Merge pull request #308 from larryho5/betaflight_29032016_tbs_release

Betaflight 29032016 tbs release
This commit is contained in:
borisbstyle 2016-03-29 11:21:21 +02:00
commit d5146df6e6
15 changed files with 1284 additions and 277 deletions

View File

@ -604,6 +604,7 @@ COLIBRI_RACE_SRC = \
drivers/display_ug2864hsweg01.c \
drivers/light_ws2811strip.c \
drivers/light_ws2811strip_stm32f30x.c \
drivers/serial_escserial.c \
drivers/serial_usb_vcp.c \
$(HIGHEND_SRC) \
$(COMMON_SRC) \

View File

@ -32,6 +32,8 @@
#define CROSSFIRE_RSSI_FRAME_ID 0x14
#define CLEANFLIGHT_MODE_FRAME_ID 0x20
#define DATA_BUFFER_SIZE 64
typedef enum BSTDevice {
BSTDEV_1,
BSTDEV_2,
@ -39,6 +41,7 @@ typedef enum BSTDevice {
} BSTDevice;
void bstInit(BSTDevice index);
uint32_t bstTimeoutUserCallback(void);
uint16_t bstGetErrorCounter(void);
bool bstWriteBusy(void);
@ -47,7 +50,6 @@ bool bstSlaveRead(uint8_t* buf);
bool bstSlaveWrite(uint8_t* data);
void bstMasterWriteLoop(void);
void bstMasterReadLoop(void);
void crc8Cal(uint8_t data_in);

View File

@ -12,6 +12,7 @@
#include <build_config.h>
#include "nvic.h"
#include "bus_bst.h"
@ -45,8 +46,6 @@
#define BST2_SDA_CLK_SOURCE RCC_AHBPeriph_GPIOA
#endif
static uint32_t bstTimeout;
static volatile uint16_t bst1ErrorCount = 0;
static volatile uint16_t bst2ErrorCount = 0;
@ -59,101 +58,219 @@ volatile bool coreProReady = false;
// BST TimeoutUserCallback
///////////////////////////////////////////////////////////////////////////////
uint32_t bstTimeoutUserCallback(I2C_TypeDef *BSTx)
uint8_t dataBuffer[DATA_BUFFER_SIZE] = {0};
uint8_t dataBufferPointer = 0;
uint8_t bstWriteDataLen = 0;
uint32_t micros(void);
uint8_t writeData[DATA_BUFFER_SIZE] = {0};
uint8_t currentWriteBufferPointer = 0;
bool receiverAddress = false;
uint8_t readData[DATA_BUFFER_SIZE] = {0};
uint8_t bufferPointer = 0;
void bstProcessInCommand(void);
void I2C_EV_IRQHandler()
{
if (BSTx == I2C1) {
bst1ErrorCount++;
} else {
bst2ErrorCount++;
}
I2C_SoftwareResetCmd(BSTx);
return false;
if(I2C_GetITStatus(BSTx, I2C_IT_ADDR)) {
CRC8 = 0;
if(I2C_GetTransferDirection(BSTx) == I2C_Direction_Receiver) {
currentWriteBufferPointer = 0;
receiverAddress = true;
I2C_SendData(BSTx, (uint8_t) writeData[currentWriteBufferPointer++]);
I2C_ITConfig(BSTx, I2C_IT_TXI, ENABLE);
} else {
readData[0] = I2C_GetAddressMatched(BSTx);
bufferPointer = 1;
}
I2C_ClearITPendingBit(BSTx, I2C_IT_ADDR);
} else if(I2C_GetITStatus(BSTx, I2C_IT_RXNE)) {
uint8_t data = I2C_ReceiveData(BSTx);
readData[bufferPointer] = data;
if(bufferPointer > 1) {
if(readData[1]+1 == bufferPointer) {
crc8Cal(0);
bstProcessInCommand();
} else {
crc8Cal(data);
}
}
bufferPointer++;
I2C_ClearITPendingBit(BSTx, I2C_IT_RXNE);
} else if(I2C_GetITStatus(BSTx, I2C_IT_TXIS)) {
if(receiverAddress) {
if(currentWriteBufferPointer > 0) {
if(writeData[0] == currentWriteBufferPointer) {
receiverAddress = false;
crc8Cal(0);
I2C_SendData(BSTx, (uint8_t) CRC8);
I2C_ITConfig(BSTx, I2C_IT_TXI, DISABLE);
} else {
crc8Cal((uint8_t) writeData[currentWriteBufferPointer]);
I2C_SendData(BSTx, (uint8_t) writeData[currentWriteBufferPointer++]);
}
}
} else if(bstWriteDataLen) {
I2C_SendData(BSTx, (uint8_t) dataBuffer[dataBufferPointer]);
if(bstWriteDataLen > 1)
dataBufferPointer++;
if(dataBufferPointer == bstWriteDataLen) {
I2C_ITConfig(BSTx, I2C_IT_TXI, DISABLE);
dataBufferPointer = 0;
bstWriteDataLen = 0;
}
} else {
}
I2C_ClearITPendingBit(BSTx, I2C_IT_TXIS);
} else if(I2C_GetITStatus(BSTx, I2C_IT_NACKF)) {
if(receiverAddress) {
receiverAddress = false;
I2C_ITConfig(BSTx, I2C_IT_TXI, DISABLE);
}
I2C_ClearITPendingBit(BSTx, I2C_IT_NACKF);
} else if(I2C_GetITStatus(BSTx, I2C_IT_STOPF)) {
if(bstWriteDataLen && dataBufferPointer == bstWriteDataLen) {
dataBufferPointer = 0;
bstWriteDataLen = 0;
}
I2C_ClearITPendingBit(BSTx, I2C_IT_STOPF);
} else if(I2C_GetITStatus(BSTx, I2C_IT_BERR)
|| I2C_GetITStatus(BSTx, I2C_IT_ARLO)
|| I2C_GetITStatus(BSTx, I2C_IT_OVR)) {
bstTimeoutUserCallback();
I2C_ClearITPendingBit(BSTx, I2C_IT_BERR | I2C_IT_ARLO | I2C_IT_OVR);
}
}
void I2C1_EV_IRQHandler()
{
I2C_EV_IRQHandler();
}
void I2C2_EV_IRQHandler()
{
I2C_EV_IRQHandler();
}
uint32_t bstTimeoutUserCallback()
{
if (BSTx == I2C1) {
bst1ErrorCount++;
} else {
bst2ErrorCount++;
}
I2C_GenerateSTOP(BSTx, ENABLE);
receiverAddress = false;
dataBufferPointer = 0;
bstWriteDataLen = 0;
I2C_ITConfig(BSTx, I2C_IT_TXI, DISABLE);
I2C_SoftwareResetCmd(BSTx);
return false;
}
void bstInitPort(I2C_TypeDef *BSTx/*, uint8_t Address*/)
{
GPIO_InitTypeDef GPIO_InitStructure;
I2C_InitTypeDef BST_InitStructure;
NVIC_InitTypeDef nvic;
GPIO_InitTypeDef GPIO_InitStructure;
I2C_InitTypeDef BST_InitStructure;
if (BSTx == I2C1) {
RCC_AHBPeriphClockCmd(BST1_SCL_CLK_SOURCE | BST1_SDA_CLK_SOURCE, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE);
RCC_I2CCLKConfig(RCC_I2C1CLK_SYSCLK);
if(BSTx == I2C1) {
RCC_AHBPeriphClockCmd(BST1_SCL_CLK_SOURCE | BST1_SDA_CLK_SOURCE, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE);
RCC_I2CCLKConfig(RCC_I2C1CLK_SYSCLK);
GPIO_PinAFConfig(BST1_SCL_GPIO, BST1_SCL_PIN_SOURCE, BST1_SCL_GPIO_AF);
GPIO_PinAFConfig(BST1_SDA_GPIO, BST1_SDA_PIN_SOURCE, BST1_SDA_GPIO_AF);
GPIO_PinAFConfig(BST1_SCL_GPIO, BST1_SCL_PIN_SOURCE, BST1_SCL_GPIO_AF);
GPIO_PinAFConfig(BST1_SDA_GPIO, BST1_SDA_PIN_SOURCE, BST1_SDA_GPIO_AF);
GPIO_StructInit(&GPIO_InitStructure);
I2C_StructInit(&BST_InitStructure);
GPIO_StructInit(&GPIO_InitStructure);
I2C_StructInit(&BST_InitStructure);
// Init pins
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
// Init pins
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_InitStructure.GPIO_Pin = BST1_SCL_PIN;
GPIO_Init(BST1_SCL_GPIO, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = BST1_SCL_PIN;
GPIO_Init(BST1_SCL_GPIO, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = BST1_SDA_PIN;
GPIO_Init(BST1_SDA_GPIO, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = BST1_SDA_PIN;
GPIO_Init(BST1_SDA_GPIO, &GPIO_InitStructure);
I2C_StructInit(&BST_InitStructure);
I2C_StructInit(&BST_InitStructure);
BST_InitStructure.I2C_Mode = I2C_Mode_I2C;
BST_InitStructure.I2C_AnalogFilter = I2C_AnalogFilter_Enable;
BST_InitStructure.I2C_DigitalFilter = 0x00;
BST_InitStructure.I2C_OwnAddress1 = CLEANFLIGHT_FC;
//BST_InitStructure.I2C_OwnAddress1 = PNP_PRO_GPS;
//BST_InitStructure.I2C_OwnAddress1 = Address;
BST_InitStructure.I2C_Ack = I2C_Ack_Enable;
BST_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
BST_InitStructure.I2C_Timing = 0x30E0257A; // 100 Khz, 72Mhz Clock, Analog Filter Delay ON, Rise 100, Fall 10.
BST_InitStructure.I2C_Mode = I2C_Mode_I2C;
BST_InitStructure.I2C_AnalogFilter = I2C_AnalogFilter_Enable;
BST_InitStructure.I2C_DigitalFilter = 0x00;
BST_InitStructure.I2C_OwnAddress1 = CLEANFLIGHT_FC;
BST_InitStructure.I2C_Ack = I2C_Ack_Enable;
BST_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
BST_InitStructure.I2C_Timing = 0x30E0257A; // 100 Khz, 72Mhz Clock, Analog Filter Delay ON, Rise 100, Fall 10.
I2C_Init(I2C1, &BST_InitStructure);
I2C_Init(I2C1, &BST_InitStructure);
I2C_Cmd(I2C1, ENABLE);
}
I2C_GeneralCallCmd(I2C1, ENABLE);
if (BSTx == I2C2) {
RCC_AHBPeriphClockCmd(BST2_SCL_CLK_SOURCE | BST2_SDA_CLK_SOURCE, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C2, ENABLE);
RCC_I2CCLKConfig(RCC_I2C2CLK_SYSCLK);
nvic.NVIC_IRQChannel = I2C1_EV_IRQn;
nvic.NVIC_IRQChannelPreemptionPriority = NVIC_PRIORITY_BASE(NVIC_PRIO_BST_READ_DATA);
nvic.NVIC_IRQChannelSubPriority = NVIC_PRIORITY_SUB(NVIC_PRIO_BST_READ_DATA);
nvic.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&nvic);
GPIO_PinAFConfig(BST2_SCL_GPIO, BST2_SCL_PIN_SOURCE, BST2_SCL_GPIO_AF);
GPIO_PinAFConfig(BST2_SDA_GPIO, BST2_SDA_PIN_SOURCE, BST2_SDA_GPIO_AF);
I2C_ITConfig(I2C1, I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI, ENABLE);
I2C_Cmd(I2C1, ENABLE);
}
GPIO_StructInit(&GPIO_InitStructure);
I2C_StructInit(&BST_InitStructure);
if(BSTx == I2C2) {
RCC_AHBPeriphClockCmd(BST2_SCL_CLK_SOURCE | BST2_SDA_CLK_SOURCE, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C2, ENABLE);
RCC_I2CCLKConfig(RCC_I2C2CLK_SYSCLK);
// Init pins
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_PinAFConfig(BST2_SCL_GPIO, BST2_SCL_PIN_SOURCE, BST2_SCL_GPIO_AF);
GPIO_PinAFConfig(BST2_SDA_GPIO, BST2_SDA_PIN_SOURCE, BST2_SDA_GPIO_AF);
GPIO_InitStructure.GPIO_Pin = BST2_SCL_PIN;
GPIO_Init(BST2_SCL_GPIO, &GPIO_InitStructure);
GPIO_StructInit(&GPIO_InitStructure);
I2C_StructInit(&BST_InitStructure);
GPIO_InitStructure.GPIO_Pin = BST2_SDA_PIN;
GPIO_Init(BST2_SDA_GPIO, &GPIO_InitStructure);
// Init pins
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
I2C_StructInit(&BST_InitStructure);
GPIO_InitStructure.GPIO_Pin = BST2_SCL_PIN;
GPIO_Init(BST2_SCL_GPIO, &GPIO_InitStructure);
BST_InitStructure.I2C_Mode = I2C_Mode_I2C;
BST_InitStructure.I2C_AnalogFilter = I2C_AnalogFilter_Enable;
BST_InitStructure.I2C_DigitalFilter = 0x00;
BST_InitStructure.I2C_OwnAddress1 = CLEANFLIGHT_FC;
//BST_InitStructure.I2C_OwnAddress1 = PNP_PRO_GPS;
//BST_InitStructure.I2C_OwnAddress1 = Address;
BST_InitStructure.I2C_Ack = I2C_Ack_Enable;
BST_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
BST_InitStructure.I2C_Timing = 0x30E0257A; // 100 Khz, 72Mhz Clock, Analog Filter Delay ON, Rise 100, Fall 10.
GPIO_InitStructure.GPIO_Pin = BST2_SDA_PIN;
GPIO_Init(BST2_SDA_GPIO, &GPIO_InitStructure);
I2C_Init(I2C2, &BST_InitStructure);
I2C_StructInit(&BST_InitStructure);
I2C_Cmd(I2C2, ENABLE);
}
BST_InitStructure.I2C_Mode = I2C_Mode_I2C;
BST_InitStructure.I2C_AnalogFilter = I2C_AnalogFilter_Enable;
BST_InitStructure.I2C_DigitalFilter = 0x00;
BST_InitStructure.I2C_OwnAddress1 = CLEANFLIGHT_FC;
BST_InitStructure.I2C_Ack = I2C_Ack_Enable;
BST_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
BST_InitStructure.I2C_Timing = 0x30E0257A; // 100 Khz, 72Mhz Clock, Analog Filter Delay ON, Rise 100, Fall 10.
I2C_Init(I2C2, &BST_InitStructure);
I2C_GeneralCallCmd(I2C2, ENABLE);
nvic.NVIC_IRQChannel = I2C2_EV_IRQn;
nvic.NVIC_IRQChannelPreemptionPriority = NVIC_PRIORITY_BASE(NVIC_PRIO_BST_READ_DATA);
nvic.NVIC_IRQChannelSubPriority = NVIC_PRIORITY_SUB(NVIC_PRIO_BST_READ_DATA);
nvic.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&nvic);
I2C_ITConfig(I2C2, I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI, ENABLE);
I2C_Cmd(I2C2, ENABLE);
}
}
void bstInit(BSTDevice index)
@ -163,8 +280,6 @@ void bstInit(BSTDevice index)
} else {
BSTx = I2C2;
}
//bstInitPort(BSTx, PNP_PRO_GPS);
//bstInitPort(BSTx, CLEANFLIGHT_FC);
bstInitPort(BSTx);
}
@ -179,9 +294,6 @@ uint16_t bstGetErrorCounter(void)
}
/*************************************************************************************************/
uint8_t dataBuffer[64] = {0};
uint8_t bufferPointer = 0;
uint8_t bstWriteDataLen = 0;
bool bstWriteBusy(void)
{
@ -195,7 +307,7 @@ bool bstMasterWrite(uint8_t* data)
{
if(bstWriteDataLen==0) {
CRC8 = 0;
bufferPointer = 0;
dataBufferPointer = 0;
dataBuffer[0] = *data;
dataBuffer[1] = *(data+1);
bstWriteDataLen = dataBuffer[1] + 2;
@ -213,163 +325,27 @@ bool bstMasterWrite(uint8_t* data)
return false;
}
bool bstSlaveRead(uint8_t* buf) {
if(I2C_GetAddressMatched(BSTx)==CLEANFLIGHT_FC && I2C_GetTransferDirection(BSTx) == I2C_Direction_Transmitter) {
//if(I2C_GetTransferDirection(BSTx) == I2C_Direction_Transmitter) {
uint8_t len = 0;
CRC8 = 0;
I2C_ClearFlag(BSTx, I2C_FLAG_ADDR);
/* Wait until RXNE flag is set */
bstTimeout = BST_LONG_TIMEOUT;
while (I2C_GetFlagStatus(BSTx, I2C_ISR_RXNE) == RESET) {
if ((bstTimeout--) == 0) {
return bstTimeoutUserCallback(BSTx);
}
}
len = I2C_ReceiveData(BSTx);
*buf = len;
buf++;
while (len) {
/* Wait until RXNE flag is set */
bstTimeout = BST_LONG_TIMEOUT;
while (I2C_GetFlagStatus(BSTx, I2C_ISR_RXNE) == RESET) {
if ((bstTimeout--) == 0) {
return bstTimeoutUserCallback(BSTx);
}
}
/* Read data from RXDR */
*buf = I2C_ReceiveData(BSTx);
if(len == 1)
crc8Cal(0);
else
crc8Cal((uint8_t)*buf);
/* Point to the next location where the byte read will be saved */
buf++;
/* Decrement the read bytes counter */
len--;
}
/* If all operations OK */
return true;
}
return false;
}
bool bstSlaveWrite(uint8_t* data) {
bstTimeout = BST_LONG_TIMEOUT;
while (I2C_GetFlagStatus(BSTx, I2C_ISR_ADDR) == RESET) {
if ((bstTimeout--) == 0) {
return bstTimeoutUserCallback(BSTx);
}
}
if(I2C_GetAddressMatched(BSTx)==CLEANFLIGHT_FC && I2C_GetTransferDirection(BSTx) == I2C_Direction_Receiver) {
//if(I2C_GetTransferDirection(BSTx) == I2C_Direction_Receiver) {
uint8_t len = 0;
CRC8 = 0;
I2C_ClearFlag(BSTx, I2C_FLAG_ADDR);
/* Wait until TXIS flag is set */
bstTimeout = BST_LONG_TIMEOUT;
while (I2C_GetFlagStatus(BSTx, I2C_ISR_TXIS) == RESET) {
if ((bstTimeout--) == 0) {
return bstTimeoutUserCallback(BSTx);
}
}
len = *data;
data++;
I2C_SendData(BSTx, (uint8_t) len);
while(len) {
/* Wait until TXIS flag is set */
bstTimeout = BST_LONG_TIMEOUT;
while (I2C_GetFlagStatus(BSTx, I2C_ISR_TXIS) == RESET) {
if ((bstTimeout--) == 0) {
return bstTimeoutUserCallback(BSTx);
}
}
if(len == 1) {
crc8Cal(0);
I2C_SendData(BSTx, (uint8_t) CRC8);
} else {
crc8Cal((uint8_t)*data);
I2C_SendData(BSTx, (uint8_t)*data);
}
/* Point to the next location where the byte read will be saved */
data++;
/* Decrement the read bytes counter */
len--;
}
/* Wait until TXIS flag is set */
bstTimeout = BST_LONG_TIMEOUT;
while (I2C_GetFlagStatus(BSTx, I2C_ISR_TXIS) == RESET) {
if ((bstTimeout--) == 0) {
return bstTimeoutUserCallback(BSTx);
}
}
/* If all operations OK */
return true;
}
return false;
}
/*************************************************************************************************/
uint32_t bstMasterWriteTimeout = 0;
void bstMasterWriteLoop(void)
{
while(bstWriteDataLen) {
if(bufferPointer == 0) {
bool scl_set = false;
if(BSTx == I2C1)
scl_set = BST1_SCL_GPIO->IDR&BST1_SCL_PIN;
else
scl_set = BST2_SCL_GPIO->IDR&BST2_SCL_PIN;
if(I2C_GetFlagStatus(BSTx, I2C_ISR_BUSY)==RESET && scl_set) {
/* Configure slave address, nbytes, reload, end mode and start or stop generation */
I2C_TransferHandling(BSTx, dataBuffer[bufferPointer], 1, I2C_Reload_Mode, I2C_Generate_Start_Write);
bstMasterWriteTimeout = micros();
bufferPointer++;
}
} else if(bufferPointer == 1) {
if(I2C_GetFlagStatus(BSTx, I2C_ISR_TXIS)==SET) {
/* Send Register len */
I2C_SendData(BSTx, (uint8_t) dataBuffer[bufferPointer]);
bstMasterWriteTimeout = micros();
} else if(I2C_GetFlagStatus(BSTx, I2C_ISR_TCR)==SET) {
/* Configure slave address, nbytes, reload, end mode and start or stop generation */
I2C_TransferHandling(BSTx, dataBuffer[bufferPointer-1], dataBuffer[bufferPointer], I2C_AutoEnd_Mode, I2C_No_StartStop);
bstMasterWriteTimeout = micros();
bufferPointer++;
}
} else if(bufferPointer == bstWriteDataLen) {
if(I2C_GetFlagStatus(BSTx, I2C_ISR_STOPF)==SET) {
I2C_ClearFlag(BSTx, I2C_ICR_STOPCF);
bstWriteDataLen = 0;
bufferPointer = 0;
}
} else {
if(I2C_GetFlagStatus(BSTx, I2C_ISR_TXIS)==SET) {
I2C_SendData(BSTx, (uint8_t) dataBuffer[bufferPointer]);
bstMasterWriteTimeout = micros();
bufferPointer++;
}
}
uint32_t currentTime = micros();
if(currentTime>bstMasterWriteTimeout+5000) {
I2C_SoftwareResetCmd(BSTx);
bstWriteDataLen = 0;
bufferPointer = 0;
static uint32_t bstMasterWriteTimeout = 0;
uint32_t currentTime = micros();
if(bstWriteDataLen && dataBufferPointer==0) {
bool scl_set = false;
if(BSTx == I2C1)
scl_set = BST1_SCL_GPIO->IDR&BST1_SCL_PIN;
else
scl_set = BST2_SCL_GPIO->IDR&BST2_SCL_PIN;
if(I2C_GetFlagStatus(BSTx, I2C_FLAG_BUSY)==RESET && scl_set) {
I2C_TransferHandling(BSTx, dataBuffer[dataBufferPointer], dataBuffer[dataBufferPointer+1]+1, I2C_AutoEnd_Mode, I2C_Generate_Start_Write);
I2C_ITConfig(BSTx, I2C_IT_TXI, ENABLE);
dataBufferPointer = 1;
bstMasterWriteTimeout = micros();
}
} else if(currentTime>bstMasterWriteTimeout+BST_SHORT_TIMEOUT) {
bstTimeoutUserCallback();
}
}
void bstMasterReadLoop(void)
{
}
/*************************************************************************************************/
void crc8Cal(uint8_t data_in)
{

View File

@ -8,6 +8,7 @@
#define NVIC_PRIO_TIMER NVIC_BUILD_PRIORITY(1, 1)
#define NVIC_PRIO_BARO_EXT NVIC_BUILD_PRIORITY(0x0f, 0x0f)
#define NVIC_PRIO_WS2811_DMA NVIC_BUILD_PRIORITY(1, 2) // TODO - is there some reason to use high priority? (or to use DMA IRQ at all?)
#define NVIC_PRIO_BST_READ_DATA NVIC_BUILD_PRIORITY(0x0f, 0x0f)
#define NVIC_PRIO_TRANSPONDER_DMA NVIC_BUILD_PRIORITY(3, 0)
#define NVIC_PRIO_SERIALUART1_TXDMA NVIC_BUILD_PRIORITY(1, 1)
#define NVIC_PRIO_SERIALUART1_RXDMA NVIC_BUILD_PRIORITY(1, 1)

View File

@ -0,0 +1,888 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include "platform.h"
#if defined(USE_ESCSERIAL)
#include "build_config.h"
#include "common/utils.h"
#include "common/atomic.h"
#include "common/printf.h"
#include "nvic.h"
#include "system.h"
#include "gpio.h"
#include "timer.h"
#include "serial.h"
#include "serial_escserial.h"
#include "drivers/light_led.h"
#include "io/serial.h"
#include "flight/mixer.h"
#define RX_TOTAL_BITS 10
#define TX_TOTAL_BITS 10
#define MAX_ESCSERIAL_PORTS 1
static serialPort_t *escPort = NULL;
static serialPort_t *passPort = NULL;
typedef struct escSerial_s {
serialPort_t port;
const timerHardware_t *rxTimerHardware;
volatile uint8_t rxBuffer[ESCSERIAL_BUFFER_SIZE];
const timerHardware_t *txTimerHardware;
volatile uint8_t txBuffer[ESCSERIAL_BUFFER_SIZE];
uint8_t isSearchingForStartBit;
uint8_t rxBitIndex;
uint8_t rxLastLeadingEdgeAtBitIndex;
uint8_t rxEdge;
uint8_t isTransmittingData;
uint8_t isReceivingData;
int8_t bitsLeftToTransmit;
uint16_t internalTxBuffer; // includes start and stop bits
uint16_t internalRxBuffer; // includes start and stop bits
uint16_t receiveTimeout;
uint16_t transmissionErrors;
uint16_t receiveErrors;
uint8_t escSerialPortIndex;
timerCCHandlerRec_t timerCb;
timerCCHandlerRec_t edgeCb;
} escSerial_t;
extern timerHardware_t* serialTimerHardware;
extern escSerial_t escSerialPorts[];
extern const struct serialPortVTable escSerialVTable[];
escSerial_t escSerialPorts[MAX_ESCSERIAL_PORTS];
void onEscSerialTimer(timerCCHandlerRec_t *cbRec, captureCompare_t capture);
void onEscSerialRxPinChange(timerCCHandlerRec_t *cbRec, captureCompare_t capture);
void onEscSerialTimerBL(timerCCHandlerRec_t *cbRec, captureCompare_t capture);
void onEscSerialRxPinChangeBL(timerCCHandlerRec_t *cbRec, captureCompare_t capture);
static void escSerialICConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t polarity);
void setEscTxSignal(escSerial_t *escSerial, uint8_t state)
{
if (state) {
digitalHi(escSerial->rxTimerHardware->gpio, escSerial->rxTimerHardware->pin);
} else {
digitalLo(escSerial->rxTimerHardware->gpio, escSerial->rxTimerHardware->pin);
}
}
static void escSerialGPIOConfig(GPIO_TypeDef *gpio, uint16_t pin, GPIO_Mode mode)
{
gpio_config_t cfg;
cfg.pin = pin;
cfg.mode = mode;
cfg.speed = Speed_2MHz;
gpioInit(gpio, &cfg);
}
void escSerialInputPortConfig(const timerHardware_t *timerHardwarePtr)
{
#ifdef STM32F10X
escSerialGPIOConfig(timerHardwarePtr->gpio, timerHardwarePtr->pin, Mode_IPU);
#else
escSerialGPIOConfig(timerHardwarePtr->gpio, timerHardwarePtr->pin, Mode_AF_PP_PU);
#endif
//escSerialGPIOConfig(timerHardwarePtr->gpio, timerHardwarePtr->pin, timerHardwarePtr->gpioInputMode);
timerChClearCCFlag(timerHardwarePtr);
timerChITConfig(timerHardwarePtr,ENABLE);
}
static bool isTimerPeriodTooLarge(uint32_t timerPeriod)
{
return timerPeriod > 0xFFFF;
}
static void escSerialTimerTxConfigBL(const timerHardware_t *timerHardwarePtr, uint8_t reference, uint32_t baud)
{
uint32_t clock = SystemCoreClock/2;
uint32_t timerPeriod;
TIM_DeInit(timerHardwarePtr->tim);
do {
timerPeriod = clock / baud;
if (isTimerPeriodTooLarge(timerPeriod)) {
if (clock > 1) {
clock = clock / 2; // this is wrong - mhz stays the same ... This will double baudrate until ok (but minimum baudrate is < 1200)
} else {
// TODO unable to continue, unable to determine clock and timerPeriods for the given baud
}
}
} while (isTimerPeriodTooLarge(timerPeriod));
uint8_t mhz = clock / 1000000;
timerConfigure(timerHardwarePtr, timerPeriod, mhz);
timerChCCHandlerInit(&escSerialPorts[reference].timerCb, onEscSerialTimerBL);
timerChConfigCallbacks(timerHardwarePtr, &escSerialPorts[reference].timerCb, NULL);
}
static void escSerialTimerRxConfigBL(const timerHardware_t *timerHardwarePtr, uint8_t reference, portOptions_t options)
{
// start bit is usually a FALLING signal
uint8_t mhz = SystemCoreClock / 2000000;
TIM_DeInit(timerHardwarePtr->tim);
timerConfigure(timerHardwarePtr, 0xFFFF, mhz);
escSerialICConfig(timerHardwarePtr->tim, timerHardwarePtr->channel, (options & SERIAL_INVERTED) ? TIM_ICPolarity_Rising : TIM_ICPolarity_Falling);
timerChCCHandlerInit(&escSerialPorts[reference].edgeCb, onEscSerialRxPinChangeBL);
timerChConfigCallbacks(timerHardwarePtr, &escSerialPorts[reference].edgeCb, NULL);
}
static void escSerialTimerTxConfig(const timerHardware_t *timerHardwarePtr, uint8_t reference)
{
uint32_t timerPeriod=34;
TIM_DeInit(timerHardwarePtr->tim);
timerConfigure(timerHardwarePtr, timerPeriod, 1);
timerChCCHandlerInit(&escSerialPorts[reference].timerCb, onEscSerialTimer);
timerChConfigCallbacks(timerHardwarePtr, &escSerialPorts[reference].timerCb, NULL);
}
static void escSerialICConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t polarity)
{
TIM_ICInitTypeDef TIM_ICInitStructure;
TIM_ICStructInit(&TIM_ICInitStructure);
TIM_ICInitStructure.TIM_Channel = channel;
TIM_ICInitStructure.TIM_ICPolarity = polarity;
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter = 0x0;
TIM_ICInit(tim, &TIM_ICInitStructure);
}
static void escSerialTimerRxConfig(const timerHardware_t *timerHardwarePtr, uint8_t reference)
{
// start bit is usually a FALLING signal
TIM_DeInit(timerHardwarePtr->tim);
timerConfigure(timerHardwarePtr, 0xFFFF, 1);
escSerialICConfig(timerHardwarePtr->tim, timerHardwarePtr->channel, TIM_ICPolarity_Falling);
timerChCCHandlerInit(&escSerialPorts[reference].edgeCb, onEscSerialRxPinChange);
timerChConfigCallbacks(timerHardwarePtr, &escSerialPorts[reference].edgeCb, NULL);
}
static void escSerialOutputPortConfig(const timerHardware_t *timerHardwarePtr)
{
escSerialGPIOConfig(timerHardwarePtr->gpio, timerHardwarePtr->pin, Mode_Out_PP);
timerChITConfig(timerHardwarePtr,DISABLE);
}
static void resetBuffers(escSerial_t *escSerial)
{
escSerial->port.rxBufferSize = ESCSERIAL_BUFFER_SIZE;
escSerial->port.rxBuffer = escSerial->rxBuffer;
escSerial->port.rxBufferTail = 0;
escSerial->port.rxBufferHead = 0;
escSerial->port.txBuffer = escSerial->txBuffer;
escSerial->port.txBufferSize = ESCSERIAL_BUFFER_SIZE;
escSerial->port.txBufferTail = 0;
escSerial->port.txBufferHead = 0;
}
serialPort_t *openEscSerial(escSerialPortIndex_e portIndex, serialReceiveCallbackPtr callback, uint16_t output, uint32_t baud, portOptions_t options, uint8_t mode)
{
escSerial_t *escSerial = &(escSerialPorts[portIndex]);
escSerial->rxTimerHardware = &(timerHardware[output]);
escSerial->txTimerHardware = &(timerHardware[ESCSERIAL_TIMER_TX_HARDWARE]);
escSerial->port.vTable = escSerialVTable;
escSerial->port.baudRate = baud;
escSerial->port.mode = MODE_RXTX;
escSerial->port.options = options;
escSerial->port.callback = callback;
resetBuffers(escSerial);
escSerial->isTransmittingData = false;
escSerial->isSearchingForStartBit = true;
escSerial->rxBitIndex = 0;
escSerial->transmissionErrors = 0;
escSerial->receiveErrors = 0;
escSerial->receiveTimeout = 0;
escSerial->escSerialPortIndex = portIndex;
escSerialInputPortConfig(escSerial->rxTimerHardware);
setEscTxSignal(escSerial, ENABLE);
delay(50);
if(mode==0){
escSerialTimerTxConfig(escSerial->txTimerHardware, portIndex);
escSerialTimerRxConfig(escSerial->rxTimerHardware, portIndex);
}
if(mode==1){
escSerialTimerTxConfigBL(escSerial->txTimerHardware, portIndex, baud);
escSerialTimerRxConfigBL(escSerial->rxTimerHardware, portIndex, options);
}
return &escSerial->port;
}
void escSerialInputPortDeConfig(const timerHardware_t *timerHardwarePtr)
{
timerChClearCCFlag(timerHardwarePtr);
timerChITConfig(timerHardwarePtr,DISABLE);
escSerialGPIOConfig(timerHardwarePtr->gpio, timerHardwarePtr->pin, Mode_IPU);
}
void closeEscSerial(escSerialPortIndex_e portIndex, uint16_t output)
{
escSerial_t *escSerial = &(escSerialPorts[portIndex]);
escSerial->rxTimerHardware = &(timerHardware[output]);
escSerial->txTimerHardware = &(timerHardware[ESCSERIAL_TIMER_TX_HARDWARE]);
escSerialInputPortDeConfig(escSerial->rxTimerHardware);
timerChConfigCallbacks(escSerial->txTimerHardware,NULL,NULL);
timerChConfigCallbacks(escSerial->rxTimerHardware,NULL,NULL);
TIM_DeInit(escSerial->txTimerHardware->tim);
TIM_DeInit(escSerial->rxTimerHardware->tim);
}
/*********************************************/
void processEscTxState(escSerial_t *escSerial)
{
uint8_t mask;
static uint8_t bitq=0, transmitStart=0;
if (escSerial->isReceivingData) {
return;
}
if(transmitStart==0)
{
setEscTxSignal(escSerial, 1);
}
if (!escSerial->isTransmittingData) {
char byteToSend;
reload:
if (isEscSerialTransmitBufferEmpty((serialPort_t *)escSerial)) {
// canreceive
transmitStart=0;
return;
}
if(transmitStart<3)
{
if(transmitStart==0)
byteToSend = 0xff;
if(transmitStart==1)
byteToSend = 0xff;
if(transmitStart==2)
byteToSend = 0x7f;
transmitStart++;
}
else{
// data to send
byteToSend = escSerial->port.txBuffer[escSerial->port.txBufferTail++];
if (escSerial->port.txBufferTail >= escSerial->port.txBufferSize) {
escSerial->port.txBufferTail = 0;
}
}
// build internal buffer, data bits (MSB to LSB)
escSerial->internalTxBuffer = byteToSend;
escSerial->bitsLeftToTransmit = 8;
escSerial->isTransmittingData = true;
//set output
escSerialOutputPortConfig(escSerial->rxTimerHardware);
return;
}
if (escSerial->bitsLeftToTransmit) {
mask = escSerial->internalTxBuffer & 1;
if(mask)
{
if(bitq==0 || bitq==1)
{
setEscTxSignal(escSerial, 1);
}
if(bitq==2 || bitq==3)
{
setEscTxSignal(escSerial, 0);
}
}
else
{
if(bitq==0 || bitq==2)
{
setEscTxSignal(escSerial, 1);
}
if(bitq==1 ||bitq==3)
{
setEscTxSignal(escSerial, 0);
}
}
bitq++;
if(bitq>3)
{
escSerial->internalTxBuffer >>= 1;
escSerial->bitsLeftToTransmit--;
bitq=0;
if(escSerial->bitsLeftToTransmit==0)
{
goto reload;
}
}
return;
}
if (isEscSerialTransmitBufferEmpty((serialPort_t *)escSerial)) {
escSerial->isTransmittingData = false;
escSerialInputPortConfig(escSerial->rxTimerHardware);
}
}
/*-----------------------BL*/
/*********************************************/
void processEscTxStateBL(escSerial_t *escSerial)
{
uint8_t mask;
if (escSerial->isReceivingData) {
return;
}
if (!escSerial->isTransmittingData) {
char byteToSend;
if (isEscSerialTransmitBufferEmpty((serialPort_t *)escSerial)) {
// canreceive
return;
}
// data to send
byteToSend = escSerial->port.txBuffer[escSerial->port.txBufferTail++];
if (escSerial->port.txBufferTail >= escSerial->port.txBufferSize) {
escSerial->port.txBufferTail = 0;
}
// build internal buffer, MSB = Stop Bit (1) + data bits (MSB to LSB) + start bit(0) LSB
escSerial->internalTxBuffer = (1 << (TX_TOTAL_BITS - 1)) | (byteToSend << 1);
escSerial->bitsLeftToTransmit = TX_TOTAL_BITS;
escSerial->isTransmittingData = true;
//set output
escSerialOutputPortConfig(escSerial->rxTimerHardware);
return;
}
if (escSerial->bitsLeftToTransmit) {
mask = escSerial->internalTxBuffer & 1;
escSerial->internalTxBuffer >>= 1;
setEscTxSignal(escSerial, mask);
escSerial->bitsLeftToTransmit--;
return;
}
escSerial->isTransmittingData = false;
if (isEscSerialTransmitBufferEmpty((serialPort_t *)escSerial)) {
escSerialInputPortConfig(escSerial->rxTimerHardware);
}
}
enum {
TRAILING,
LEADING
};
void applyChangedBitsEscBL(escSerial_t *escSerial)
{
if (escSerial->rxEdge == TRAILING) {
uint8_t bitToSet;
for (bitToSet = escSerial->rxLastLeadingEdgeAtBitIndex; bitToSet < escSerial->rxBitIndex; bitToSet++) {
escSerial->internalRxBuffer |= 1 << bitToSet;
}
}
}
void prepareForNextEscRxByteBL(escSerial_t *escSerial)
{
// prepare for next byte
escSerial->rxBitIndex = 0;
escSerial->isSearchingForStartBit = true;
if (escSerial->rxEdge == LEADING) {
escSerial->rxEdge = TRAILING;
escSerialICConfig(
escSerial->rxTimerHardware->tim,
escSerial->rxTimerHardware->channel,
(escSerial->port.options & SERIAL_INVERTED) ? TIM_ICPolarity_Rising : TIM_ICPolarity_Falling
);
}
}
#define STOP_BIT_MASK (1 << 0)
#define START_BIT_MASK (1 << (RX_TOTAL_BITS - 1))
void extractAndStoreEscRxByteBL(escSerial_t *escSerial)
{
if ((escSerial->port.mode & MODE_RX) == 0) {
return;
}
uint8_t haveStartBit = (escSerial->internalRxBuffer & START_BIT_MASK) == 0;
uint8_t haveStopBit = (escSerial->internalRxBuffer & STOP_BIT_MASK) == 1;
if (!haveStartBit || !haveStopBit) {
escSerial->receiveErrors++;
return;
}
uint8_t rxByte = (escSerial->internalRxBuffer >> 1) & 0xFF;
if (escSerial->port.callback) {
escSerial->port.callback(rxByte);
} else {
escSerial->port.rxBuffer[escSerial->port.rxBufferHead] = rxByte;
escSerial->port.rxBufferHead = (escSerial->port.rxBufferHead + 1) % escSerial->port.rxBufferSize;
}
}
void processEscRxStateBL(escSerial_t *escSerial)
{
if (escSerial->isSearchingForStartBit) {
return;
}
escSerial->rxBitIndex++;
if (escSerial->rxBitIndex == RX_TOTAL_BITS - 1) {
applyChangedBitsEscBL(escSerial);
return;
}
if (escSerial->rxBitIndex == RX_TOTAL_BITS) {
if (escSerial->rxEdge == TRAILING) {
escSerial->internalRxBuffer |= STOP_BIT_MASK;
}
extractAndStoreEscRxByteBL(escSerial);
prepareForNextEscRxByteBL(escSerial);
}
}
void onEscSerialTimerBL(timerCCHandlerRec_t *cbRec, captureCompare_t capture)
{
UNUSED(capture);
escSerial_t *escSerial = container_of(cbRec, escSerial_t, timerCb);
processEscTxStateBL(escSerial);
processEscRxStateBL(escSerial);
}
void onEscSerialRxPinChangeBL(timerCCHandlerRec_t *cbRec, captureCompare_t capture)
{
UNUSED(capture);
escSerial_t *escSerial = container_of(cbRec, escSerial_t, edgeCb);
bool inverted = escSerial->port.options & SERIAL_INVERTED;
if ((escSerial->port.mode & MODE_RX) == 0) {
return;
}
if (escSerial->isSearchingForStartBit) {
// synchronise bit counter
// FIXME this reduces functionality somewhat as receiving breaks concurrent transmission on all ports because
// the next callback to the onSerialTimer will happen too early causing transmission errors.
TIM_SetCounter(escSerial->txTimerHardware->tim, escSerial->txTimerHardware->tim->ARR / 2);
if (escSerial->isTransmittingData) {
escSerial->transmissionErrors++;
}
escSerialICConfig(escSerial->rxTimerHardware->tim, escSerial->rxTimerHardware->channel, inverted ? TIM_ICPolarity_Falling : TIM_ICPolarity_Rising);
escSerial->rxEdge = LEADING;
escSerial->rxBitIndex = 0;
escSerial->rxLastLeadingEdgeAtBitIndex = 0;
escSerial->internalRxBuffer = 0;
escSerial->isSearchingForStartBit = false;
return;
}
if (escSerial->rxEdge == LEADING) {
escSerial->rxLastLeadingEdgeAtBitIndex = escSerial->rxBitIndex;
}
applyChangedBitsEscBL(escSerial);
if (escSerial->rxEdge == TRAILING) {
escSerial->rxEdge = LEADING;
escSerialICConfig(escSerial->rxTimerHardware->tim, escSerial->rxTimerHardware->channel, inverted ? TIM_ICPolarity_Falling : TIM_ICPolarity_Rising);
} else {
escSerial->rxEdge = TRAILING;
escSerialICConfig(escSerial->rxTimerHardware->tim, escSerial->rxTimerHardware->channel, inverted ? TIM_ICPolarity_Rising : TIM_ICPolarity_Falling);
}
}
/*-------------------------BL*/
void extractAndStoreEscRxByte(escSerial_t *escSerial)
{
if ((escSerial->port.mode & MODE_RX) == 0) {
return;
}
uint8_t rxByte = (escSerial->internalRxBuffer) & 0xFF;
if (escSerial->port.callback) {
escSerial->port.callback(rxByte);
} else {
escSerial->port.rxBuffer[escSerial->port.rxBufferHead] = rxByte;
escSerial->port.rxBufferHead = (escSerial->port.rxBufferHead + 1) % escSerial->port.rxBufferSize;
}
}
void onEscSerialTimer(timerCCHandlerRec_t *cbRec, captureCompare_t capture)
{
UNUSED(capture);
escSerial_t *escSerial = container_of(cbRec, escSerial_t, timerCb);
if(escSerial->isReceivingData)
{
escSerial->receiveTimeout++;
if(escSerial->receiveTimeout>8)
{
escSerial->isReceivingData=0;
escSerial->receiveTimeout=0;
escSerialICConfig(escSerial->rxTimerHardware->tim, escSerial->rxTimerHardware->channel, TIM_ICPolarity_Falling);
}
}
processEscTxState(escSerial);
}
void onEscSerialRxPinChange(timerCCHandlerRec_t *cbRec, captureCompare_t capture)
{
UNUSED(capture);
static uint8_t zerofirst=0;
static uint8_t bits=0;
static uint16_t bytes=0;
escSerial_t *escSerial = container_of(cbRec, escSerial_t, edgeCb);
//clear timer
TIM_SetCounter(escSerial->rxTimerHardware->tim,0);
if(capture > 40 && capture < 90)
{
zerofirst++;
if(zerofirst>1)
{
zerofirst=0;
escSerial->internalRxBuffer = escSerial->internalRxBuffer>>1;
bits++;
}
}
else if(capture>90 && capture < 200)
{
zerofirst=0;
escSerial->internalRxBuffer = escSerial->internalRxBuffer>>1;
escSerial->internalRxBuffer |= 0x80;
bits++;
}
else
{
if(!escSerial->isReceivingData)
{
//start
//lets reset
escSerial->isReceivingData = 1;
zerofirst=0;
bytes=0;
bits=1;
escSerial->internalRxBuffer = 0x80;
escSerialICConfig(escSerial->rxTimerHardware->tim, escSerial->rxTimerHardware->channel, TIM_ICPolarity_Rising);
}
}
escSerial->receiveTimeout = 0;
if(bits==8)
{
bits=0;
bytes++;
if(bytes>3)
{
extractAndStoreEscRxByte(escSerial);
}
escSerial->internalRxBuffer=0;
}
}
uint8_t escSerialTotalBytesWaiting(serialPort_t *instance)
{
if ((instance->mode & MODE_RX) == 0) {
return 0;
}
escSerial_t *s = (escSerial_t *)instance;
return (s->port.rxBufferHead - s->port.rxBufferTail) & (s->port.rxBufferSize - 1);
}
uint8_t escSerialReadByte(serialPort_t *instance)
{
uint8_t ch;
if ((instance->mode & MODE_RX) == 0) {
return 0;
}
if (escSerialTotalBytesWaiting(instance) == 0) {
return 0;
}
ch = instance->rxBuffer[instance->rxBufferTail];
instance->rxBufferTail = (instance->rxBufferTail + 1) % instance->rxBufferSize;
return ch;
}
void escSerialWriteByte(serialPort_t *s, uint8_t ch)
{
if ((s->mode & MODE_TX) == 0) {
return;
}
s->txBuffer[s->txBufferHead] = ch;
s->txBufferHead = (s->txBufferHead + 1) % s->txBufferSize;
}
void escSerialSetBaudRate(serialPort_t *s, uint32_t baudRate)
{
UNUSED(s);
UNUSED(baudRate);
}
void escSerialSetMode(serialPort_t *instance, portMode_t mode)
{
instance->mode = mode;
}
bool isEscSerialTransmitBufferEmpty(serialPort_t *instance)
{
// start listening
return instance->txBufferHead == instance->txBufferTail;
}
uint8_t escSerialTxBytesFree(serialPort_t *instance)
{
if ((instance->mode & MODE_TX) == 0) {
return 0;
}
escSerial_t *s = (escSerial_t *)instance;
uint8_t bytesUsed = (s->port.txBufferHead - s->port.txBufferTail) & (s->port.txBufferSize - 1);
return (s->port.txBufferSize - 1) - bytesUsed;
}
const struct serialPortVTable escSerialVTable[] = {
{
escSerialWriteByte,
escSerialTotalBytesWaiting,
escSerialTxBytesFree,
escSerialReadByte,
escSerialSetBaudRate,
isEscSerialTransmitBufferEmpty,
escSerialSetMode,
.writeBuf = NULL,
}
};
void escSerialInitialize()
{
StopPwmAllMotors();
for (volatile uint8_t i = 0; i < USABLE_TIMER_CHANNEL_COUNT; i++) {
// set outputs to pullup
if(timerHardware[i].outputEnable==1)
{
escSerialGPIOConfig(timerHardware[i].gpio,timerHardware[i].pin, Mode_IPU); //GPIO_Mode_IPU
}
}
}
typedef enum {
IDLE,
HEADER_START,
HEADER_M,
HEADER_ARROW,
HEADER_SIZE,
HEADER_CMD,
COMMAND_RECEIVED
} mspState_e;
typedef struct mspPort_s {
uint8_t offset;
uint8_t dataSize;
uint8_t checksum;
uint8_t indRX;
uint8_t inBuf[10];
mspState_e c_state;
uint8_t cmdMSP;
} mspPort_t;
static mspPort_t currentPort;
static bool ProcessExitCommand(uint8_t c)
{
if (currentPort.c_state == IDLE) {
if (c == '$') {
currentPort.c_state = HEADER_START;
} else {
return false;
}
} else if (currentPort.c_state == HEADER_START) {
currentPort.c_state = (c == 'M') ? HEADER_M : IDLE;
} else if (currentPort.c_state == HEADER_M) {
currentPort.c_state = (c == '<') ? HEADER_ARROW : IDLE;
} else if (currentPort.c_state == HEADER_ARROW) {
if (c > 10) {
currentPort.c_state = IDLE;
} else {
currentPort.dataSize = c;
currentPort.offset = 0;
currentPort.checksum = 0;
currentPort.indRX = 0;
currentPort.checksum ^= c;
currentPort.c_state = HEADER_SIZE;
}
} else if (currentPort.c_state == HEADER_SIZE) {
currentPort.cmdMSP = c;
currentPort.checksum ^= c;
currentPort.c_state = HEADER_CMD;
} else if (currentPort.c_state == HEADER_CMD && currentPort.offset < currentPort.dataSize) {
currentPort.checksum ^= c;
currentPort.inBuf[currentPort.offset++] = c;
} else if (currentPort.c_state == HEADER_CMD && currentPort.offset >= currentPort.dataSize) {
if (currentPort.checksum == c) {
currentPort.c_state = COMMAND_RECEIVED;
if((currentPort.cmdMSP == 0xF4) && (currentPort.dataSize==0))
{
currentPort.c_state = IDLE;
return true;
}
} else {
currentPort.c_state = IDLE;
}
}
return false;
}
// mode 0=sk, mode 1=bl output=timerHardware PWM channel.
void escEnablePassthrough(serialPort_t *escPassthroughPort, uint16_t output, uint8_t mode)
{
bool exitEsc = false;
LED0_OFF;
LED1_OFF;
StopPwmAllMotors();
passPort = escPassthroughPort;
uint8_t first_output = 0;
for (volatile uint8_t i = 0; i < USABLE_TIMER_CHANNEL_COUNT; i++) {
if(timerHardware[i].outputEnable==1)
{
first_output=i;
break;
}
}
//doesn't work with messy timertable
uint8_t motor_output=first_output+output-1;
if(motor_output >=USABLE_TIMER_CHANNEL_COUNT)
return;
escPort = openEscSerial(ESCSERIAL1, NULL, motor_output, 19200, 0, mode);
uint8_t ch;
while(1) {
if (serialRxBytesWaiting(escPort)) {
LED0_ON;
while(serialRxBytesWaiting(escPort))
{
ch = serialRead(escPort);
serialWrite(escPassthroughPort, ch);
}
LED0_OFF;
}
if (serialRxBytesWaiting(escPassthroughPort)) {
LED1_ON;
while(serialRxBytesWaiting(escPassthroughPort))
{
ch = serialRead(escPassthroughPort);
exitEsc = ProcessExitCommand(ch);
if(exitEsc)
{
serialWrite(escPassthroughPort, 0x24);
serialWrite(escPassthroughPort, 0x4D);
serialWrite(escPassthroughPort, 0x3E);
serialWrite(escPassthroughPort, 0x00);
serialWrite(escPassthroughPort, 0xF4);
serialWrite(escPassthroughPort, 0xF4);
closeEscSerial(ESCSERIAL1, output);
return;
}
if(mode){
serialWrite(escPassthroughPort, ch); // blheli loopback
}
serialWrite(escPort, ch);
}
LED1_OFF;
}
delay(5);
}
}
#endif

View File

@ -0,0 +1,36 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#define ESCSERIAL_BUFFER_SIZE 1024
typedef enum {
ESCSERIAL1 = 0,
ESCSERIAL2
} escSerialPortIndex_e;
serialPort_t *openEscSerial(escSerialPortIndex_e portIndex, serialReceiveCallbackPtr callback, uint16_t output, uint32_t baud, portOptions_t options, uint8_t mode);
// serialPort API
void escSerialWriteByte(serialPort_t *instance, uint8_t ch);
uint8_t escSerialTotalBytesWaiting(serialPort_t *instance);
uint8_t escSerialReadByte(serialPort_t *instance);
void escSerialSetBaudRate(serialPort_t *s, uint32_t baudRate);
bool isEscSerialTransmitBufferEmpty(serialPort_t *s);
void escSerialInitialize();
void escEnablePassthrough(serialPort_t *escPassthroughPort, uint16_t output, uint8_t mode);

View File

@ -290,7 +290,6 @@ static const char pidnames[] =
"MAG;"
"VEL;";
#define DATA_BUFFER_SIZE 64
#define BOARD_IDENTIFIER_LENGTH 4
typedef struct box_e {
@ -332,8 +331,8 @@ static const box_t boxes[CHECKBOX_ITEM_COUNT + 1] = {
{ CHECKBOX_ITEM_COUNT, NULL, 0xFF }
};
uint8_t readData[DATA_BUFFER_SIZE];
uint8_t writeData[DATA_BUFFER_SIZE];
extern uint8_t readData[DATA_BUFFER_SIZE];
extern uint8_t writeData[DATA_BUFFER_SIZE];
/*************************************************************************************************/
uint8_t writeBufferPointer = 1;
@ -354,7 +353,12 @@ static void bstWrite32(uint32_t data)
bstWrite16((uint16_t)(data >> 16));
}
uint8_t readBufferPointer = 3;
uint8_t readBufferPointer = 4;
static uint8_t bstCurrentAddress(void)
{
return readData[0];
}
static uint8_t bstRead8(void)
{
return readData[readBufferPointer++] & 0xff;
@ -376,12 +380,12 @@ static uint32_t bstRead32(void)
static uint8_t bstReadDataSize(void)
{
return readData[0]-4;
return readData[1]-5;
}
static uint8_t bstReadCRC(void)
{
return readData[readData[0]];
return readData[readData[1]+1];
}
static void s_struct(uint8_t *cb, uint8_t siz)
@ -495,6 +499,7 @@ static void bstWriteDataflashReadReply(uint32_t address, uint8_t size)
/*************************************************************************************************/
#define BST_USB_COMMANDS 0x0A
#define BST_GENERAL_HEARTBEAT 0x0B
#define BST_USB_DEVICE_INFO_REQUEST 0x04 //Handshake
#define BST_USB_DEVICE_INFO_FRAME 0x05 //Handshake
#define BST_READ_COMMANDS 0x26
@ -999,7 +1004,7 @@ static bool bstSlaveProcessFeedbackCommand(uint8_t bstRequest)
// we do not know how to handle the (valid) message, indicate error BST
return false;
}
bstSlaveWrite(writeData);
//bstSlaveWrite(writeData);
return true;
}
@ -1236,7 +1241,7 @@ static bool bstSlaveProcessWriteCommand(uint8_t bstWriteCommand)
if (ARMING_FLAG(ARMED)) {
ret = BST_FAILED;
bstWrite8(ret);
bstSlaveWrite(writeData);
//bstSlaveWrite(writeData);
return ret;
}
writeEEPROM();
@ -1465,7 +1470,7 @@ static bool bstSlaveProcessWriteCommand(uint8_t bstWriteCommand)
ret = BST_FAILED;
}
bstWrite8(ret);
bstSlaveWrite(writeData);
//bstSlaveWrite(writeData);
if(ret == BST_FAILED)
return false;
return true;
@ -1482,18 +1487,19 @@ static bool bstSlaveUSBCommandFeedback(/*uint8_t bstFeedback*/)
bstWrite8(FC_VERSION_MINOR); //Firmware ID
bstWrite8(0x00);
bstWrite8(0x00);
bstSlaveWrite(writeData);
//bstSlaveWrite(writeData);
return true;
}
/*************************************************************************************************/
bool slaveModeOn = false;
static void bstSlaveProcessInCommand(void)
#define BST_RESET_TIME 1.2*1000*1000 //micro-seconds
uint32_t resetBstTimer = 0;
bool needResetCheck = true;
void bstProcessInCommand(void)
{
if(bstSlaveRead(readData)) {
slaveModeOn = true;
readBufferPointer = 1;
//Check if the CRC match
readBufferPointer = 2;
if(bstCurrentAddress() == CLEANFLIGHT_FC) {
if(bstReadCRC() == CRC8 && bstRead8()==BST_USB_COMMANDS) {
uint8_t i;
writeBufferPointer = 1;
@ -1519,8 +1525,23 @@ static void bstSlaveProcessInCommand(void)
break;
}
}
} else {
slaveModeOn = false;
} else if(bstCurrentAddress() == 0x00) {
if(bstReadCRC() == CRC8 && bstRead8()==BST_GENERAL_HEARTBEAT) {
resetBstTimer = micros();
needResetCheck = true;
}
}
}
void resetBstChecker(void)
{
if(needResetCheck) {
uint32_t currentTimer = micros();
if(currentTimer >= (resetBstTimer + BST_RESET_TIME))
{
bstTimeoutUserCallback();
needResetCheck = false;
}
}
}
@ -1555,26 +1576,13 @@ void taskBstMasterProcess(void)
if(sensors(SENSOR_GPS) && !bstWriteBusy())
writeGpsPositionPrameToBST();
}
}
void taskBstCheckCommand(void)
{
//Check if the BST input command available to out address
bstSlaveProcessInCommand();
bstMasterWriteLoop();
if (isRebootScheduled) {
stopMotors();
handleOneshotFeatureChangeOnRestart();
systemReset();
}
}
void bstMasterWriteLoop(void);
void taskBstReadWrite(void)
{
taskBstCheckCommand();
if(!slaveModeOn)
bstMasterWriteLoop();
resetBstChecker();
}
/*************************************************************************************************/

View File

@ -19,13 +19,10 @@
#include "drivers/bus_bst.h"
void taskBstReadWrite(void);
void bstProcessInCommand(void);
void bstSlaveProcessInCommand(void);
void taskBstMasterProcess(void);
void taskBstCheckCommand(void);
//void writeGpsPositionPrameToBST(void);
//void writeGPSTimeFrameToBST(void);
//void writeDataToBST(void);
bool writeGpsPositionPrameToBST(void);
bool writeRollPitchYawToBST(void);
bool writeRCChannelToBST(void);

View File

@ -141,6 +141,9 @@ static void cliRxRange(char *cmdline);
#ifdef GPS
static void cliGpsPassthrough(char *cmdline);
#endif
#ifdef USE_ESCSERIAL
static void cliEscPassthrough(char *cmdline);
#endif
static void cliHelp(char *cmdline);
static void cliMap(char *cmdline);
@ -271,6 +274,9 @@ const clicmd_t cmdTable[] = {
"[name]", cliGet),
#ifdef GPS
CLI_COMMAND_DEF("gpspassthrough", "passthrough gps to serial", NULL, cliGpsPassthrough),
#endif
#ifdef USE_ESCSERIAL
CLI_COMMAND_DEF("escprog", "passthrough esc to serial", "<mode [sk/bl]> <index>", cliEscPassthrough),
#endif
CLI_COMMAND_DEF("help", NULL, NULL, cliHelp),
#ifdef LED_STRIP
@ -2192,6 +2198,56 @@ static void cliGpsPassthrough(char *cmdline)
}
#endif
#ifdef USE_ESCSERIAL
static void cliEscPassthrough(char *cmdline)
{
uint8_t mode = 0;
int index = 0;
int i = 0;
char *pch = NULL;
char *saveptr;
if (isEmpty(cmdline)) {
cliShowParseError();
return;
}
pch = strtok_r(cmdline, " ", &saveptr);
while (pch != NULL) {
switch (i) {
case 0:
if(strncasecmp(pch, "sk", strlen(pch)) == 0)
{
mode = 0;
}
else if(strncasecmp(pch, "bl", strlen(pch)) == 0)
{
mode = 1;
}
else
{
cliShowParseError();
return;
}
break;
case 1:
index = atoi(pch);
if ((index >= 0) && (index < USABLE_TIMER_CHANNEL_COUNT)) {
printf("passthru at pwm output %d enabled\r\n", index);
}
else {
printf("invalid pwm output, valid range: 0 to %d\r\n", USABLE_TIMER_CHANNEL_COUNT);
return;
}
break;
}
i++;
pch = strtok_r(NULL, " ", &saveptr);
}
escEnablePassthrough(cliPort,index,mode);
}
#endif
static void cliHelp(char *cmdline)
{
uint32_t i = 0;

View File

@ -95,6 +95,9 @@
#ifdef USE_SERIAL_1WIRE
#include "io/serial_1wire.h"
#endif
#ifdef USE_ESCSERIAL
#include "drivers/serial_escserial.h"
#endif
static serialPort_t *mspSerialPort;
extern uint16_t cycleTime; // FIXME dependency on mw.c
@ -1841,6 +1844,50 @@ static bool processInCommand(void)
}
break;
#endif
#ifdef USE_ESCSERIAL
case MSP_SET_ESCSERIAL:
// get channel number
i = read8();
// we do not give any data back, assume channel number is transmitted OK
if (i == 0xFF) {
// 0xFF -> preinitialize the Passthrough
// switch all motor lines HI
escSerialInitialize();
// and come back right afterwards
// rem: App: Wait at least appx. 500 ms for BLHeli to jump into
// bootloader mode before try to connect any ESC
}
else {
// Check for channel number 1..USABLE_TIMER_CHANNEL_COUNT-1
if ((i > 0) && (i < USABLE_TIMER_CHANNEL_COUNT)) {
// because we do not come back after calling escEnablePassthrough
// proceed with a success reply first
headSerialReply(0);
tailSerialReply();
// flush the transmit buffer
bufWriterFlush(writer);
// wait for all data to send
while (!isSerialTransmitBufferEmpty(mspSerialPort)) {
delay(50);
}
// Start to activate here
// motor 1 => index 0
escEnablePassthrough(mspSerialPort,i,0); //sk blmode
// MPS uart is active again
} else {
// ESC channel higher than max. allowed
// rem: BLHeliSuite will not support more than 8
headSerialError(0);
}
// proceed as usual with MSP commands
// and wait to switch to next channel
// rem: App needs to call MSP_BOOT to deinitialize Passthrough
}
break;
#endif
default:
// we do not know how to handle the (valid) message, indicate error MSP $M!
return false;

View File

@ -255,6 +255,7 @@ static const char * const boardIdentifier = TARGET_BOARD_IDENTIFIER;
#define MSP_SERVO_MIX_RULES 241 //out message Returns servo mixer configuration
#define MSP_SET_SERVO_MIX_RULE 242 //in message Sets servo mixer configuration
#define MSP_SET_1WIRE 243 //in message Sets 1Wire paththrough
#define MSP_SET_ESCSERIAL 244 //in message Sets escserial passthrough
// Each MSP port requires state and a receive buffer, revisit this default if someone needs more than 2 MSP ports.
#define MAX_MSP_PORT_COUNT 2

View File

@ -725,7 +725,6 @@ int main(void) {
setTaskEnabled(TASK_TRANSPONDER, feature(FEATURE_TRANSPONDER));
#endif
#ifdef USE_BST
setTaskEnabled(TASK_BST_READ_WRITE, true);
setTaskEnabled(TASK_BST_MASTER_PROCESS, true);
#endif

View File

@ -81,7 +81,6 @@ typedef enum {
#endif
#ifdef USE_BST
TASK_BST_READ_WRITE,
TASK_BST_MASTER_PROCESS,
#endif

View File

@ -188,13 +188,6 @@ cfTask_t cfTasks[TASK_COUNT] = {
#endif
#ifdef USE_BST
[TASK_BST_READ_WRITE] = {
.taskName = "BST_MASTER_WRITE",
.taskFunc = taskBstReadWrite,
.desiredPeriod = 1000000 / 100, // 100 Hz
.staticPriority = TASK_PRIORITY_IDLE,
},
[TASK_BST_MASTER_PROCESS] = {
.taskName = "BST_MASTER_PROCESS",
.taskFunc = taskBstMasterProcess,

View File

@ -110,6 +110,9 @@
#define UART3_TX_PINSOURCE GPIO_PinSource10
#define UART3_RX_PINSOURCE GPIO_PinSource11
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define USE_I2C
#define I2C_DEVICE (I2CDEV_2)