Merge pull request #1989 from mikeller/make_esc_feedback_more_resilient

Made ESC feedback and vbat calculation more resilient.
This commit is contained in:
borisbstyle 2017-01-04 13:13:16 +01:00 committed by GitHub
commit eb87c1c41d
19 changed files with 219 additions and 221 deletions

View File

@ -737,7 +737,7 @@ static bool mspFcProcessOutCommand(uint8_t cmdMSP, sbuf_t *dst, mspPostProcessFn
break; break;
case MSP_ANALOG: case MSP_ANALOG:
sbufWriteU8(dst, (uint8_t)constrain(vbat, 0, 255)); sbufWriteU8(dst, (uint8_t)constrain(getVbat(), 0, 255));
sbufWriteU16(dst, (uint16_t)constrain(mAhDrawn, 0, 0xFFFF)); // milliamp hours drawn from battery sbufWriteU16(dst, (uint16_t)constrain(mAhDrawn, 0, 0xFFFF)); // milliamp hours drawn from battery
sbufWriteU16(dst, rssi); sbufWriteU16(dst, rssi);
if(batteryConfig()->multiwiiCurrentMeterOutput) { if(batteryConfig()->multiwiiCurrentMeterOutput) {

View File

@ -3164,7 +3164,7 @@ static void cliStatus(char *cmdline)
cliPrintf("System Uptime: %d seconds, Voltage: %d * 0.1V (%dS battery - %s), CPU:%d%%\r\n", cliPrintf("System Uptime: %d seconds, Voltage: %d * 0.1V (%dS battery - %s), CPU:%d%%\r\n",
millis() / 1000, millis() / 1000,
vbat, getVbat(),
batteryCellCount, batteryCellCount,
getBatteryStateString(), getBatteryStateString(),
constrain(averageSystemLoadPercent, 0, 100) constrain(averageSystemLoadPercent, 0, 100)

View File

@ -458,7 +458,7 @@ void showBatteryPage(void)
uint8_t rowIndex = PAGE_TITLE_LINE_COUNT; uint8_t rowIndex = PAGE_TITLE_LINE_COUNT;
if (feature(FEATURE_VBAT)) { if (feature(FEATURE_VBAT)) {
tfp_sprintf(lineBuffer, "Volts: %d.%1d Cells: %d", vbat / 10, vbat % 10, batteryCellCount); tfp_sprintf(lineBuffer, "Volts: %d.%1d Cells: %d", getVbat() / 10, getVbat() % 10, batteryCellCount);
padLineBuffer(); padLineBuffer();
i2c_OLED_set_line(rowIndex++); i2c_OLED_set_line(rowIndex++);
i2c_OLED_send_string(lineBuffer); i2c_OLED_send_string(lineBuffer);

View File

@ -161,7 +161,7 @@ static void osdDrawSingleElement(uint8_t item)
case OSD_MAIN_BATT_VOLTAGE: case OSD_MAIN_BATT_VOLTAGE:
{ {
buff[0] = SYM_BATT_5; buff[0] = SYM_BATT_5;
sprintf(buff + 1, "%d.%1dV", vbat / 10, vbat % 10); sprintf(buff + 1, "%d.%1dV", getVbat() / 10, getVbat() % 10);
break; break;
} }
@ -362,7 +362,7 @@ static void osdDrawSingleElement(uint8_t item)
case OSD_POWER: case OSD_POWER:
{ {
sprintf(buff, "%dW", amperage * vbat / 1000); sprintf(buff, "%dW", amperage * getVbat() / 1000);
break; break;
} }
@ -500,7 +500,7 @@ void osdUpdateAlarms(void)
else else
pOsdProfile->item_pos[OSD_RSSI_VALUE] &= ~BLINK_FLAG; pOsdProfile->item_pos[OSD_RSSI_VALUE] &= ~BLINK_FLAG;
if (vbat <= (batteryWarningVoltage - 1)) if (getVbat() <= (batteryWarningVoltage - 1))
pOsdProfile->item_pos[OSD_MAIN_BATT_VOLTAGE] |= BLINK_FLAG; pOsdProfile->item_pos[OSD_MAIN_BATT_VOLTAGE] |= BLINK_FLAG;
else else
pOsdProfile->item_pos[OSD_MAIN_BATT_VOLTAGE] &= ~BLINK_FLAG; pOsdProfile->item_pos[OSD_MAIN_BATT_VOLTAGE] &= ~BLINK_FLAG;
@ -556,8 +556,8 @@ static void osdUpdateStats(void)
if (stats.max_speed < value) if (stats.max_speed < value)
stats.max_speed = value; stats.max_speed = value;
if (stats.min_voltage > vbat) if (stats.min_voltage > getVbat())
stats.min_voltage = vbat; stats.min_voltage = getVbat();
value = amperage / 100; value = amperage / 100;
if (stats.max_current < value) if (stats.max_current < value)

View File

@ -526,7 +526,7 @@ void handleJetiExBusTelemetry(void)
} }
if((jetiExBusRequestFrame[EXBUS_HEADER_DATA_ID] == EXBUS_EX_REQUEST) && (calcCRC16(jetiExBusRequestFrame, jetiExBusRequestFrame[EXBUS_HEADER_MSG_LEN]) == 0)) { if((jetiExBusRequestFrame[EXBUS_HEADER_DATA_ID] == EXBUS_EX_REQUEST) && (calcCRC16(jetiExBusRequestFrame, jetiExBusRequestFrame[EXBUS_HEADER_MSG_LEN]) == 0)) {
jetiExSensors[EX_VOLTAGE].value = vbat; jetiExSensors[EX_VOLTAGE].value = getVbat();
jetiExSensors[EX_CURRENT].value = amperage; jetiExSensors[EX_CURRENT].value = amperage;
jetiExSensors[EX_ALTITUDE].value = baro.BaroAlt; jetiExSensors[EX_ALTITUDE].value = baro.BaroAlt;
jetiExSensors[EX_CAPACITY].value = mAhDrawn; jetiExSensors[EX_CAPACITY].value = mAhDrawn;

View File

@ -50,6 +50,8 @@
#define ADCVREF 3300 // in mV #define ADCVREF 3300 // in mV
#define MAX_ESC_BATTERY_AGE 10
// Battery monitoring stuff // Battery monitoring stuff
uint8_t batteryCellCount; uint8_t batteryCellCount;
uint16_t batteryWarningVoltage; uint16_t batteryWarningVoltage;
@ -85,8 +87,8 @@ static void updateBatteryVoltage(void)
#ifdef USE_ESC_SENSOR #ifdef USE_ESC_SENSOR
if (feature(FEATURE_ESC_SENSOR) && batteryConfig->batteryMeterType == BATTERY_SENSOR_ESC) { if (feature(FEATURE_ESC_SENSOR) && batteryConfig->batteryMeterType == BATTERY_SENSOR_ESC) {
escSensorData_t escData = getEscSensorData(ESC_SENSOR_COMBINED); escSensorData_t *escData = getEscSensorData(ESC_SENSOR_COMBINED);
vbatLatest = escData.stale ? 0 : escData.voltage / 10; vbatLatest = escData->dataAge <= MAX_ESC_BATTERY_AGE ? escData->voltage / 10 : 0;
if (debugMode == DEBUG_BATTERY) { if (debugMode == DEBUG_BATTERY) {
debug[0] = -1; debug[0] = -1;
} }
@ -294,10 +296,10 @@ void updateCurrentMeter(int32_t lastUpdateAt, rxConfig_t *rxConfig, uint16_t dea
case CURRENT_SENSOR_ESC: case CURRENT_SENSOR_ESC:
#ifdef USE_ESC_SENSOR #ifdef USE_ESC_SENSOR
if (feature(FEATURE_ESC_SENSOR)) { if (feature(FEATURE_ESC_SENSOR)) {
escSensorData_t escData = getEscSensorData(ESC_SENSOR_COMBINED); escSensorData_t *escData = getEscSensorData(ESC_SENSOR_COMBINED);
if (!escData.stale) { if (escData->dataAge <= MAX_ESC_BATTERY_AGE) {
amperageLatest = escData.current; amperageLatest = escData->current;
mAhDrawn = escData.consumption; mAhDrawn = escData->consumption;
} else { } else {
amperageLatest = 0; amperageLatest = 0;
mAhDrawn = 0; mAhDrawn = 0;
@ -340,3 +342,8 @@ uint8_t calculateBatteryPercentage(void)
return batteryPercentage; return batteryPercentage;
} }
uint16_t getVbat(void)
{
return vbat;
}

View File

@ -70,7 +70,6 @@ typedef enum {
BATTERY_NOT_PRESENT BATTERY_NOT_PRESENT
} batteryState_e; } batteryState_e;
extern uint16_t vbat;
extern uint16_t vbatRaw; extern uint16_t vbatRaw;
extern uint16_t vbatLatest; extern uint16_t vbatLatest;
extern uint8_t batteryCellCount; extern uint8_t batteryCellCount;
@ -91,3 +90,4 @@ int32_t currentMeterToCentiamps(uint16_t src);
float calculateVbatPidCompensation(void); float calculateVbatPidCompensation(void);
uint8_t calculateBatteryPercentage(void); uint8_t calculateBatteryPercentage(void);
uint16_t getVbat(void);

View File

@ -73,19 +73,20 @@ set debug_mode = DEBUG_ESC_TELEMETRY in cli
enum { enum {
DEBUG_ESC_MOTOR_INDEX = 0, DEBUG_ESC_MOTOR_INDEX = 0,
DEBUG_ESC_NUM_TIMEOUTS = 1, DEBUG_ESC_NUM_TIMEOUTS = 1,
DEBUG_ESC_TEMPERATURE = 2, DEBUG_ESC_NUM_CRC_ERRORS = 2,
DEBUG_ESC_RPM = 3 DEBUG_ESC_DATA_AGE = 3,
}; };
typedef enum { typedef enum {
ESC_SENSOR_FRAME_PENDING = 1 << 0, // 1 ESC_SENSOR_FRAME_PENDING = 0,
ESC_SENSOR_FRAME_COMPLETE = 1 << 1 // 2 ESC_SENSOR_FRAME_COMPLETE = 1,
ESC_SENSOR_FRAME_FAILED = 2
} escTlmFrameState_t; } escTlmFrameState_t;
typedef enum { typedef enum {
ESC_SENSOR_TRIGGER_WAIT = 0, ESC_SENSOR_TRIGGER_STARTUP = 0,
ESC_SENSOR_TRIGGER_READY = 1 << 0, // 1 ESC_SENSOR_TRIGGER_READY = 1,
ESC_SENSOR_TRIGGER_PENDING = 1 << 1, // 2 ESC_SENSOR_TRIGGER_PENDING = 2
} escSensorTriggerState_t; } escSensorTriggerState_t;
#define ESC_SENSOR_BAUDRATE 115200 #define ESC_SENSOR_BAUDRATE 115200
@ -96,71 +97,79 @@ typedef enum {
static bool tlmFrameDone = false; static bool tlmFrameDone = false;
static uint8_t tlm[ESC_SENSOR_BUFFSIZE] = { 0, }; static uint8_t tlm[ESC_SENSOR_BUFFSIZE] = { 0, };
static uint8_t tlmFramePosition = 0; static uint8_t tlmFramePosition = 0;
static serialPort_t *escSensorPort = NULL; static serialPort_t *escSensorPort = NULL;
static escSensorData_t escSensorData[MAX_SUPPORTED_MOTORS]; static escSensorData_t escSensorData[MAX_SUPPORTED_MOTORS];
static uint32_t escTriggerTimestamp = -1;
static uint32_t escLastResponseTimestamp;
static uint8_t timeoutRetryCount = 0;
static uint8_t totalRetryCount = 0;
static escSensorTriggerState_t escSensorTriggerState = ESC_SENSOR_TRIGGER_STARTUP;
static uint32_t escTriggerTimestamp;
static uint8_t escSensorMotor = 0; // motor index static uint8_t escSensorMotor = 0; // motor index
static bool escSensorEnabled = false;
static escSensorTriggerState_t escSensorTriggerState = ESC_SENSOR_TRIGGER_WAIT;
static void escSensorDataReceive(uint16_t c); static escSensorData_t combinedEscSensorData;
static uint8_t update_crc8(uint8_t crc, uint8_t crc_seed); static bool combinedDataNeedsUpdate = true;
static uint8_t get_crc8(uint8_t *Buf, uint8_t BufLen);
static void selectNextMotor(void); static uint16_t totalTimeoutCount = 0;
static uint16_t totalCrcErrorCount = 0;
bool isEscSensorActive(void) bool isEscSensorActive(void)
{ {
return escSensorEnabled; return escSensorPort != NULL;
} }
escSensorData_t getEscSensorData(uint8_t motorNumber) escSensorData_t *getEscSensorData(uint8_t motorNumber)
{ {
if (motorNumber < getMotorCount()) { if (motorNumber < getMotorCount()) {
return escSensorData[motorNumber]; return &escSensorData[motorNumber];
} } else if (motorNumber == ESC_SENSOR_COMBINED) {
if (combinedDataNeedsUpdate) {
combinedEscSensorData.dataAge = 0;
combinedEscSensorData.temperature = 0;
combinedEscSensorData.voltage = 0;
combinedEscSensorData.current = 0;
combinedEscSensorData.consumption = 0;
combinedEscSensorData.rpm = 0;
escSensorData_t combinedEscSensorData = {
.stale = true,
.temperature = 0,
.voltage = 0,
.current = 0,
.consumption = 0,
.rpm = 0
};
if (motorNumber == ESC_SENSOR_COMBINED) {
unsigned int activeSensors = 0;
for (int i = 0; i < getMotorCount(); i = i + 1) { for (int i = 0; i < getMotorCount(); i = i + 1) {
if (!escSensorData[i].stale) { combinedEscSensorData.dataAge = MAX(combinedEscSensorData.dataAge, escSensorData[i].dataAge);
combinedEscSensorData.temperature = MAX(combinedEscSensorData.temperature, escSensorData[i].temperature); combinedEscSensorData.temperature = MAX(combinedEscSensorData.temperature, escSensorData[i].temperature);
combinedEscSensorData.voltage += escSensorData[i].voltage; combinedEscSensorData.voltage += escSensorData[i].voltage;
combinedEscSensorData.current += escSensorData[i].current; combinedEscSensorData.current += escSensorData[i].current;
combinedEscSensorData.consumption += escSensorData[i].consumption; combinedEscSensorData.consumption += escSensorData[i].consumption;
combinedEscSensorData.rpm += escSensorData[i].rpm; combinedEscSensorData.rpm += escSensorData[i].rpm;
activeSensors = activeSensors + 1; }
combinedEscSensorData.voltage = combinedEscSensorData.voltage / getMotorCount();
combinedEscSensorData.rpm = combinedEscSensorData.rpm / getMotorCount();
combinedDataNeedsUpdate = false;
DEBUG_SET(DEBUG_ESC_SENSOR, DEBUG_ESC_DATA_AGE, combinedEscSensorData.dataAge);
}
return &combinedEscSensorData;
} else {
return NULL;
} }
} }
if (activeSensors > 0) { // Receive ISR callback
combinedEscSensorData.stale = false; static void escSensorDataReceive(uint16_t c)
combinedEscSensorData.voltage = combinedEscSensorData.voltage / activeSensors;
combinedEscSensorData.rpm = combinedEscSensorData.rpm / activeSensors;
DEBUG_SET(DEBUG_ESC_SENSOR, DEBUG_ESC_TEMPERATURE, combinedEscSensorData.temperature);
DEBUG_SET(DEBUG_ESC_SENSOR, DEBUG_ESC_RPM, combinedEscSensorData.rpm);
}
}
return combinedEscSensorData;
}
static void resetEscSensorData(void)
{ {
for (int i; i < MAX_SUPPORTED_MOTORS; i = i + 1) { // KISS ESC sends some data during startup, ignore this for now (maybe future use)
escSensorData[i].stale = true; // startup data could be firmware version and serialnumber
if (escSensorTriggerState == ESC_SENSOR_TRIGGER_STARTUP || tlmFrameDone) {
return;
}
tlm[tlmFramePosition] = (uint8_t)c;
if (tlmFramePosition == ESC_SENSOR_BUFFSIZE - 1) {
tlmFrameDone = true;
tlmFramePosition = 0;
} else {
tlmFramePosition++;
} }
} }
@ -176,143 +185,13 @@ bool escSensorInit(void)
// Initialize serial port // Initialize serial port
escSensorPort = openSerialPort(portConfig->identifier, FUNCTION_ESC_SENSOR, escSensorDataReceive, ESC_SENSOR_BAUDRATE, MODE_RX, options); escSensorPort = openSerialPort(portConfig->identifier, FUNCTION_ESC_SENSOR, escSensorDataReceive, ESC_SENSOR_BAUDRATE, MODE_RX, options);
if (escSensorPort) { for (int i; i < MAX_SUPPORTED_MOTORS; i = i + 1) {
escSensorEnabled = true; escSensorData[i].dataAge = ESC_DATA_INVALID;
} }
resetEscSensorData();
return escSensorPort != NULL; return escSensorPort != NULL;
} }
static void freeEscSensorPort(void)
{
closeSerialPort(escSensorPort);
escSensorPort = NULL;
escSensorEnabled = false;
}
// Receive ISR callback
static void escSensorDataReceive(uint16_t c)
{
// KISS ESC sends some data during startup, ignore this for now (maybe future use)
// startup data could be firmware version and serialnumber
if (escSensorTriggerState == ESC_SENSOR_TRIGGER_WAIT) return;
tlm[tlmFramePosition] = (uint8_t)c;
if (tlmFramePosition == ESC_SENSOR_BUFFSIZE - 1) {
tlmFrameDone = true;
tlmFramePosition = 0;
} else {
tlmFramePosition++;
}
}
static uint8_t escSensorFrameStatus(void)
{
uint8_t frameStatus = ESC_SENSOR_FRAME_PENDING;
uint16_t chksum, tlmsum;
if (!tlmFrameDone) {
return frameStatus;
}
tlmFrameDone = false;
// Get CRC8 checksum
chksum = get_crc8(tlm, ESC_SENSOR_BUFFSIZE - 1);
tlmsum = tlm[ESC_SENSOR_BUFFSIZE - 1]; // last byte contains CRC value
if (chksum == tlmsum) {
escSensorData[escSensorMotor].stale = false;
escSensorData[escSensorMotor].temperature = tlm[0];
escSensorData[escSensorMotor].voltage = tlm[1] << 8 | tlm[2];
escSensorData[escSensorMotor].current = tlm[3] << 8 | tlm[4];
escSensorData[escSensorMotor].consumption = tlm[5] << 8 | tlm[6];
escSensorData[escSensorMotor].rpm = tlm[7] << 8 | tlm[8];
frameStatus = ESC_SENSOR_FRAME_COMPLETE;
}
return frameStatus;
}
void escSensorProcess(timeUs_t currentTimeUs)
{
const timeMs_t currentTimeMs = currentTimeUs / 1000;
if (!escSensorEnabled) {
return;
}
// Wait period of time before requesting telemetry (let the system boot first)
if (currentTimeMs < ESC_BOOTTIME) {
return;
}
else if (escSensorTriggerState == ESC_SENSOR_TRIGGER_WAIT) {
// Ready for starting requesting telemetry
escSensorTriggerState = ESC_SENSOR_TRIGGER_READY;
escSensorMotor = 0;
escTriggerTimestamp = currentTimeMs;
escLastResponseTimestamp = escTriggerTimestamp;
}
else if (escSensorTriggerState == ESC_SENSOR_TRIGGER_READY) {
DEBUG_SET(DEBUG_ESC_SENSOR, DEBUG_ESC_MOTOR_INDEX, escSensorMotor + 1);
motorDmaOutput_t * const motor = getMotorDmaOutput(escSensorMotor);
motor->requestTelemetry = true;
escSensorTriggerState = ESC_SENSOR_TRIGGER_PENDING;
}
else if (escSensorTriggerState == ESC_SENSOR_TRIGGER_PENDING) {
if (escTriggerTimestamp + ESC_REQUEST_TIMEOUT < currentTimeMs) {
// ESC did not repond in time, retry
timeoutRetryCount++;
escTriggerTimestamp = currentTimeMs;
escSensorTriggerState = ESC_SENSOR_TRIGGER_READY;
if (timeoutRetryCount == 4) {
// Not responding after 3 times, skip motor
escSensorData[escSensorMotor].stale = true;
selectNextMotor();
}
DEBUG_SET(DEBUG_ESC_SENSOR, DEBUG_ESC_NUM_TIMEOUTS, ++totalRetryCount);
}
// Get received frame status
uint8_t state = escSensorFrameStatus();
if (state == ESC_SENSOR_FRAME_COMPLETE) {
selectNextMotor();
escSensorTriggerState = ESC_SENSOR_TRIGGER_READY;
escLastResponseTimestamp = currentTimeMs;
}
}
if (escLastResponseTimestamp + 10000 < currentTimeMs) {
// ESCs did not respond for 10 seconds
// Disable ESC telemetry and reset voltage and current to let the use know something is wrong
freeEscSensorPort();
resetEscSensorData();
}
}
static void selectNextMotor(void)
{
escSensorMotor++;
if (escSensorMotor == getMotorCount()) {
escSensorMotor = 0;
}
timeoutRetryCount = 0;
escTriggerTimestamp = millis();
}
//-- CRC
static uint8_t update_crc8(uint8_t crc, uint8_t crc_seed) static uint8_t update_crc8(uint8_t crc, uint8_t crc_seed)
{ {
uint8_t crc_u = crc; uint8_t crc_u = crc;
@ -332,4 +211,110 @@ static uint8_t get_crc8(uint8_t *Buf, uint8_t BufLen)
return (crc); return (crc);
} }
static uint8_t decodeEscFrame(void)
{
if (!tlmFrameDone) {
return ESC_SENSOR_FRAME_PENDING;
}
// Get CRC8 checksum
uint16_t chksum = get_crc8(tlm, ESC_SENSOR_BUFFSIZE - 1);
uint16_t tlmsum = tlm[ESC_SENSOR_BUFFSIZE - 1]; // last byte contains CRC value
uint8_t frameStatus;
if (chksum == tlmsum) {
escSensorData[escSensorMotor].dataAge = 0;
escSensorData[escSensorMotor].temperature = tlm[0];
escSensorData[escSensorMotor].voltage = tlm[1] << 8 | tlm[2];
escSensorData[escSensorMotor].current = tlm[3] << 8 | tlm[4];
escSensorData[escSensorMotor].consumption = tlm[5] << 8 | tlm[6];
escSensorData[escSensorMotor].rpm = tlm[7] << 8 | tlm[8];
combinedDataNeedsUpdate = true;
frameStatus = ESC_SENSOR_FRAME_COMPLETE;
} else {
frameStatus = ESC_SENSOR_FRAME_FAILED;
}
tlmFrameDone = false;
return frameStatus;
}
static void increaseDataAge(void)
{
if (escSensorData[escSensorMotor].dataAge < ESC_DATA_INVALID) {
escSensorData[escSensorMotor].dataAge++;
combinedDataNeedsUpdate = true;
}
}
static void selectNextMotor(void)
{
escSensorMotor++;
if (escSensorMotor == getMotorCount()) {
escSensorMotor = 0;
}
}
void escSensorProcess(timeUs_t currentTimeUs)
{
const timeMs_t currentTimeMs = currentTimeUs / 1000;
if (!escSensorPort) {
return;
}
switch (escSensorTriggerState) {
case ESC_SENSOR_TRIGGER_STARTUP:
// Wait period of time before requesting telemetry (let the system boot first)
if (currentTimeMs >= ESC_BOOTTIME) {
escSensorTriggerState = ESC_SENSOR_TRIGGER_READY;
}
break;
case ESC_SENSOR_TRIGGER_READY:
escTriggerTimestamp = currentTimeMs;
motorDmaOutput_t * const motor = getMotorDmaOutput(escSensorMotor);
motor->requestTelemetry = true;
escSensorTriggerState = ESC_SENSOR_TRIGGER_PENDING;
DEBUG_SET(DEBUG_ESC_SENSOR, DEBUG_ESC_MOTOR_INDEX, escSensorMotor + 1);
break;
case ESC_SENSOR_TRIGGER_PENDING:
if (currentTimeMs < escTriggerTimestamp + ESC_REQUEST_TIMEOUT) {
uint8_t state = decodeEscFrame();
switch (state) {
case ESC_SENSOR_FRAME_COMPLETE:
selectNextMotor();
escSensorTriggerState = ESC_SENSOR_TRIGGER_READY;
break;
case ESC_SENSOR_FRAME_FAILED:
increaseDataAge();
selectNextMotor();
escSensorTriggerState = ESC_SENSOR_TRIGGER_READY;
DEBUG_SET(DEBUG_ESC_SENSOR, DEBUG_ESC_NUM_CRC_ERRORS, ++totalCrcErrorCount);
break;
case ESC_SENSOR_FRAME_PENDING:
break;
}
} else {
// Move on to next ESC, we'll come back to this one
increaseDataAge();
selectNextMotor();
escSensorTriggerState = ESC_SENSOR_TRIGGER_READY;
DEBUG_SET(DEBUG_ESC_SENSOR, DEBUG_ESC_NUM_TIMEOUTS, ++totalTimeoutCount);
}
break;
}
}
#endif #endif

View File

@ -20,7 +20,7 @@
#include "common/time.h" #include "common/time.h"
typedef struct { typedef struct {
bool stale; uint8_t dataAge;
int8_t temperature; int8_t temperature;
int16_t voltage; int16_t voltage;
int16_t current; int16_t current;
@ -28,10 +28,12 @@ typedef struct {
int16_t rpm; int16_t rpm;
} escSensorData_t; } escSensorData_t;
#define ESC_DATA_INVALID 255
bool escSensorInit(void); bool escSensorInit(void);
void escSensorProcess(timeUs_t currentTime); void escSensorProcess(timeUs_t currentTime);
#define ESC_SENSOR_COMBINED 255 #define ESC_SENSOR_COMBINED 255
escSensorData_t getEscSensorData(uint8_t motorNumber); escSensorData_t *getEscSensorData(uint8_t motorNumber);

View File

@ -677,7 +677,7 @@ static bool bstSlaveProcessFeedbackCommand(uint8_t bstRequest)
#endif #endif
break; break;
case BST_ANALOG: case BST_ANALOG:
bstWrite8((uint8_t)constrain(vbat, 0, 255)); bstWrite8((uint8_t)constrain(getVbat(), 0, 255));
bstWrite16((uint16_t)constrain(mAhDrawn, 0, 0xFFFF)); // milliamp hours drawn from battery bstWrite16((uint16_t)constrain(mAhDrawn, 0, 0xFFFF)); // milliamp hours drawn from battery
bstWrite16(rssi); bstWrite16(rssi);
if(batteryConfig()->multiwiiCurrentMeterOutput) { if(batteryConfig()->multiwiiCurrentMeterOutput) {

View File

@ -175,7 +175,7 @@ void crsfFrameBatterySensor(sbuf_t *dst)
// use sbufWrite since CRC does not include frame length // use sbufWrite since CRC does not include frame length
sbufWriteU8(dst, CRSF_FRAME_BATTERY_SENSOR_PAYLOAD_SIZE + CRSF_FRAME_LENGTH_TYPE_CRC); sbufWriteU8(dst, CRSF_FRAME_BATTERY_SENSOR_PAYLOAD_SIZE + CRSF_FRAME_LENGTH_TYPE_CRC);
crsfSerialize8(dst, CRSF_FRAMETYPE_BATTERY_SENSOR); crsfSerialize8(dst, CRSF_FRAMETYPE_BATTERY_SENSOR);
crsfSerialize16(dst, vbat); // vbat is in units of 0.1V crsfSerialize16(dst, getVbat()); // vbat is in units of 0.1V
#ifdef CLEANFLIGHT #ifdef CLEANFLIGHT
const amperageMeter_t *amperageMeter = getAmperageMeter(batteryConfig()->amperageMeterSource); const amperageMeter_t *amperageMeter = getAmperageMeter(batteryConfig()->amperageMeterSource);
const int16_t amperage = constrain(amperageMeter->amperage, -0x8000, 0x7FFF) / 10; // send amperage in 0.01 A steps, range is -320A to 320A const int16_t amperage = constrain(amperageMeter->amperage, -0x8000, 0x7FFF) / 10; // send amperage in 0.01 A steps, range is -320A to 320A

View File

@ -205,8 +205,8 @@ static void sendThrottleOrBatterySizeAsRpm(rxConfig_t *rxConfig, uint16_t deadba
UNUSED(rxConfig); UNUSED(rxConfig);
UNUSED(deadband3d_throttle); UNUSED(deadband3d_throttle);
escSensorData_t escData = getEscSensorData(ESC_SENSOR_COMBINED); escSensorData_t *escData = getEscSensorData(ESC_SENSOR_COMBINED);
serialize16(escData.stale ? 0 : escData.rpm); serialize16(escData->dataAge < ESC_DATA_INVALID ? escData->rpm : 0);
#else #else
if (ARMING_FLAG(ARMED)) { if (ARMING_FLAG(ARMED)) {
throttleStatus_e throttleStatus = calculateThrottleStatus(rxConfig, deadband3d_throttle); throttleStatus_e throttleStatus = calculateThrottleStatus(rxConfig, deadband3d_throttle);
@ -224,8 +224,8 @@ static void sendTemperature1(void)
{ {
sendDataHead(ID_TEMPRATURE1); sendDataHead(ID_TEMPRATURE1);
#if defined(USE_ESC_SENSOR) #if defined(USE_ESC_SENSOR)
escSensorData_t escData = getEscSensorData(ESC_SENSOR_COMBINED); escSensorData_t *escData = getEscSensorData(ESC_SENSOR_COMBINED);
serialize16(escData.stale ? 0 : escData.temperature); serialize16(escData->dataAge < ESC_DATA_INVALID ? escData->temperature : 0);
#elif defined(BARO) #elif defined(BARO)
serialize16((baro.baroTemperature + 50)/ 100); //Airmamaf serialize16((baro.baroTemperature + 50)/ 100); //Airmamaf
#else #else
@ -388,7 +388,7 @@ static void sendVoltage(void)
* The actual value sent for cell voltage has resolution of 0.002 volts * The actual value sent for cell voltage has resolution of 0.002 volts
* Since vbat has resolution of 0.1 volts it has to be multiplied by 50 * Since vbat has resolution of 0.1 volts it has to be multiplied by 50
*/ */
cellVoltage = ((uint32_t)vbat * 100 + batteryCellCount) / (batteryCellCount * 2); cellVoltage = ((uint32_t)getVbat() * 100 + batteryCellCount) / (batteryCellCount * 2);
// Cell number is at bit 9-12 // Cell number is at bit 9-12
payload = (currentCell << 4); payload = (currentCell << 4);
@ -416,9 +416,9 @@ static void sendVoltageAmp(void)
* Use new ID 0x39 to send voltage directly in 0.1 volts resolution * Use new ID 0x39 to send voltage directly in 0.1 volts resolution
*/ */
sendDataHead(ID_VOLTAGE_AMP); sendDataHead(ID_VOLTAGE_AMP);
serialize16(vbat); serialize16(getVbat());
} else { } else {
uint16_t voltage = (vbat * 110) / 21; uint16_t voltage = (getVbat() * 110) / 21;
uint16_t vfasVoltage; uint16_t vfasVoltage;
if (telemetryConfig->frsky_vfas_cell_voltage) { if (telemetryConfig->frsky_vfas_cell_voltage) {
vfasVoltage = voltage / batteryCellCount; vfasVoltage = voltage / batteryCellCount;

View File

@ -242,10 +242,10 @@ static inline void updateAlarmBatteryStatus(HOTT_EAM_MSG_t *hottEAMMessage)
static inline void hottEAMUpdateBattery(HOTT_EAM_MSG_t *hottEAMMessage) static inline void hottEAMUpdateBattery(HOTT_EAM_MSG_t *hottEAMMessage)
{ {
hottEAMMessage->main_voltage_L = vbat & 0xFF; hottEAMMessage->main_voltage_L = getVbat() & 0xFF;
hottEAMMessage->main_voltage_H = vbat >> 8; hottEAMMessage->main_voltage_H = getVbat() >> 8;
hottEAMMessage->batt1_voltage_L = vbat & 0xFF; hottEAMMessage->batt1_voltage_L = getVbat() & 0xFF;
hottEAMMessage->batt1_voltage_H = vbat >> 8; hottEAMMessage->batt1_voltage_H = getVbat() >> 8;
updateAlarmBatteryStatus(hottEAMMessage); updateAlarmBatteryStatus(hottEAMMessage);
} }

View File

@ -190,7 +190,7 @@ static void ltm_sframe(void)
if (failsafeIsActive()) if (failsafeIsActive())
lt_statemode |= 2; lt_statemode |= 2;
ltm_initialise_packet('S'); ltm_initialise_packet('S');
ltm_serialise_16(vbat * 100); //vbat converted to mv ltm_serialise_16(getVbat() * 100); //vbat converted to mv
ltm_serialise_16(0); // current, not implemented ltm_serialise_16(0); // current, not implemented
ltm_serialise_8((uint8_t)((rssi * 254) / 1023)); // scaled RSSI (uchar) ltm_serialise_8((uint8_t)((rssi * 254) / 1023)); // scaled RSSI (uchar)
ltm_serialise_8(0); // no airspeed ltm_serialise_8(0); // no airspeed

View File

@ -223,7 +223,7 @@ void mavlinkSendSystemStatus(void)
// load Maximum usage in percent of the mainloop time, (0%: 0, 100%: 1000) should be always below 1000 // load Maximum usage in percent of the mainloop time, (0%: 0, 100%: 1000) should be always below 1000
0, 0,
// voltage_battery Battery voltage, in millivolts (1 = 1 millivolt) // voltage_battery Battery voltage, in millivolts (1 = 1 millivolt)
feature(FEATURE_VBAT) ? vbat * 100 : 0, feature(FEATURE_VBAT) ? getVbat() * 100 : 0,
// current_battery Battery current, in 10*milliamperes (1 = 10 milliampere), -1: autopilot does not measure the current // current_battery Battery current, in 10*milliamperes (1 = 10 milliampere), -1: autopilot does not measure the current
feature(FEATURE_VBAT) ? amperage : -1, feature(FEATURE_VBAT) ? amperage : -1,
// battery_remaining Remaining battery energy: (0%: 0, 100%: 100), -1: autopilot estimate the remaining battery // battery_remaining Remaining battery energy: (0%: 0, 100%: 100), -1: autopilot estimate the remaining battery

View File

@ -639,9 +639,9 @@ void handleSmartPortTelemetry(void)
if (feature(FEATURE_VBAT) && batteryCellCount > 0) { if (feature(FEATURE_VBAT) && batteryCellCount > 0) {
uint16_t vfasVoltage; uint16_t vfasVoltage;
if (telemetryConfig->frsky_vfas_cell_voltage) { if (telemetryConfig->frsky_vfas_cell_voltage) {
vfasVoltage = vbat / batteryCellCount; vfasVoltage = getVbat() / batteryCellCount;
} else { } else {
vfasVoltage = vbat; vfasVoltage = getVbat();
} }
smartPortSendPackage(id, vfasVoltage * 10); // given in 0.1V, convert to volts smartPortSendPackage(id, vfasVoltage * 10); // given in 0.1V, convert to volts
smartPortHasRequest = 0; smartPortHasRequest = 0;
@ -810,7 +810,7 @@ void handleSmartPortTelemetry(void)
#endif #endif
case FSSP_DATAID_A4 : case FSSP_DATAID_A4 :
if (feature(FEATURE_VBAT) && batteryCellCount > 0) { if (feature(FEATURE_VBAT) && batteryCellCount > 0) {
smartPortSendPackage(id, vbat * 10 / batteryCellCount ); // given in 0.1V, convert to volts smartPortSendPackage(id, getVbat() * 10 / batteryCellCount ); // given in 0.1V, convert to volts
smartPortHasRequest = 0; smartPortHasRequest = 0;
} }
break; break;

View File

@ -161,7 +161,7 @@ void srxlFrameRpm(sbuf_t *dst)
srxlSerialize8(dst, SRXL_FRAMETYPE_TELE_RPM); srxlSerialize8(dst, SRXL_FRAMETYPE_TELE_RPM);
srxlSerialize8(dst, SRXL_FRAMETYPE_SID); srxlSerialize8(dst, SRXL_FRAMETYPE_SID);
srxlSerialize16(dst, 0xFFFF); // pulse leading edges srxlSerialize16(dst, 0xFFFF); // pulse leading edges
srxlSerialize16(dst, vbat * 10); // vbat is in units of 0.1V srxlSerialize16(dst, getVbat() * 10); // vbat is in units of 0.1V
srxlSerialize16(dst, 0x7FFF); // temperature srxlSerialize16(dst, 0x7FFF); // temperature
srxlSerialize8(dst, 0xFF); // dbmA srxlSerialize8(dst, 0xFF); // dbmA
srxlSerialize8(dst, 0xFF); // dbmB srxlSerialize8(dst, 0xFF); // dbmB
@ -200,8 +200,8 @@ void srxlFramePowerBox(sbuf_t *dst)
{ {
srxlSerialize8(dst, SRXL_FRAMETYPE_POWERBOX); srxlSerialize8(dst, SRXL_FRAMETYPE_POWERBOX);
srxlSerialize8(dst, SRXL_FRAMETYPE_SID); srxlSerialize8(dst, SRXL_FRAMETYPE_SID);
srxlSerialize16(dst, vbat * 10); // vbat is in units of 0.1V - vbat1 srxlSerialize16(dst, getVbat() * 10); // vbat is in units of 0.1V - vbat1
srxlSerialize16(dst, vbat * 10); // vbat is in units of 0.1V - vbat2 srxlSerialize16(dst, getVbat() * 10); // vbat is in units of 0.1V - vbat2
srxlSerialize16(dst, amperage / 10); srxlSerialize16(dst, amperage / 10);
srxlSerialize16(dst, 0xFFFF); srxlSerialize16(dst, 0xFFFF);

View File

@ -54,6 +54,7 @@ extern "C" {
#include "flight/gps_conversion.h" #include "flight/gps_conversion.h"
bool airMode; bool airMode;
uint16_t vbat;
serialPort_t *telemetrySharedPort; serialPort_t *telemetrySharedPort;
} }
@ -282,7 +283,6 @@ uint16_t GPS_distanceToHome; // distance to home point in meters
uint16_t GPS_altitude; // altitude in m uint16_t GPS_altitude; // altitude in m
uint16_t GPS_speed; // speed in 0.1m/s uint16_t GPS_speed; // speed in 0.1m/s
uint16_t GPS_ground_course = 0; // degrees * 10 uint16_t GPS_ground_course = 0; // degrees * 10
uint16_t vbat;
int32_t amperage; int32_t amperage;
int32_t mAhDrawn; int32_t mAhDrawn;
@ -314,6 +314,6 @@ uint8_t calculateBatteryCapacityRemainingPercentage(void) {return 67;}
uint8_t calculateBatteryPercentage(void) {return 67;} uint8_t calculateBatteryPercentage(void) {return 67;}
batteryState_e getBatteryState(void) {return BATTERY_OK;} batteryState_e getBatteryState(void) {return BATTERY_OK;}
bool isAirmodeActive(void) {return airMode;} bool isAirmodeActive(void) {return airMode;}
uint16_t getVbat(void) { return vbat; }
} }

View File

@ -165,8 +165,8 @@ int32_t GPS_coord[2];
uint16_t GPS_speed; // speed in 0.1m/s uint16_t GPS_speed; // speed in 0.1m/s
uint16_t GPS_distanceToHome; // distance to home point in meters uint16_t GPS_distanceToHome; // distance to home point in meters
uint16_t GPS_altitude; // altitude in 0.1m uint16_t GPS_altitude; // altitude in 0.1m
uint16_t vbat;
int16_t GPS_directionToHome; // direction to home or hol point in degrees int16_t GPS_directionToHome; // direction to home or hol point in degrees
uint16_t vbat;
int32_t amperage; int32_t amperage;
int32_t mAhDrawn; int32_t mAhDrawn;
@ -256,5 +256,9 @@ batteryState_e getBatteryState(void)
return BATTERY_OK; return BATTERY_OK;
} }
uint16_t getVbat(void)
{
return vbat;
}
} }