AltHold cleanup.

* Renamed several methods and variables so they make more sense.
* Move more altitude hold related code out of imu.c/h into
altitudehold.c/h.
* Fixed a unsigned integer being using instead of an signed integer in
the throttle calculation code.
This commit is contained in:
Dominic Clifton 2014-09-29 01:34:15 +01:00
parent 7d4abb8a4a
commit daa823ddba
8 changed files with 222 additions and 199 deletions

View File

@ -20,6 +20,18 @@
#include "maths.h"
int32_t applyDeadband(int32_t value, int32_t deadband)
{
if (abs(value) < deadband) {
value = 0;
} else if (value > 0) {
value -= deadband;
} else if (value < 0) {
value += deadband;
}
return value;
}
int constrain(int amt, int low, int high)
{
if (amt < low)

View File

@ -40,6 +40,8 @@ typedef struct stdev_t
int m_n;
} stdev_t;
int32_t applyDeadband(int32_t value, int32_t deadband);
int constrain(int amt, int low, int high);
float constrainf(float amt, float low, float high);
@ -48,4 +50,5 @@ void devPush(stdev_t *dev, float x);
float devVariance(stdev_t *dev);
float devStandardDeviation(stdev_t *dev);
float degreesToRadians(int16_t degrees);
int scaleRange(int x, int srcMin, int srcMax, int destMin, int destMax);

View File

@ -54,6 +54,7 @@
#include "io/ledstrip.h"
#include "io/gps.h"
#include "flight/failsafe.h"
#include "flight/altitudehold.h"
#include "flight/imu.h"
#include "flight/navigation.h"
@ -453,7 +454,8 @@ void activateConfig(void)
imuRuntimeConfig.acc_unarmedcal = currentProfile->acc_unarmedcal;;
imuRuntimeConfig.small_angle = masterConfig.small_angle;
configureImu(&imuRuntimeConfig, &currentProfile->pidProfile, &currentProfile->barometerConfig, &currentProfile->accDeadband);
configureImu(&imuRuntimeConfig, &currentProfile->pidProfile, &currentProfile->accDeadband);
configureAltitudeHold(&currentProfile->pidProfile, &currentProfile->barometerConfig);
calculateThrottleAngleScale(currentProfile->throttle_correction_angle);
calculateAccZLowPassFilterRCTimeConstant(currentProfile->accz_lpf_cutoff);

View File

@ -19,6 +19,9 @@
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <math.h>
#include "common/maths.h"
#include "platform.h"
@ -42,6 +45,7 @@
#include "sensors/battery.h"
#include "sensors/boardalignment.h"
#include "sensors/gyro.h"
#include "sensors/sonar.h"
#include "io/escservo.h"
#include "io/gimbal.h"
@ -63,9 +67,26 @@
#include "config/config_master.h"
#if defined(BARO) || defined(SONAR)
barometerConfig_t *barometerConfig;
pidProfile_t *pidProfile;
void configureAltitudeHold(pidProfile_t *initialPidProfile, barometerConfig_t *intialBarometerConfig)
{
pidProfile = initialPidProfile;
barometerConfig = intialBarometerConfig;
}
static int16_t initialThrottleHold;
static void multirotorAltHold(void)
// 40hz update rate (20hz LPF on acc)
#define BARO_UPDATE_FREQUENCY_40HZ (1000 * 25)
#define DEGREES_80_IN_DECIDEGREES 800
static void applyMultirotorAltHold(void)
{
static uint8_t isAltHoldChanged = 0;
// multirotor alt hold
@ -80,7 +101,7 @@ static void multirotorAltHold(void)
AltHold = EstAlt;
isAltHoldChanged = 0;
}
rcCommand[THROTTLE] = constrain(initialThrottleHold + BaroPID, masterConfig.escAndServoConfig.minthrottle, masterConfig.escAndServoConfig.maxthrottle);
rcCommand[THROTTLE] = constrain(initialThrottleHold + altHoldThrottleAdjustment, masterConfig.escAndServoConfig.minthrottle, masterConfig.escAndServoConfig.maxthrottle);
}
} else {
// slow alt changes, mostly used for aerial photography
@ -94,25 +115,25 @@ static void multirotorAltHold(void)
velocityControl = 0;
isAltHoldChanged = 0;
}
rcCommand[THROTTLE] = constrain(initialThrottleHold + BaroPID, masterConfig.escAndServoConfig.minthrottle, masterConfig.escAndServoConfig.maxthrottle);
rcCommand[THROTTLE] = constrain(initialThrottleHold + altHoldThrottleAdjustment, masterConfig.escAndServoConfig.minthrottle, masterConfig.escAndServoConfig.maxthrottle);
}
}
static void fixedWingAltHold()
static void applyFixedWingAltHold()
{
// handle fixedwing-related althold. UNTESTED! and probably wrong
// most likely need to check changes on pitch channel and 'reset' althold similar to
// how throttle does it on multirotor
rcCommand[PITCH] += BaroPID * masterConfig.fixedwing_althold_dir;
rcCommand[PITCH] += altHoldThrottleAdjustment * masterConfig.fixedwing_althold_dir;
}
void updateAltHold(void)
void applyAltHold(void)
{
if (STATE(FIXED_WING)) {
fixedWingAltHold();
applyFixedWingAltHold();
} else {
multirotorAltHold();
applyMultirotorAltHold();
}
}
@ -129,7 +150,7 @@ void updateAltHoldState(void)
AltHold = EstAlt;
initialThrottleHold = rcCommand[THROTTLE];
errorVelocityI = 0;
BaroPID = 0;
altHoldThrottleAdjustment = 0;
}
}
@ -146,8 +167,163 @@ void updateSonarAltHoldState(void)
AltHold = EstAlt;
initialThrottleHold = rcCommand[THROTTLE];
errorVelocityI = 0;
BaroPID = 0; // TODO: Change naming of BaroPID to "AltPID" as this is used by both sonar and baro
altHoldThrottleAdjustment = 0;
}
}
bool isThrustFacingDownwards(rollAndPitchInclination_t *inclination)
{
return abs(inclination->values.rollDeciDegrees) < DEGREES_80_IN_DECIDEGREES && abs(inclination->values.pitchDeciDegrees) < DEGREES_80_IN_DECIDEGREES;
}
int16_t calculateTiltAngle(rollAndPitchInclination_t *inclination)
{
return max(abs(inclination->values.rollDeciDegrees), abs(inclination->values.pitchDeciDegrees));
}
int32_t calculateAltHoldThrottleAdjustment(int32_t vel_tmp, float accZ_tmp, float accZ_old)
{
int32_t result = 0;
int32_t error;
int32_t setVel;
if (!isThrustFacingDownwards(&inclination)) {
return result;
}
// Altitude P-Controller
if (!velocityControl) {
error = constrain(AltHold - EstAlt, -500, 500);
error = applyDeadband(error, 10); // remove small P parameter to reduce noise near zero position
setVel = constrain((pidProfile->P8[PIDALT] * error / 128), -300, +300); // limit velocity to +/- 3 m/s
} else {
setVel = setVelocity;
}
// Velocity PID-Controller
// P
error = setVel - vel_tmp;
result = constrain((pidProfile->P8[PIDVEL] * error / 32), -300, +300);
// I
errorVelocityI += (pidProfile->I8[PIDVEL] * error);
errorVelocityI = constrain(errorVelocityI, -(8192 * 200), (8192 * 200));
result += errorVelocityI / 8192; // I in range +/-200
// D
result -= constrain(pidProfile->D8[PIDVEL] * (accZ_tmp + accZ_old) / 512, -150, 150);
return result;
}
void calculateEstimatedAltitude(uint32_t currentTime)
{
static uint32_t previousTime;
uint32_t dTime;
int32_t baroVel;
float dt;
float vel_acc;
int32_t vel_tmp;
float accZ_tmp;
static float accZ_old = 0.0f;
static float vel = 0.0f;
static float accAlt = 0.0f;
static int32_t lastBaroAlt;
static int32_t baroAlt_offset = 0;
float sonarTransition;
#ifdef SONAR
int16_t tiltAngle;
#endif
dTime = currentTime - previousTime;
if (dTime < BARO_UPDATE_FREQUENCY_40HZ)
return;
previousTime = currentTime;
#ifdef BARO
if (!isBaroCalibrationComplete()) {
performBaroCalibrationCycle();
vel = 0;
accAlt = 0;
}
BaroAlt = baroCalculateAltitude();
#else
BaroAlt = 0;
#endif
#ifdef SONAR
tiltAngle = calculateTiltAngle(&inclination);
sonarAlt = sonarCalculateAltitude(sonarAlt, tiltAngle);
#endif
if (sonarAlt > 0 && sonarAlt < 200) {
baroAlt_offset = BaroAlt - sonarAlt;
BaroAlt = sonarAlt;
} else {
BaroAlt -= baroAlt_offset;
if (sonarAlt > 0) {
sonarTransition = (300 - sonarAlt) / 100.0f;
BaroAlt = sonarAlt * sonarTransition + BaroAlt * (1.0f - sonarTransition);
}
}
dt = accTimeSum * 1e-6f; // delta acc reading time in seconds
// Integrator - velocity, cm/sec
accZ_tmp = (float)accSum[2] / (float)accSumCount;
vel_acc = accZ_tmp * accVelScale * (float)accTimeSum;
// Integrator - Altitude in cm
accAlt += (vel_acc * 0.5f) * dt + vel * dt; // integrate velocity to get distance (x= a/2 * t^2)
accAlt = accAlt * barometerConfig->baro_cf_alt + (float)BaroAlt * (1.0f - barometerConfig->baro_cf_alt); // complementary filter for altitude estimation (baro & acc)
vel += vel_acc;
#if 0
debug[1] = accSum[2] / accSumCount; // acceleration
debug[2] = vel; // velocity
debug[3] = accAlt; // height
#endif
accSum_reset();
#ifdef BARO
if (!isBaroCalibrationComplete()) {
return;
}
#endif
if (sonarAlt > 0 && sonarAlt < 200) {
// the sonar has the best range
EstAlt = BaroAlt;
} else {
EstAlt = accAlt;
}
baroVel = (BaroAlt - lastBaroAlt) * 1000000.0f / dTime;
lastBaroAlt = BaroAlt;
baroVel = constrain(baroVel, -1500, 1500); // constrain baro velocity +/- 1500cm/s
baroVel = applyDeadband(baroVel, 10); // to reduce noise near zero
// apply Complimentary Filter to keep the calculated velocity based on baro velocity (i.e. near real velocity).
// By using CF it's possible to correct the drift of integrated accZ (velocity) without loosing the phase, i.e without delay
vel = vel * barometerConfig->baro_cf_vel + baroVel * (1.0f - barometerConfig->baro_cf_vel);
vel_tmp = lrintf(vel);
// set vario
vario = applyDeadband(vel_tmp, 5);
altHoldThrottleAdjustment = calculateAltHoldThrottleAdjustment(vel_tmp, accZ_tmp, accZ_old);
accZ_old = accZ_tmp;
}
#endif

View File

@ -15,8 +15,9 @@
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
void configureAltitudeHold(pidProfile_t *initialPidProfile, barometerConfig_t *intialBarometerConfig);
void updateAltHold(void);
void applyAltHold(void);
void updateAltHoldState(void);
void updateSonarAltHoldState(void);

View File

@ -65,7 +65,7 @@ int32_t vario = 0; // variometer in cm/s
float throttleAngleScale;
float fc_acc;
int32_t BaroPID = 0;
int32_t altHoldThrottleAdjustment = 0;
float magneticDeclination = 0.0f; // calculated at startup from config
float gyroScaleRad;
@ -83,14 +83,12 @@ static void getEstimatedAttitude(void);
imuRuntimeConfig_t *imuRuntimeConfig;
pidProfile_t *pidProfile;
barometerConfig_t *barometerConfig;
accDeadband_t *accDeadband;
void configureImu(imuRuntimeConfig_t *initialImuRuntimeConfig, pidProfile_t *initialPidProfile, barometerConfig_t *intialBarometerConfig, accDeadband_t *initialAccDeadband)
void configureImu(imuRuntimeConfig_t *initialImuRuntimeConfig, pidProfile_t *initialPidProfile, accDeadband_t *initialAccDeadband)
{
imuRuntimeConfig = initialImuRuntimeConfig;
pidProfile = initialPidProfile;
barometerConfig = intialBarometerConfig;
accDeadband = initialAccDeadband;
}
@ -203,16 +201,13 @@ void rotateV(struct fp_vector *v, fp_angles_t *delta)
v->Z = v_tmp.X * mat[0][2] + v_tmp.Y * mat[1][2] + v_tmp.Z * mat[2][2];
}
int32_t applyDeadband(int32_t value, int32_t deadband)
void accSum_reset(void)
{
if (abs(value) < deadband) {
value = 0;
} else if (value > 0) {
value -= deadband;
} else if (value < 0) {
value += deadband;
}
return value;
accSum[0] = 0;
accSum[1] = 0;
accSum[2] = 0;
accSumCount = 0;
accTimeSum = 0;
}
// rotate acc into Earth frame and calculate acceleration in it
@ -259,15 +254,6 @@ void acc_calc(uint32_t deltaT)
accSumCount++;
}
void accSum_reset(void)
{
accSum[0] = 0;
accSum[1] = 0;
accSum[2] = 0;
accSumCount = 0;
accTimeSum = 0;
}
// baseflight calculation by Luggi09 originates from arducopter
static int16_t calculateHeading(t_fp_vector *vec)
{
@ -371,165 +357,3 @@ int16_t calculateThrottleAngleCorrection(uint8_t throttle_correction_value)
angle = 900;
return lrintf(throttle_correction_value * sinf(angle / (900.0f * M_PI / 2.0f)));
}
#if defined(BARO) || defined(SONAR)
// 40hz update rate (20hz LPF on acc)
#define BARO_UPDATE_FREQUENCY_40HZ (1000 * 25)
#define DEGREES_80_IN_DECIDEGREES 800
bool isThrustFacingDownwards(rollAndPitchInclination_t *inclination)
{
return abs(inclination->values.rollDeciDegrees) < DEGREES_80_IN_DECIDEGREES && abs(inclination->values.pitchDeciDegrees) < DEGREES_80_IN_DECIDEGREES;
}
int16_t calculateTiltAngle(rollAndPitchInclination_t *inclination)
{
return max(abs(inclination->values.rollDeciDegrees), abs(inclination->values.pitchDeciDegrees));
}
int32_t calculateBaroPid(int32_t vel_tmp, float accZ_tmp, float accZ_old)
{
uint32_t newBaroPID = 0;
int32_t error;
int32_t setVel;
if (!isThrustFacingDownwards(&inclination)) {
return newBaroPID;
}
// Altitude P-Controller
if (!velocityControl) {
error = constrain(AltHold - EstAlt, -500, 500);
error = applyDeadband(error, 10); // remove small P parameter to reduce noise near zero position
setVel = constrain((pidProfile->P8[PIDALT] * error / 128), -300, +300); // limit velocity to +/- 3 m/s
} else {
setVel = setVelocity;
}
// Velocity PID-Controller
// P
error = setVel - vel_tmp;
newBaroPID = constrain((pidProfile->P8[PIDVEL] * error / 32), -300, +300);
// I
errorVelocityI += (pidProfile->I8[PIDVEL] * error);
errorVelocityI = constrain(errorVelocityI, -(8192 * 200), (8192 * 200));
newBaroPID += errorVelocityI / 8192; // I in range +/-200
// D
newBaroPID -= constrain(pidProfile->D8[PIDVEL] * (accZ_tmp + accZ_old) / 512, -150, 150);
return newBaroPID;
}
void calculateEstimatedAltitude(uint32_t currentTime)
{
static uint32_t previousTime;
uint32_t dTime;
int32_t baroVel;
float dt;
float vel_acc;
int32_t vel_tmp;
float accZ_tmp;
static float accZ_old = 0.0f;
static float vel = 0.0f;
static float accAlt = 0.0f;
static int32_t lastBaroAlt;
static int32_t baroAlt_offset = 0;
float sonarTransition;
#ifdef SONAR
int16_t tiltAngle;
#endif
dTime = currentTime - previousTime;
if (dTime < BARO_UPDATE_FREQUENCY_40HZ)
return;
previousTime = currentTime;
#ifdef BARO
if (!isBaroCalibrationComplete()) {
performBaroCalibrationCycle();
vel = 0;
accAlt = 0;
}
BaroAlt = baroCalculateAltitude();
#else
BaroAlt = 0;
#endif
#ifdef SONAR
tiltAngle = calculateTiltAngle(&inclination);
sonarAlt = sonarCalculateAltitude(sonarAlt, tiltAngle);
#endif
if (sonarAlt > 0 && sonarAlt < 200) {
baroAlt_offset = BaroAlt - sonarAlt;
BaroAlt = sonarAlt;
} else {
BaroAlt -= baroAlt_offset;
if (sonarAlt > 0) {
sonarTransition = (300 - sonarAlt) / 100.0f;
BaroAlt = sonarAlt * sonarTransition + BaroAlt * (1.0f - sonarTransition);
}
}
dt = accTimeSum * 1e-6f; // delta acc reading time in seconds
// Integrator - velocity, cm/sec
accZ_tmp = (float)accSum[2] / (float)accSumCount;
vel_acc = accZ_tmp * accVelScale * (float)accTimeSum;
// Integrator - Altitude in cm
accAlt += (vel_acc * 0.5f) * dt + vel * dt; // integrate velocity to get distance (x= a/2 * t^2)
accAlt = accAlt * barometerConfig->baro_cf_alt + (float)BaroAlt * (1.0f - barometerConfig->baro_cf_alt); // complementary filter for altitude estimation (baro & acc)
vel += vel_acc;
#if 0
debug[1] = accSum[2] / accSumCount; // acceleration
debug[2] = vel; // velocity
debug[3] = accAlt; // height
#endif
accSum_reset();
#ifdef BARO
if (!isBaroCalibrationComplete()) {
return;
}
#endif
if (sonarAlt > 0 && sonarAlt < 200) {
// the sonar has the best range
EstAlt = BaroAlt;
} else {
EstAlt = accAlt;
}
baroVel = (BaroAlt - lastBaroAlt) * 1000000.0f / dTime;
lastBaroAlt = BaroAlt;
baroVel = constrain(baroVel, -1500, 1500); // constrain baro velocity +/- 1500cm/s
baroVel = applyDeadband(baroVel, 10); // to reduce noise near zero
// apply Complimentary Filter to keep the calculated velocity based on baro velocity (i.e. near real velocity).
// By using CF it's possible to correct the drift of integrated accZ (velocity) without loosing the phase, i.e without delay
vel = vel * barometerConfig->baro_cf_vel + baroVel * (1.0f - barometerConfig->baro_cf_vel);
vel_tmp = lrintf(vel);
// set vario
vario = applyDeadband(vel_tmp, 5);
BaroPID = calculateBaroPid(vel_tmp, accZ_tmp, accZ_old);
accZ_old = accZ_tmp;
}
#endif /* BARO */

View File

@ -20,8 +20,11 @@
extern int32_t errorVelocityI;
extern uint8_t velocityControl;
extern int32_t setVelocity;
extern int32_t BaroPID;
extern int32_t altHoldThrottleAdjustment;
extern int16_t throttleAngleCorrection;
extern uint32_t accTimeSum;
extern int accSumCount;
extern float accVelScale;
typedef struct imuRuntimeConfig_s {
uint8_t acc_lpf_factor;
@ -31,10 +34,12 @@ typedef struct imuRuntimeConfig_s {
int8_t small_angle;
} imuRuntimeConfig_t;
void configureImu(imuRuntimeConfig_t *initialImuRuntimeConfig, pidProfile_t *initialPidProfile, barometerConfig_t *intialBarometerConfig, accDeadband_t *initialAccDeadband);
void configureImu(imuRuntimeConfig_t *initialImuRuntimeConfig, pidProfile_t *initialPidProfile, accDeadband_t *initialAccDeadband);
void calculateEstimatedAltitude(uint32_t currentTime);
void computeIMU(rollAndPitchTrims_t *accelerometerTrims, uint8_t mixerConfiguration);
void calculateThrottleAngleScale(uint16_t throttle_correction_angle);
int16_t calculateThrottleAngleCorrection(uint8_t throttle_correction_value);
void calculateAccZLowPassFilterRCTimeConstant(float accz_lpf_cutoff);
void accSum_reset(void);

View File

@ -632,7 +632,7 @@ void loop(void)
#if defined(BARO) || defined(SONAR)
if (sensors(SENSOR_BARO) || sensors(SENSOR_SONAR)) {
if (FLIGHT_MODE(BARO_MODE) || FLIGHT_MODE(SONAR_MODE)) {
updateAltHold();
applyAltHold();
}
}
#endif