Remove MW23 pid controller

This commit is contained in:
borisbstyle 2016-04-16 23:35:02 +02:00
parent 8e744e874c
commit fb35cc6477
5 changed files with 9 additions and 159 deletions

View File

@ -59,7 +59,7 @@ int32_t axisPID_P[3], axisPID_I[3], axisPID_D[3];
#endif #endif
// PIDweight is a scale factor for PIDs which is derived from the throttle and TPA setting, and 100 = 100% scale means no PID reduction // PIDweight is a scale factor for PIDs which is derived from the throttle and TPA setting, and 100 = 100% scale means no PID reduction
uint8_t dynP8[3], dynI8[3], dynD8[3], PIDweight[3]; uint8_t PIDweight[3];
static int32_t errorGyroI[3], errorGyroILimit[3]; static int32_t errorGyroI[3], errorGyroILimit[3];
static float errorGyroIf[3], errorGyroIfLimit[3]; static float errorGyroIf[3], errorGyroIfLimit[3];
@ -273,145 +273,6 @@ static void pidLuxFloat(pidProfile_t *pidProfile, controlRateConfig_t *controlRa
} }
} }
static void pidMultiWii23(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination,
rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig)
{
UNUSED(rxConfig);
int axis, prop = 0;
int32_t rc, error, errorAngle, delta, gyroError;
int32_t PTerm, ITerm, PTermACC, ITermACC, DTerm;
static int16_t lastErrorForDelta[2];
static int32_t deltaState[3][DELTA_MAX_SAMPLES];
if (FLIGHT_MODE(HORIZON_MODE)) {
prop = MIN(MAX(ABS(rcCommand[PITCH]), ABS(rcCommand[ROLL])), 512);
}
// PITCH & ROLL
for (axis = 0; axis < 2; axis++) {
rc = rcCommand[axis] << 1;
gyroError = gyroADC[axis] / 4;
error = rc - gyroError;
errorGyroI[axis] = constrain(errorGyroI[axis] + ((error * (uint16_t)targetPidLooptime) >> 11) , -16000, +16000); // WindUp 16 bits is ok here
if (ABS(gyroADC[axis]) > (640 * 4)) {
errorGyroI[axis] = 0;
}
// Anti windup protection
if (antiWindupProtection || motorLimitReached) {
errorGyroI[axis] = constrain(errorGyroI[axis], -errorGyroILimit[axis], errorGyroILimit[axis]);
} else {
errorGyroILimit[axis] = ABS(errorGyroI[axis]);
}
ITerm = (errorGyroI[axis] >> 7) * pidProfile->I8[axis] >> 6; // 16 bits is ok here 16000/125 = 128 ; 128*250 = 32000
PTerm = (int32_t)rc * pidProfile->P8[axis] >> 6;
if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) { // axis relying on ACC
// 50 degrees max inclination
#ifdef GPS
errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination),
+max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis];
#else
errorAngle = constrain(2 * rcCommand[axis], -((int) max_angle_inclination),
+max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis];
#endif
errorAngleI[axis] = constrain(errorAngleI[axis] + errorAngle, -10000, +10000); // WindUp //16 bits is ok here
PTermACC = ((int32_t)errorAngle * pidProfile->P8[PIDLEVEL]) >> 7; // 32 bits is needed for calculation: errorAngle*P8 could exceed 32768 16 bits is ok for result
int16_t limit = pidProfile->D8[PIDLEVEL] * 5;
PTermACC = constrain(PTermACC, -limit, +limit);
ITermACC = ((int32_t)errorAngleI[axis] * pidProfile->I8[PIDLEVEL]) >> 12; // 32 bits is needed for calculation:10000*I8 could exceed 32768 16 bits is ok for result
ITerm = ITermACC + ((ITerm - ITermACC) * prop >> 9);
PTerm = PTermACC + ((PTerm - PTermACC) * prop >> 9);
}
PTerm -= ((int32_t)gyroError * dynP8[axis]) >> 6; // 32 bits is needed for calculation
//-----calculate D-term based on the configured approach (delta from measurement or deltafromError)
if (pidProfile->deltaMethod == DELTA_FROM_ERROR) {
delta = error - lastErrorForDelta[axis];
lastErrorForDelta[axis] = error;
} else { /* Delta from measurement */
delta = -(gyroError - lastErrorForDelta[axis]);
lastErrorForDelta[axis] = gyroError;
}
// Scale delta to looptime
delta = (delta * ((uint16_t) 0xFFFF)) / ((uint16_t)targetPidLooptime << 5);
// Filer delta
if (pidProfile->dterm_lpf_hz) delta = filterApplyPt1((float)delta, &deltaFilterState[axis], pidProfile->dterm_lpf_hz, getdT());
// Apply moving average and multiply to get original scaling
if (pidProfile->dterm_average_count) delta = filterApplyAverage(delta, pidProfile->dterm_average_count, deltaState[axis]) * 2;
DTerm = (delta * dynD8[axis]) >> 5; // 32 bits is needed for calculation
axisPID[axis] = PTerm + ITerm + DTerm;
if (lowThrottlePidReduction) axisPID[axis] /= 3;
#ifdef GTUNE
if (FLIGHT_MODE(GTUNE_MODE) && ARMING_FLAG(ARMED)) {
calculate_Gtune(axis);
}
#endif
#ifdef BLACKBOX
axisPID_P[axis] = PTerm;
axisPID_I[axis] = ITerm;
axisPID_D[axis] = DTerm;
#endif
}
//YAW
rc = (int32_t)rcCommand[FD_YAW] * (2 * controlRateConfig->rates[FD_YAW] + 30) >> 5;
#ifdef ALIENWII32
error = rc - gyroADC[FD_YAW];
#else
error = rc - (gyroADC[FD_YAW] / 4);
#endif
errorGyroI[FD_YAW] += (int32_t)error * pidProfile->I8[FD_YAW];
errorGyroI[FD_YAW] = constrain(errorGyroI[FD_YAW], 2 - ((int32_t)1 << 28), -2 + ((int32_t)1 << 28));
if (ABS(rc) > 50) errorGyroI[FD_YAW] = 0;
PTerm = (int32_t)error * pidProfile->P8[FD_YAW] >> 6; // TODO: Bitwise shift on a signed integer is not recommended
// Constrain YAW by yaw_p_limit value if not servo driven in that case servolimits apply
if(motorCount >= 4 && pidProfile->yaw_p_limit < YAW_P_LIMIT_MAX) {
PTerm = constrain(PTerm, -pidProfile->yaw_p_limit, pidProfile->yaw_p_limit);
}
ITerm = constrain((int16_t)(errorGyroI[FD_YAW] >> 13), -GYRO_I_MAX, +GYRO_I_MAX);
axisPID[FD_YAW] = PTerm + ITerm;
if (pidProfile->yaw_lpf_hz) axisPID[FD_YAW] = filterApplyPt1(axisPID[FD_YAW], &yawFilterState, pidProfile->yaw_lpf_hz, getdT());
#ifdef GTUNE
if (FLIGHT_MODE(GTUNE_MODE) && ARMING_FLAG(ARMED)) {
calculate_Gtune(FD_YAW);
}
#endif
#ifdef BLACKBOX
axisPID_P[FD_YAW] = PTerm;
axisPID_I[FD_YAW] = ITerm;
axisPID_D[FD_YAW] = 0;
#endif
}
static void pidMultiWiiRewrite(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, static void pidMultiWiiRewrite(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination,
rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig) rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig)
{ {
@ -567,9 +428,6 @@ void pidSetController(pidControllerType_e type)
break; break;
case PID_CONTROLLER_LUX_FLOAT: case PID_CONTROLLER_LUX_FLOAT:
pid_controller = pidLuxFloat; pid_controller = pidLuxFloat;
break;
case PID_CONTROLLER_MW23:
pid_controller = pidMultiWii23;
} }
} }

View File

@ -37,8 +37,7 @@ typedef enum {
} pidIndex_e; } pidIndex_e;
typedef enum { typedef enum {
PID_CONTROLLER_MW23, PID_CONTROLLER_MWREWRITE = 1,
PID_CONTROLLER_MWREWRITE,
PID_CONTROLLER_LUX_FLOAT, PID_CONTROLLER_LUX_FLOAT,
PID_COUNT PID_COUNT
} pidControllerType_e; } pidControllerType_e;

View File

@ -371,7 +371,7 @@ static const char * const lookupTableBlackboxDevice[] = {
static const char * const lookupTablePidController[] = { static const char * const lookupTablePidController[] = {
"MW23", "MWREWRITE", "LUX" "UNUSED", "MWREWRITE", "LUX"
}; };
static const char * const lookupTableSerialRX[] = { static const char * const lookupTableSerialRX[] = {

View File

@ -1309,7 +1309,7 @@ static bool processInCommand(void)
break; break;
case MSP_SET_PID_CONTROLLER: case MSP_SET_PID_CONTROLLER:
oldPid = currentProfile->pidProfile.pidController; oldPid = currentProfile->pidProfile.pidController;
currentProfile->pidProfile.pidController = read8(); currentProfile->pidProfile.pidController = constrain(read8(), 1, 2);
pidSetController(currentProfile->pidProfile.pidController); pidSetController(currentProfile->pidProfile.pidController);
if (oldPid != currentProfile->pidProfile.pidController) setGyroSamplingSpeed(0); // recalculate looptimes for new PID if (oldPid != currentProfile->pidProfile.pidController) setGyroSamplingSpeed(0); // recalculate looptimes for new PID
break; break;

View File

@ -223,16 +223,16 @@ void scaleRcCommandToFpvCamAngle(void) {
void annexCode(void) void annexCode(void)
{ {
int32_t tmp, tmp2; int32_t tmp, tmp2;
int32_t axis, prop1 = 0, prop2; int32_t axis, prop;
// PITCH & ROLL only dynamic PID adjustment, depending on throttle value // PITCH & ROLL only dynamic PID adjustment, depending on throttle value
if (rcData[THROTTLE] < currentControlRateProfile->tpa_breakpoint) { if (rcData[THROTTLE] < currentControlRateProfile->tpa_breakpoint) {
prop2 = 100; prop = 100;
} else { } else {
if (rcData[THROTTLE] < 2000) { if (rcData[THROTTLE] < 2000) {
prop2 = 100 - (uint16_t)currentControlRateProfile->dynThrPID * (rcData[THROTTLE] - currentControlRateProfile->tpa_breakpoint) / (2000 - currentControlRateProfile->tpa_breakpoint); prop = 100 - (uint16_t)currentControlRateProfile->dynThrPID * (rcData[THROTTLE] - currentControlRateProfile->tpa_breakpoint) / (2000 - currentControlRateProfile->tpa_breakpoint);
} else { } else {
prop2 = 100 - currentControlRateProfile->dynThrPID; prop = 100 - currentControlRateProfile->dynThrPID;
} }
} }
@ -249,8 +249,6 @@ void annexCode(void)
tmp2 = tmp / 100; tmp2 = tmp / 100;
rcCommand[axis] = lookupPitchRollRC[tmp2] + (tmp - tmp2 * 100) * (lookupPitchRollRC[tmp2 + 1] - lookupPitchRollRC[tmp2]) / 100; rcCommand[axis] = lookupPitchRollRC[tmp2] + (tmp - tmp2 * 100) * (lookupPitchRollRC[tmp2 + 1] - lookupPitchRollRC[tmp2]) / 100;
prop1 = 100 - (uint16_t)currentControlRateProfile->rates[axis] * tmp / 500;
prop1 = (uint16_t)prop1 * prop2 / 100;
} else if (axis == YAW) { } else if (axis == YAW) {
if (masterConfig.rcControlsConfig.yaw_deadband) { if (masterConfig.rcControlsConfig.yaw_deadband) {
if (tmp > masterConfig.rcControlsConfig.yaw_deadband) { if (tmp > masterConfig.rcControlsConfig.yaw_deadband) {
@ -261,19 +259,14 @@ void annexCode(void)
} }
tmp2 = tmp / 100; tmp2 = tmp / 100;
rcCommand[axis] = (lookupYawRC[tmp2] + (tmp - tmp2 * 100) * (lookupYawRC[tmp2 + 1] - lookupYawRC[tmp2]) / 100) * -masterConfig.yaw_control_direction; rcCommand[axis] = (lookupYawRC[tmp2] + (tmp - tmp2 * 100) * (lookupYawRC[tmp2 + 1] - lookupYawRC[tmp2]) / 100) * -masterConfig.yaw_control_direction;
prop1 = 100 - (uint16_t)currentControlRateProfile->rates[axis] * ABS(tmp) / 500;
} }
// FIXME axis indexes into pids. use something like lookupPidIndex(rc_alias_e alias) to reduce coupling.
dynP8[axis] = (uint16_t)currentProfile->pidProfile.P8[axis] * prop1 / 100;
dynI8[axis] = (uint16_t)currentProfile->pidProfile.I8[axis] * prop1 / 100;
dynD8[axis] = (uint16_t)currentProfile->pidProfile.D8[axis] * prop1 / 100;
// non coupled PID reduction scaler used in PID controller 1 and PID controller 2. YAW TPA disabled. 100 means 100% of the pids // non coupled PID reduction scaler used in PID controller 1 and PID controller 2. YAW TPA disabled. 100 means 100% of the pids
if (axis == YAW) { if (axis == YAW) {
PIDweight[axis] = 100; PIDweight[axis] = 100;
} }
else { else {
PIDweight[axis] = prop2; PIDweight[axis] = prop;
} }
if (rcData[axis] < masterConfig.rxConfig.midrc) if (rcData[axis] < masterConfig.rxConfig.midrc)