baro velocity (i.e. near real velocity).
// By using CF it's possible to correct the drift of integrated accZ (velocity) without loosing the phase, i.e without delay // By using CF it's possible to correct the drift of integrated accZ (velocity) without loosing the phase, i.e without delay
@ -430,7 +377,7 @@ int getEstimatedAltitude(void)
// D // D
vel_tmp = vel; vel_tmp = vel;
applyDeadband(vel_tmp, 5); vel_tmp = applyDeadband(vel_tmp, 5);
vario = vel_tmp; vario = vel_tmp;
BaroPID -= constrain(cfg.D8[PIDALT] * vel_tmp >> 4, -150, 150); BaroPID -= constrain(cfg.D8[PIDALT] * vel_tmp >> 4, -150, 150);

View File

@ -245,6 +245,7 @@ typedef struct master_t {
uint8_t acc_hardware; // Which acc hardware to use on boards with more than one device uint8_t acc_hardware; // Which acc hardware to use on boards with more than one device
uint16_t gyro_lpf; // gyro LPF setting - values are driver specific, in case of invalid number, a reasonable default ~30-40HZ is chosen. uint16_t gyro_lpf; // gyro LPF setting - values are driver specific, in case of invalid number, a reasonable default ~30-40HZ is chosen.
uint16_t gyro_cmpf_factor; // Set the Gyro Weight for Gyro/Acc complementary filter. Increasing this value would reduce and delay Acc influence on the output of the filter. uint16_t gyro_cmpf_factor; // Set the Gyro Weight for Gyro/Acc complementary filter. Increasing this value would reduce and delay Acc influence on the output of the filter.
uint16_t gyro_cmpfm_factor; // Set the Gyro Weight for Gyro/Magnetometer complementary filter. Increasing this value would reduce and delay Magnetometer influence on the output of the filter
uint32_t gyro_smoothing_factor; // How much to smoothen with per axis (32bit value with Roll, Pitch, Yaw in bits 24, 16, 8 respectively uint32_t gyro_smoothing_factor; // How much to smoothen with per axis (32bit value with Roll, Pitch, Yaw in bits 24, 16, 8 respectively
uint8_t moron_threshold; // people keep forgetting that moving model while init results in wrong gyro offsets. and then they never reset gyro. so this is now on by default. uint8_t moron_threshold; // people keep forgetting that moving model while init results in wrong gyro offsets. and then they never reset gyro. so this is now on by default.
uint8_t mpu6050_scale; // es/non-es variance between MPU6050 sensors, half my boards are mpu6000ES, need this to be dynamic. automatically set by mpu6050 driver. uint8_t mpu6050_scale; // es/non-es variance between MPU6050 sensors, half my boards are mpu6000ES, need this to be dynamic. automatically set by mpu6050 driver.