Escserial test

This commit is contained in:
Sami Korhonen 2016-10-22 16:50:35 +03:00 committed by borisbstyle
parent f19b508cd4
commit ec923b6180
5 changed files with 999 additions and 0 deletions

View File

@ -547,6 +547,7 @@ HIGHEND_SRC = \
common/colorconversion.c \ common/colorconversion.c \
drivers/display_ug2864hsweg01.c \ drivers/display_ug2864hsweg01.c \
drivers/light_ws2811strip.c \ drivers/light_ws2811strip.c \
drivers/serial_escserial.c \
drivers/serial_softserial.c \ drivers/serial_softserial.c \
drivers/sonar_hcsr04.c \ drivers/sonar_hcsr04.c \
flight/gtune.c \ flight/gtune.c \

View File

@ -0,0 +1,898 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include "platform.h"
#if defined(USE_ESCSERIAL)
#include "build/build_config.h"
#include "build/atomic.h"
#include "common/utils.h"
#include "nvic.h"
#include "system.h"
#include "io.h"
#include "timer.h"
#include "serial.h"
#include "serial_escserial.h"
#include "drivers/light_led.h"
#include "drivers/pwm_output.h"
#include "io/serial.h"
#include "flight/mixer.h"
#define RX_TOTAL_BITS 10
#define TX_TOTAL_BITS 10
#define MAX_ESCSERIAL_PORTS 1
static serialPort_t *escPort = NULL;
static serialPort_t *passPort = NULL;
typedef struct escSerial_s {
serialPort_t port;
IO_t rxIO;
IO_t txIO;
const timerHardware_t *rxTimerHardware;
volatile uint8_t rxBuffer[ESCSERIAL_BUFFER_SIZE];
const timerHardware_t *txTimerHardware;
volatile uint8_t txBuffer[ESCSERIAL_BUFFER_SIZE];
uint8_t isSearchingForStartBit;
uint8_t rxBitIndex;
uint8_t rxLastLeadingEdgeAtBitIndex;
uint8_t rxEdge;
uint8_t isTransmittingData;
uint8_t isReceivingData;
int8_t bitsLeftToTransmit;
uint16_t internalTxBuffer; // includes start and stop bits
uint16_t internalRxBuffer; // includes start and stop bits
uint16_t receiveTimeout;
uint16_t transmissionErrors;
uint16_t receiveErrors;
uint8_t escSerialPortIndex;
timerCCHandlerRec_t timerCb;
timerCCHandlerRec_t edgeCb;
} escSerial_t;
extern timerHardware_t* serialTimerHardware;
extern escSerial_t escSerialPorts[];
extern const struct serialPortVTable escSerialVTable[];
escSerial_t escSerialPorts[MAX_ESCSERIAL_PORTS];
void onSerialTimer(timerCCHandlerRec_t *cbRec, captureCompare_t capture);
void onSerialRxPinChange(timerCCHandlerRec_t *cbRec, captureCompare_t capture);
void onSerialTimerBL(timerCCHandlerRec_t *cbRec, captureCompare_t capture);
void onSerialRxPinChangeBL(timerCCHandlerRec_t *cbRec, captureCompare_t capture);
static void serialICConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t polarity);
void setTxSignal(escSerial_t *escSerial, uint8_t state)
{
if (state) {
IOHi(escSerial->txIO);
} else {
IOLo(escSerial->txIO);
}
}
static void escSerialGPIOConfig(ioTag_t tag, ioConfig_t cfg)
{
if (!tag) {
return;
}
IOInit(IOGetByTag(tag), OWNER_MOTOR, RESOURCE_OUTPUT, 0);
IOConfigGPIO(IOGetByTag(tag), cfg);
}
void serialInputPortConfig(const timerHardware_t *timerHardwarePtr)
{
#ifdef STM32F10X
escSerialGPIOConfig(timerHardwarePtr->tag, Mode_IPU);
#else
escSerialGPIOConfig(timerHardwarePtr->tag, IOCFG_AF_PP_UP);
#endif
//escSerialGPIOConfig(timerHardwarePtr->gpio, timerHardwarePtr->pin, timerHardwarePtr->gpioInputMode);
timerChClearCCFlag(timerHardwarePtr);
timerChITConfig(timerHardwarePtr,ENABLE);
}
static bool isTimerPeriodTooLarge(uint32_t timerPeriod)
{
return timerPeriod > 0xFFFF;
}
static void serialTimerTxConfigBL(const timerHardware_t *timerHardwarePtr, uint8_t reference, uint32_t baud)
{
uint32_t clock = SystemCoreClock/2;
uint32_t timerPeriod;
TIM_DeInit(timerHardwarePtr->tim);
do {
timerPeriod = clock / baud;
if (isTimerPeriodTooLarge(timerPeriod)) {
if (clock > 1) {
clock = clock / 2; // this is wrong - mhz stays the same ... This will double baudrate until ok (but minimum baudrate is < 1200)
} else {
// TODO unable to continue, unable to determine clock and timerPeriods for the given baud
}
}
} while (isTimerPeriodTooLarge(timerPeriod));
uint8_t mhz = clock / 1000000;
timerConfigure(timerHardwarePtr, timerPeriod, mhz);
timerChCCHandlerInit(&escSerialPorts[reference].timerCb, onSerialTimerBL);
timerChConfigCallbacks(timerHardwarePtr, &escSerialPorts[reference].timerCb, NULL);
}
static void serialTimerRxConfigBL(const timerHardware_t *timerHardwarePtr, uint8_t reference, portOptions_t options)
{
// start bit is usually a FALLING signal
uint8_t mhz = SystemCoreClock / 2000000;
TIM_DeInit(timerHardwarePtr->tim);
timerConfigure(timerHardwarePtr, 0xFFFF, mhz);
serialICConfig(timerHardwarePtr->tim, timerHardwarePtr->channel, (options & SERIAL_INVERTED) ? TIM_ICPolarity_Rising : TIM_ICPolarity_Falling);
timerChCCHandlerInit(&escSerialPorts[reference].edgeCb, onSerialRxPinChangeBL);
timerChConfigCallbacks(timerHardwarePtr, &escSerialPorts[reference].edgeCb, NULL);
}
static void serialTimerTxConfig(const timerHardware_t *timerHardwarePtr, uint8_t reference)
{
uint32_t timerPeriod=34;
TIM_DeInit(timerHardwarePtr->tim);
timerConfigure(timerHardwarePtr, timerPeriod, 1);
timerChCCHandlerInit(&escSerialPorts[reference].timerCb, onSerialTimer);
timerChConfigCallbacks(timerHardwarePtr, &escSerialPorts[reference].timerCb, NULL);
}
static void serialICConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t polarity)
{
TIM_ICInitTypeDef TIM_ICInitStructure;
TIM_ICStructInit(&TIM_ICInitStructure);
TIM_ICInitStructure.TIM_Channel = channel;
TIM_ICInitStructure.TIM_ICPolarity = polarity;
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter = 0x0;
TIM_ICInit(tim, &TIM_ICInitStructure);
}
static void serialTimerRxConfig(const timerHardware_t *timerHardwarePtr, uint8_t reference)
{
// start bit is usually a FALLING signal
TIM_DeInit(timerHardwarePtr->tim);
timerConfigure(timerHardwarePtr, 0xFFFF, 1);
serialICConfig(timerHardwarePtr->tim, timerHardwarePtr->channel, TIM_ICPolarity_Falling);
timerChCCHandlerInit(&escSerialPorts[reference].edgeCb, onSerialRxPinChange);
timerChConfigCallbacks(timerHardwarePtr, &escSerialPorts[reference].edgeCb, NULL);
}
static void serialOutputPortConfig(const timerHardware_t *timerHardwarePtr)
{
escSerialGPIOConfig(timerHardwarePtr->tag, IOCFG_OUT_PP);
timerChITConfig(timerHardwarePtr,DISABLE);
}
static void resetBuffers(escSerial_t *escSerial)
{
escSerial->port.rxBufferSize = ESCSERIAL_BUFFER_SIZE;
escSerial->port.rxBuffer = escSerial->rxBuffer;
escSerial->port.rxBufferTail = 0;
escSerial->port.rxBufferHead = 0;
escSerial->port.txBuffer = escSerial->txBuffer;
escSerial->port.txBufferSize = ESCSERIAL_BUFFER_SIZE;
escSerial->port.txBufferTail = 0;
escSerial->port.txBufferHead = 0;
}
serialPort_t *openEscSerial(escSerialPortIndex_e portIndex, serialReceiveCallbackPtr callback, uint16_t output, uint32_t baud, portOptions_t options, uint8_t mode)
{
escSerial_t *escSerial = &(escSerialPorts[portIndex]);
escSerial->rxTimerHardware = &(timerHardware[output]);
escSerial->txTimerHardware = &(timerHardware[ESCSERIAL_TIMER_TX_HARDWARE]);
escSerial->port.vTable = escSerialVTable;
escSerial->port.baudRate = baud;
escSerial->port.mode = MODE_RXTX;
escSerial->port.options = options;
escSerial->port.rxCallback = callback;
resetBuffers(escSerial);
escSerial->isTransmittingData = false;
escSerial->isSearchingForStartBit = true;
escSerial->rxBitIndex = 0;
escSerial->transmissionErrors = 0;
escSerial->receiveErrors = 0;
escSerial->receiveTimeout = 0;
escSerial->escSerialPortIndex = portIndex;
escSerial->txIO = IOGetByTag(escSerial->rxTimerHardware->tag);
serialInputPortConfig(escSerial->rxTimerHardware);
setTxSignal(escSerial, ENABLE);
delay(50);
if(mode==0){
serialTimerTxConfig(escSerial->txTimerHardware, portIndex);
serialTimerRxConfig(escSerial->rxTimerHardware, portIndex);
}
if(mode==1 || mode==2){
serialTimerTxConfigBL(escSerial->txTimerHardware, portIndex, baud);
serialTimerRxConfigBL(escSerial->rxTimerHardware, portIndex, options);
}
return &escSerial->port;
}
void serialInputPortDeConfig(const timerHardware_t *timerHardwarePtr)
{
timerChClearCCFlag(timerHardwarePtr);
timerChITConfig(timerHardwarePtr,DISABLE);
escSerialGPIOConfig(timerHardwarePtr->tag, IOCFG_IPU);
}
void closeEscSerial(escSerialPortIndex_e portIndex, uint16_t output)
{
escSerial_t *escSerial = &(escSerialPorts[portIndex]);
escSerial->rxTimerHardware = &(timerHardware[output]);
escSerial->txTimerHardware = &(timerHardware[ESCSERIAL_TIMER_TX_HARDWARE]);
serialInputPortDeConfig(escSerial->rxTimerHardware);
timerChConfigCallbacks(escSerial->txTimerHardware,NULL,NULL);
timerChConfigCallbacks(escSerial->rxTimerHardware,NULL,NULL);
TIM_DeInit(escSerial->txTimerHardware->tim);
TIM_DeInit(escSerial->rxTimerHardware->tim);
}
/*********************************************/
void processTxState(escSerial_t *escSerial)
{
uint8_t mask;
static uint8_t bitq=0, transmitStart=0;
if (escSerial->isReceivingData) {
return;
}
if(transmitStart==0)
{
setTxSignal(escSerial, 1);
}
if (!escSerial->isTransmittingData) {
char byteToSend;
reload:
if (isEscSerialTransmitBufferEmpty((serialPort_t *)escSerial)) {
// canreceive
transmitStart=0;
return;
}
if(transmitStart<3)
{
if(transmitStart==0)
byteToSend = 0xff;
if(transmitStart==1)
byteToSend = 0xff;
if(transmitStart==2)
byteToSend = 0x7f;
transmitStart++;
}
else{
// data to send
byteToSend = escSerial->port.txBuffer[escSerial->port.txBufferTail++];
if (escSerial->port.txBufferTail >= escSerial->port.txBufferSize) {
escSerial->port.txBufferTail = 0;
}
}
// build internal buffer, data bits (MSB to LSB)
escSerial->internalTxBuffer = byteToSend;
escSerial->bitsLeftToTransmit = 8;
escSerial->isTransmittingData = true;
//set output
serialOutputPortConfig(escSerial->rxTimerHardware);
return;
}
if (escSerial->bitsLeftToTransmit) {
mask = escSerial->internalTxBuffer & 1;
if(mask)
{
if(bitq==0 || bitq==1)
{
setTxSignal(escSerial, 1);
}
if(bitq==2 || bitq==3)
{
setTxSignal(escSerial, 0);
}
}
else
{
if(bitq==0 || bitq==2)
{
setTxSignal(escSerial, 1);
}
if(bitq==1 ||bitq==3)
{
setTxSignal(escSerial, 0);
}
}
bitq++;
if(bitq>3)
{
escSerial->internalTxBuffer >>= 1;
escSerial->bitsLeftToTransmit--;
bitq=0;
if(escSerial->bitsLeftToTransmit==0)
{
goto reload;
}
}
return;
}
if (isEscSerialTransmitBufferEmpty((serialPort_t *)escSerial)) {
escSerial->isTransmittingData = false;
serialInputPortConfig(escSerial->rxTimerHardware);
}
}
/*-----------------------BL*/
/*********************************************/
void processTxStateBL(escSerial_t *escSerial)
{
uint8_t mask;
if (escSerial->isReceivingData) {
return;
}
if (!escSerial->isTransmittingData) {
char byteToSend;
if (isEscSerialTransmitBufferEmpty((serialPort_t *)escSerial)) {
// canreceive
return;
}
// data to send
byteToSend = escSerial->port.txBuffer[escSerial->port.txBufferTail++];
if (escSerial->port.txBufferTail >= escSerial->port.txBufferSize) {
escSerial->port.txBufferTail = 0;
}
// build internal buffer, MSB = Stop Bit (1) + data bits (MSB to LSB) + start bit(0) LSB
escSerial->internalTxBuffer = (1 << (TX_TOTAL_BITS - 1)) | (byteToSend << 1);
escSerial->bitsLeftToTransmit = TX_TOTAL_BITS;
escSerial->isTransmittingData = true;
//set output
serialOutputPortConfig(escSerial->rxTimerHardware);
return;
}
if (escSerial->bitsLeftToTransmit) {
mask = escSerial->internalTxBuffer & 1;
escSerial->internalTxBuffer >>= 1;
setTxSignal(escSerial, mask);
escSerial->bitsLeftToTransmit--;
return;
}
escSerial->isTransmittingData = false;
if (isEscSerialTransmitBufferEmpty((serialPort_t *)escSerial)) {
serialInputPortConfig(escSerial->rxTimerHardware);
}
}
enum {
TRAILING,
LEADING
};
void applyChangedBitsBL(escSerial_t *escSerial)
{
if (escSerial->rxEdge == TRAILING) {
uint8_t bitToSet;
for (bitToSet = escSerial->rxLastLeadingEdgeAtBitIndex; bitToSet < escSerial->rxBitIndex; bitToSet++) {
escSerial->internalRxBuffer |= 1 << bitToSet;
}
}
}
void prepareForNextRxByteBL(escSerial_t *escSerial)
{
// prepare for next byte
escSerial->rxBitIndex = 0;
escSerial->isSearchingForStartBit = true;
if (escSerial->rxEdge == LEADING) {
escSerial->rxEdge = TRAILING;
serialICConfig(
escSerial->rxTimerHardware->tim,
escSerial->rxTimerHardware->channel,
(escSerial->port.options & SERIAL_INVERTED) ? TIM_ICPolarity_Rising : TIM_ICPolarity_Falling
);
}
}
#define STOP_BIT_MASK (1 << 0)
#define START_BIT_MASK (1 << (RX_TOTAL_BITS - 1))
void extractAndStoreRxByteBL(escSerial_t *escSerial)
{
if ((escSerial->port.mode & MODE_RX) == 0) {
return;
}
uint8_t haveStartBit = (escSerial->internalRxBuffer & START_BIT_MASK) == 0;
uint8_t haveStopBit = (escSerial->internalRxBuffer & STOP_BIT_MASK) == 1;
if (!haveStartBit || !haveStopBit) {
escSerial->receiveErrors++;
return;
}
uint8_t rxByte = (escSerial->internalRxBuffer >> 1) & 0xFF;
if (escSerial->port.rxCallback) {
escSerial->port.rxCallback(rxByte);
} else {
escSerial->port.rxBuffer[escSerial->port.rxBufferHead] = rxByte;
escSerial->port.rxBufferHead = (escSerial->port.rxBufferHead + 1) % escSerial->port.rxBufferSize;
}
}
void processRxStateBL(escSerial_t *escSerial)
{
if (escSerial->isSearchingForStartBit) {
return;
}
escSerial->rxBitIndex++;
if (escSerial->rxBitIndex == RX_TOTAL_BITS - 1) {
applyChangedBitsBL(escSerial);
return;
}
if (escSerial->rxBitIndex == RX_TOTAL_BITS) {
if (escSerial->rxEdge == TRAILING) {
escSerial->internalRxBuffer |= STOP_BIT_MASK;
}
extractAndStoreRxByteBL(escSerial);
prepareForNextRxByteBL(escSerial);
}
}
void onSerialTimerBL(timerCCHandlerRec_t *cbRec, captureCompare_t capture)
{
UNUSED(capture);
escSerial_t *escSerial = container_of(cbRec, escSerial_t, timerCb);
processTxStateBL(escSerial);
processRxStateBL(escSerial);
}
void onSerialRxPinChangeBL(timerCCHandlerRec_t *cbRec, captureCompare_t capture)
{
UNUSED(capture);
escSerial_t *escSerial = container_of(cbRec, escSerial_t, edgeCb);
bool inverted = escSerial->port.options & SERIAL_INVERTED;
if ((escSerial->port.mode & MODE_RX) == 0) {
return;
}
if (escSerial->isSearchingForStartBit) {
// synchronise bit counter
// FIXME this reduces functionality somewhat as receiving breaks concurrent transmission on all ports because
// the next callback to the onSerialTimer will happen too early causing transmission errors.
TIM_SetCounter(escSerial->txTimerHardware->tim, escSerial->txTimerHardware->tim->ARR / 2);
if (escSerial->isTransmittingData) {
escSerial->transmissionErrors++;
}
serialICConfig(escSerial->rxTimerHardware->tim, escSerial->rxTimerHardware->channel, inverted ? TIM_ICPolarity_Falling : TIM_ICPolarity_Rising);
escSerial->rxEdge = LEADING;
escSerial->rxBitIndex = 0;
escSerial->rxLastLeadingEdgeAtBitIndex = 0;
escSerial->internalRxBuffer = 0;
escSerial->isSearchingForStartBit = false;
return;
}
if (escSerial->rxEdge == LEADING) {
escSerial->rxLastLeadingEdgeAtBitIndex = escSerial->rxBitIndex;
}
applyChangedBitsBL(escSerial);
if (escSerial->rxEdge == TRAILING) {
escSerial->rxEdge = LEADING;
serialICConfig(escSerial->rxTimerHardware->tim, escSerial->rxTimerHardware->channel, inverted ? TIM_ICPolarity_Falling : TIM_ICPolarity_Rising);
} else {
escSerial->rxEdge = TRAILING;
serialICConfig(escSerial->rxTimerHardware->tim, escSerial->rxTimerHardware->channel, inverted ? TIM_ICPolarity_Rising : TIM_ICPolarity_Falling);
}
}
/*-------------------------BL*/
void extractAndStoreRxByte(escSerial_t *escSerial)
{
if ((escSerial->port.mode & MODE_RX) == 0) {
return;
}
uint8_t rxByte = (escSerial->internalRxBuffer) & 0xFF;
if (escSerial->port.rxCallback) {
escSerial->port.rxCallback(rxByte);
} else {
escSerial->port.rxBuffer[escSerial->port.rxBufferHead] = rxByte;
escSerial->port.rxBufferHead = (escSerial->port.rxBufferHead + 1) % escSerial->port.rxBufferSize;
}
}
void onSerialTimer(timerCCHandlerRec_t *cbRec, captureCompare_t capture)
{
UNUSED(capture);
escSerial_t *escSerial = container_of(cbRec, escSerial_t, timerCb);
if(escSerial->isReceivingData)
{
escSerial->receiveTimeout++;
if(escSerial->receiveTimeout>8)
{
escSerial->isReceivingData=0;
escSerial->receiveTimeout=0;
serialICConfig(escSerial->rxTimerHardware->tim, escSerial->rxTimerHardware->channel, TIM_ICPolarity_Falling);
}
}
processTxState(escSerial);
}
void onSerialRxPinChange(timerCCHandlerRec_t *cbRec, captureCompare_t capture)
{
UNUSED(capture);
static uint8_t zerofirst=0;
static uint8_t bits=0;
static uint16_t bytes=0;
escSerial_t *escSerial = container_of(cbRec, escSerial_t, edgeCb);
//clear timer
TIM_SetCounter(escSerial->rxTimerHardware->tim,0);
if(capture > 40 && capture < 90)
{
zerofirst++;
if(zerofirst>1)
{
zerofirst=0;
escSerial->internalRxBuffer = escSerial->internalRxBuffer>>1;
bits++;
}
}
else if(capture>90 && capture < 200)
{
zerofirst=0;
escSerial->internalRxBuffer = escSerial->internalRxBuffer>>1;
escSerial->internalRxBuffer |= 0x80;
bits++;
}
else
{
if(!escSerial->isReceivingData)
{
//start
//lets reset
escSerial->isReceivingData = 1;
zerofirst=0;
bytes=0;
bits=1;
escSerial->internalRxBuffer = 0x80;
serialICConfig(escSerial->rxTimerHardware->tim, escSerial->rxTimerHardware->channel, TIM_ICPolarity_Rising);
}
}
escSerial->receiveTimeout = 0;
if(bits==8)
{
bits=0;
bytes++;
if(bytes>3)
{
extractAndStoreRxByte(escSerial);
}
escSerial->internalRxBuffer=0;
}
}
uint32_t escSerialTotalBytesWaiting(serialPort_t *instance)
{
if ((instance->mode & MODE_RX) == 0) {
return 0;
}
escSerial_t *s = (escSerial_t *)instance;
return (s->port.rxBufferHead - s->port.rxBufferTail) & (s->port.rxBufferSize - 1);
}
uint8_t escSerialReadByte(serialPort_t *instance)
{
uint8_t ch;
if ((instance->mode & MODE_RX) == 0) {
return 0;
}
if (escSerialTotalBytesWaiting(instance) == 0) {
return 0;
}
ch = instance->rxBuffer[instance->rxBufferTail];
instance->rxBufferTail = (instance->rxBufferTail + 1) % instance->rxBufferSize;
return ch;
}
void escSerialWriteByte(serialPort_t *s, uint8_t ch)
{
if ((s->mode & MODE_TX) == 0) {
return;
}
s->txBuffer[s->txBufferHead] = ch;
s->txBufferHead = (s->txBufferHead + 1) % s->txBufferSize;
}
void escSerialSetBaudRate(serialPort_t *s, uint32_t baudRate)
{
UNUSED(s);
UNUSED(baudRate);
}
void escSerialSetMode(serialPort_t *instance, portMode_t mode)
{
instance->mode = mode;
}
bool isEscSerialTransmitBufferEmpty(serialPort_t *instance)
{
// start listening
return instance->txBufferHead == instance->txBufferTail;
}
uint32_t escSerialTxBytesFree(serialPort_t *instance)
{
if ((instance->mode & MODE_TX) == 0) {
return 0;
}
escSerial_t *s = (escSerial_t *)instance;
uint8_t bytesUsed = (s->port.txBufferHead - s->port.txBufferTail) & (s->port.txBufferSize - 1);
return (s->port.txBufferSize - 1) - bytesUsed;
}
const struct serialPortVTable escSerialVTable[] = {
{
.serialWrite = escSerialWriteByte,
.serialTotalRxWaiting = escSerialTotalBytesWaiting,
.serialTotalTxFree = escSerialTxBytesFree,
.serialRead = escSerialReadByte,
.serialSetBaudRate = escSerialSetBaudRate,
.isSerialTransmitBufferEmpty = isEscSerialTransmitBufferEmpty,
.setMode = escSerialSetMode,
.writeBuf = NULL,
.beginWrite = NULL,
.endWrite = NULL
}
};
void escSerialInitialize()
{
//StopPwmAllMotors();
pwmDisableMotors();
for (volatile uint8_t i = 0; i < USABLE_TIMER_CHANNEL_COUNT; i++) {
// set outputs to pullup
if(timerHardware[i].output==1)
{
escSerialGPIOConfig(timerHardware[i].tag, IOCFG_IPU); //GPIO_Mode_IPU
}
}
}
typedef enum {
IDLE,
HEADER_START,
HEADER_M,
HEADER_ARROW,
HEADER_SIZE,
HEADER_CMD,
COMMAND_RECEIVED
} mspState_e;
typedef struct mspPort_s {
uint8_t offset;
uint8_t dataSize;
uint8_t checksum;
uint8_t indRX;
uint8_t inBuf[10];
mspState_e c_state;
uint8_t cmdMSP;
} mspPort_t;
static mspPort_t currentPort;
static bool ProcessExitCommand(uint8_t c)
{
if (currentPort.c_state == IDLE) {
if (c == '$') {
currentPort.c_state = HEADER_START;
} else {
return false;
}
} else if (currentPort.c_state == HEADER_START) {
currentPort.c_state = (c == 'M') ? HEADER_M : IDLE;
} else if (currentPort.c_state == HEADER_M) {
currentPort.c_state = (c == '<') ? HEADER_ARROW : IDLE;
} else if (currentPort.c_state == HEADER_ARROW) {
if (c > 10) {
currentPort.c_state = IDLE;
} else {
currentPort.dataSize = c;
currentPort.offset = 0;
currentPort.checksum = 0;
currentPort.indRX = 0;
currentPort.checksum ^= c;
currentPort.c_state = HEADER_SIZE;
}
} else if (currentPort.c_state == HEADER_SIZE) {
currentPort.cmdMSP = c;
currentPort.checksum ^= c;
currentPort.c_state = HEADER_CMD;
} else if (currentPort.c_state == HEADER_CMD && currentPort.offset < currentPort.dataSize) {
currentPort.checksum ^= c;
currentPort.inBuf[currentPort.offset++] = c;
} else if (currentPort.c_state == HEADER_CMD && currentPort.offset >= currentPort.dataSize) {
if (currentPort.checksum == c) {
currentPort.c_state = COMMAND_RECEIVED;
if((currentPort.cmdMSP == 0xF4) && (currentPort.dataSize==0))
{
currentPort.c_state = IDLE;
return true;
}
} else {
currentPort.c_state = IDLE;
}
}
return false;
}
// mode 0=sk, 1=bl, 2=ki output=timerHardware PWM channel.
void escEnablePassthrough(serialPort_t *escPassthroughPort, uint16_t output, uint8_t mode)
{
bool exitEsc = false;
LED0_OFF;
LED1_OFF;
//StopPwmAllMotors();
pwmDisableMotors();
passPort = escPassthroughPort;
uint8_t first_output = 0;
for (volatile uint8_t i = 0; i < USABLE_TIMER_CHANNEL_COUNT; i++) {
if(timerHardware[i].output==1)
{
first_output=i;
break;
}
}
//doesn't work with messy timertable
uint8_t motor_output=first_output+output-1;
if(motor_output >=USABLE_TIMER_CHANNEL_COUNT)
return;
escPort = openEscSerial(ESCSERIAL1, NULL, motor_output, 19200, 0, mode);
uint8_t ch;
while(1) {
if (serialRxBytesWaiting(escPort)) {
LED0_ON;
while(serialRxBytesWaiting(escPort))
{
ch = serialRead(escPort);
serialWrite(escPassthroughPort, ch);
}
LED0_OFF;
}
if (serialRxBytesWaiting(escPassthroughPort)) {
LED1_ON;
while(serialRxBytesWaiting(escPassthroughPort))
{
ch = serialRead(escPassthroughPort);
exitEsc = ProcessExitCommand(ch);
if(exitEsc)
{
serialWrite(escPassthroughPort, 0x24);
serialWrite(escPassthroughPort, 0x4D);
serialWrite(escPassthroughPort, 0x3E);
serialWrite(escPassthroughPort, 0x00);
serialWrite(escPassthroughPort, 0xF4);
serialWrite(escPassthroughPort, 0xF4);
closeEscSerial(ESCSERIAL1, output);
return;
}
if(mode==1){
serialWrite(escPassthroughPort, ch); // blheli loopback
}
serialWrite(escPort, ch);
}
LED1_OFF;
}
delay(5);
}
}
#endif

View File

@ -0,0 +1,36 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#define ESCSERIAL_BUFFER_SIZE 1024
typedef enum {
ESCSERIAL1 = 0,
ESCSERIAL2
} escSerialPortIndex_e;
serialPort_t *openEscSerial(escSerialPortIndex_e portIndex, serialReceiveCallbackPtr callback, uint16_t output, uint32_t baud, portOptions_t options, uint8_t mode);
// serialPort API
void escSerialWriteByte(serialPort_t *instance, uint8_t ch);
uint32_t escSerialTotalBytesWaiting(serialPort_t *instance);
uint8_t escSerialReadByte(serialPort_t *instance);
void escSerialSetBaudRate(serialPort_t *s, uint32_t baudRate);
bool isEscSerialTransmitBufferEmpty(serialPort_t *s);
void escSerialInitialize();
void escEnablePassthrough(serialPort_t *escPassthroughPort, uint16_t output, uint8_t mode);

View File

@ -55,6 +55,7 @@ uint8_t cliMode = 0;
#include "drivers/pwm_rx.h" #include "drivers/pwm_rx.h"
#include "drivers/sdcard.h" #include "drivers/sdcard.h"
#include "drivers/buf_writer.h" #include "drivers/buf_writer.h"
#include "drivers/serial_escserial.h"
#include "fc/config.h" #include "fc/config.h"
#include "fc/rc_controls.h" #include "fc/rc_controls.h"
@ -153,6 +154,9 @@ static void cliResource(char *cmdline);
#ifdef GPS #ifdef GPS
static void cliGpsPassthrough(char *cmdline); static void cliGpsPassthrough(char *cmdline);
#endif #endif
#ifdef USE_ESCSERIAL
static void cliEscPassthrough(char *cmdline);
#endif
static void cliHelp(char *cmdline); static void cliHelp(char *cmdline);
static void cliMap(char *cmdline); static void cliMap(char *cmdline);
@ -304,6 +308,9 @@ const clicmd_t cmdTable[] = {
"[name]", cliGet), "[name]", cliGet),
#ifdef GPS #ifdef GPS
CLI_COMMAND_DEF("gpspassthrough", "passthrough gps to serial", NULL, cliGpsPassthrough), CLI_COMMAND_DEF("gpspassthrough", "passthrough gps to serial", NULL, cliGpsPassthrough),
#endif
#ifdef USE_ESCSERIAL
CLI_COMMAND_DEF("escprog", "passthrough esc to serial", "<mode [sk/bl]> <index>", cliEscPassthrough),
#endif #endif
CLI_COMMAND_DEF("help", NULL, NULL, cliHelp), CLI_COMMAND_DEF("help", NULL, NULL, cliHelp),
#ifdef LED_STRIP #ifdef LED_STRIP
@ -2944,6 +2951,60 @@ static void cliGpsPassthrough(char *cmdline)
} }
#endif #endif
#ifdef USE_ESCSERIAL
static void cliEscPassthrough(char *cmdline)
{
uint8_t mode = 0;
int index = 0;
int i = 0;
char *pch = NULL;
char *saveptr;
if (isEmpty(cmdline)) {
cliShowParseError();
return;
}
pch = strtok_r(cmdline, " ", &saveptr);
while (pch != NULL) {
switch (i) {
case 0:
if(strncasecmp(pch, "sk", strlen(pch)) == 0)
{
mode = 0;
}
else if(strncasecmp(pch, "bl", strlen(pch)) == 0)
{
mode = 1;
}
else if(strncasecmp(pch, "ki", strlen(pch)) == 0)
{
mode = 2;
}
else
{
cliShowParseError();
return;
}
break;
case 1:
index = atoi(pch);
if ((index >= 0) && (index < USABLE_TIMER_CHANNEL_COUNT)) {
printf("passthru at pwm output %d enabled\r\n", index);
}
else {
printf("invalid pwm output, valid range: 0 to %d\r\n", USABLE_TIMER_CHANNEL_COUNT);
return;
}
break;
}
i++;
pch = strtok_r(NULL, " ", &saveptr);
}
escEnablePassthrough(cliPort,index,mode);
}
#endif
static void cliHelp(char *cmdline) static void cliHelp(char *cmdline)
{ {
UNUSED(cmdline); UNUSED(cmdline);

View File

@ -92,6 +92,9 @@
#define SERIAL_PORT_COUNT 4 //VCP, USART1, USART3, USART6 #define SERIAL_PORT_COUNT 4 //VCP, USART1, USART3, USART6
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define USE_SPI #define USE_SPI
#define USE_SPI_DEVICE_1 #define USE_SPI_DEVICE_1