Refactor (consolidation and separation of stdperiph and hal)

This commit is contained in:
jflyper 2019-08-02 04:11:22 +09:00
parent a16b67b5a4
commit ff759034f3
8 changed files with 176 additions and 460 deletions

View File

@ -67,7 +67,7 @@ MCU_COMMON_SRC = \
drivers/dma.c \
drivers/inverter.c \
drivers/light_ws2811strip_stdperiph.c \
drivers/serial_uart_init.c \
drivers/serial_uart_stdperiph.c \
drivers/serial_uart_stm32f10x.c \
drivers/system_stm32f10x.c \
drivers/timer_stm32f10x.c

View File

@ -86,7 +86,7 @@ MCU_COMMON_SRC = \
drivers/transponder_ir_io_stdperiph.c \
drivers/pwm_output_dshot.c \
drivers/pwm_output_dshot_shared.c \
drivers/serial_uart_init.c \
drivers/serial_uart_stdperiph.c \
drivers/serial_uart_stm32f30x.c \
drivers/system_stm32f30x.c \
drivers/timer_stm32f30x.c

View File

@ -180,7 +180,7 @@ MCU_COMMON_SRC = \
drivers/transponder_ir_io_stdperiph.c \
drivers/pwm_output_dshot.c \
drivers/pwm_output_dshot_shared.c \
drivers/serial_uart_init.c \
drivers/serial_uart_stdperiph.c \
drivers/serial_uart_stm32f4xx.c \
drivers/system_stm32f4xx.c \
drivers/timer_stm32f4xx.c \

View File

@ -179,13 +179,12 @@ MCU_COMMON_SRC = \
drivers/timer_hal.c \
drivers/timer_stm32f7xx.c \
drivers/system_stm32f7xx.c \
drivers/serial_uart_stm32f7xx.c \
drivers/serial_uart_hal.c
drivers/serial_uart_hal.c \
drivers/serial_uart_stm32f7xx.c
MCU_EXCLUDES = \
drivers/bus_i2c.c \
drivers/timer.c \
drivers/serial_uart.c
drivers/timer.c
MSC_SRC = \
drivers/usb_msc_f7xx.c \

View File

@ -235,8 +235,8 @@ MCU_COMMON_SRC = \
drivers/system_stm32h7xx.c \
drivers/timer_hal.c \
drivers/timer_stm32h7xx.c \
drivers/serial_uart_stm32h7xx.c \
drivers/serial_uart_hal.c \
drivers/serial_uart_stm32h7xx.c \
drivers/bus_quadspi_hal.c \
drivers/bus_spi_hal.c \
drivers/dma_stm32h7xx.c \
@ -253,8 +253,7 @@ MCU_COMMON_SRC = \
MCU_EXCLUDES = \
drivers/bus_i2c.c \
drivers/timer.c \
drivers/serial_uart.c
drivers/timer.c
#MSC_SRC = \
# drivers/usb_msc_h7xx.c \

View File

@ -33,19 +33,42 @@
#ifdef USE_UART
#include "build/build_config.h"
#include "build/atomic.h"
#include "common/utils.h"
#include "drivers/dma.h"
#include "drivers/inverter.h"
#include "drivers/nvic.h"
#include "drivers/rcc.h"
#include "drivers/serial.h"
#include "drivers/serial_uart.h"
#include "drivers/serial_uart_impl.h"
serialPort_t *uartOpen(UARTDevice_e device, serialReceiveCallbackPtr rxCallback, void *rxCallbackData, uint32_t baudRate, portMode_e mode, portOptions_e options)
{
uartPort_t *s = serialUART(device, baudRate, mode, options);
if (!s)
return (serialPort_t *)s;
#ifdef USE_DMA
s->txDMAEmpty = true;
#endif
// common serial initialisation code should move to serialPort::init()
s->port.rxBufferHead = s->port.rxBufferTail = 0;
s->port.txBufferHead = s->port.txBufferTail = 0;
// callback works for IRQ-based RX ONLY
s->port.rxCallback = rxCallback;
s->port.rxCallbackData = rxCallbackData;
s->port.mode = mode;
s->port.baudRate = baudRate;
s->port.options = options;
uartReconfigure(s);
return (serialPort_t *)s;
}
static void uartSetBaudRate(serialPort_t *instance, uint32_t baudRate)
{
uartPort_t *uartPort = (uartPort_t *)instance;
@ -60,66 +83,26 @@ static void uartSetMode(serialPort_t *instance, portMode_e mode)
uartReconfigure(uartPort);
}
void uartTryStartTxDMA(uartPort_t *s)
{
// uartTryStartTxDMA must be protected, since it is called from
// uartWrite and handleUsartTxDma (an ISR).
ATOMIC_BLOCK(NVIC_PRIO_SERIALUART_TXDMA) {
if (IS_DMA_ENABLED(s->txDMAResource)) {
// DMA is already in progress
return;
}
// For F4 (and F1), there are cases that NDTR (CNDTR for F1) is non-zero upon TC interrupt.
// We couldn't find out the root cause, so mask the case here.
// F3 is not confirmed to be vulnerable, but not excluded as a safety.
if (xDMA_GetCurrDataCounter(s->txDMAResource)) {
// Possible premature TC case.
goto reenable;
}
if (s->port.txBufferHead == s->port.txBufferTail) {
// No more data to transmit.
s->txDMAEmpty = true;
return;
}
// Start a new transaction.
#ifdef STM32F4
xDMA_MemoryTargetConfig(s->txDMAResource, (uint32_t)&s->port.txBuffer[s->port.txBufferTail], DMA_Memory_0);
#else
DMAx_SetMemoryAddress(s->txDMAResource, (uint32_t)&s->port.txBuffer[s->port.txBufferTail]);
#endif
if (s->port.txBufferHead > s->port.txBufferTail) {
xDMA_SetCurrDataCounter(s->txDMAResource, s->port.txBufferHead - s->port.txBufferTail);
s->port.txBufferTail = s->port.txBufferHead;
} else {
xDMA_SetCurrDataCounter(s->txDMAResource, s->port.txBufferSize - s->port.txBufferTail);
s->port.txBufferTail = 0;
}
s->txDMAEmpty = false;
reenable:
xDMA_Cmd(s->txDMAResource, ENABLE);
}
}
static uint32_t uartTotalRxBytesWaiting(const serialPort_t *instance)
{
const uartPort_t *s = (const uartPort_t*)instance;
#ifdef USE_DMA
if (s->rxDMAResource) {
// XXX Could be consolidated
#ifdef USE_HAL_DRIVER
uint32_t rxDMAHead = __HAL_DMA_GET_COUNTER(s->Handle.hdmarx);
#else
uint32_t rxDMAHead = xDMA_GetCurrDataCounter(s->rxDMAResource);
#endif
if (rxDMAHead >= s->rxDMAPos) {
return rxDMAHead - s->rxDMAPos;
} else {
return s->port.rxBufferSize + rxDMAHead - s->rxDMAPos;
}
}
#endif
if (s->port.rxBufferHead >= s->port.rxBufferTail) {
return s->port.rxBufferHead - s->port.rxBufferTail;
@ -140,12 +123,17 @@ static uint32_t uartTotalTxBytesFree(const serialPort_t *instance)
bytesUsed = s->port.txBufferSize + s->port.txBufferHead - s->port.txBufferTail;
}
#ifdef USE_DMA
if (s->txDMAResource) {
/*
* When we queue up a DMA request, we advance the Tx buffer tail before the transfer finishes, so we must add
* the remaining size of that in-progress transfer here instead:
*/
#ifdef USE_HAL_DRIVER
bytesUsed += __HAL_DMA_GET_COUNTER(s->Handle.hdmatx);
#else
bytesUsed += xDMA_GetCurrDataCounter(s->txDMAResource);
#endif
/*
* If the Tx buffer is being written to very quickly, we might have advanced the head into the buffer
@ -159,6 +147,7 @@ static uint32_t uartTotalTxBytesFree(const serialPort_t *instance)
return 0;
}
}
#endif
return (s->port.txBufferSize - 1) - bytesUsed;
}
@ -166,9 +155,12 @@ static uint32_t uartTotalTxBytesFree(const serialPort_t *instance)
static bool isUartTransmitBufferEmpty(const serialPort_t *instance)
{
const uartPort_t *s = (const uartPort_t *)instance;
#ifdef USE_DMA
if (s->txDMAResource) {
return s->txDMAEmpty;
} else {
} else
#endif
{
return s->port.txBufferTail == s->port.txBufferHead;
}
}
@ -178,11 +170,14 @@ static uint8_t uartRead(serialPort_t *instance)
uint8_t ch;
uartPort_t *s = (uartPort_t *)instance;
#ifdef USE_DMA
if (s->rxDMAResource) {
ch = s->port.rxBuffer[s->port.rxBufferSize - s->rxDMAPos];
if (--s->rxDMAPos == 0)
s->rxDMAPos = s->port.rxBufferSize;
} else {
} else
#endif
{
ch = s->port.rxBuffer[s->port.rxBufferTail];
if (s->port.rxBufferTail + 1 >= s->port.rxBufferSize) {
s->port.rxBufferTail = 0;
@ -197,17 +192,26 @@ static uint8_t uartRead(serialPort_t *instance)
static void uartWrite(serialPort_t *instance, uint8_t ch)
{
uartPort_t *s = (uartPort_t *)instance;
s->port.txBuffer[s->port.txBufferHead] = ch;
if (s->port.txBufferHead + 1 >= s->port.txBufferSize) {
s->port.txBufferHead = 0;
} else {
s->port.txBufferHead++;
}
#ifdef USE_DMA
if (s->txDMAResource) {
uartTryStartTxDMA(s);
} else {
} else
#endif
{
#ifdef USE_HAL_DRIVER
__HAL_UART_ENABLE_IT(&s->Handle, UART_IT_TXE);
#else
USART_ITConfig(s->USARTx, USART_IT_TXE, ENABLE);
#endif
}
}
@ -228,75 +232,43 @@ const struct serialPortVTable uartVTable[] = {
}
};
#define UART_IRQHandler(type, dev) \
void type ## dev ## _IRQHandler(void) \
{ \
uartPort_t *s = &(uartDevmap[UARTDEV_ ## dev]->port); \
uartIrqHandler(s); \
}
#ifdef USE_UART1
// USART1 Rx/Tx IRQ Handler
void USART1_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_1]->port);
uartIrqHandler(s);
}
UART_IRQHandler(USART, 1) // USART1 Rx/Tx IRQ Handler
#endif
#ifdef USE_UART2
// USART2 Rx/Tx IRQ Handler
void USART2_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_2]->port);
uartIrqHandler(s);
}
UART_IRQHandler(USART, 2) // USART2 Rx/Tx IRQ Handler
#endif
#ifdef USE_UART3
// USART3 Rx/Tx IRQ Handler
void USART3_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_3]->port);
uartIrqHandler(s);
}
UART_IRQHandler(USART, 3) // USART3 Rx/Tx IRQ Handler
#endif
#ifdef USE_UART4
// UART4 Rx/Tx IRQ Handler
void UART4_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_4]->port);
uartIrqHandler(s);
}
UART_IRQHandler(UART, 4) // UART4 Rx/Tx IRQ Handler
#endif
#ifdef USE_UART5
// UART5 Rx/Tx IRQ Handler
void UART5_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_5]->port);
uartIrqHandler(s);
}
UART_IRQHandler(UART, 5) // UART5 Rx/Tx IRQ Handler
#endif
#ifdef USE_UART6
// USART6 Rx/Tx IRQ Handler
void USART6_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_6]->port);
uartIrqHandler(s);
}
UART_IRQHandler(USART, 6) // USART6 Rx/Tx IRQ Handler
#endif
#ifdef USE_UART7
// UART7 Rx/Tx IRQ Handler
void UART7_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_7]->port);
uartIrqHandler(s);
}
UART_IRQHandler(UART, 7) // UART7 Rx/Tx IRQ Handler
#endif
#ifdef USE_UART8
// UART8 Rx/Tx IRQ Handler
void UART8_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_8]->port);
uartIrqHandler(s);
}
#endif
UART_IRQHandler(UART, 8) // UART8 Rx/Tx IRQ Handler
#endif
#endif // USE_UART

View File

@ -68,19 +68,6 @@ static void usartConfigurePinInversion(uartPort_t *uartPort) {
void uartReconfigure(uartPort_t *uartPort)
{
/*RCC_PeriphCLKInitTypeDef RCC_PeriphClkInit;
RCC_PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_USART2|RCC_PERIPHCLK_USART3|
RCC_PERIPHCLK_UART4|RCC_PERIPHCLK_UART5|RCC_PERIPHCLK_USART6|RCC_PERIPHCLK_UART7|RCC_PERIPHCLK_UART8;
RCC_PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_SYSCLK;
RCC_PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_SYSCLK;
RCC_PeriphClkInit.Usart3ClockSelection = RCC_USART3CLKSOURCE_SYSCLK;
RCC_PeriphClkInit.Uart4ClockSelection = RCC_UART4CLKSOURCE_SYSCLK;
RCC_PeriphClkInit.Uart5ClockSelection = RCC_UART5CLKSOURCE_SYSCLK;
RCC_PeriphClkInit.Usart6ClockSelection = RCC_USART6CLKSOURCE_SYSCLK;
RCC_PeriphClkInit.Uart7ClockSelection = RCC_UART7CLKSOURCE_SYSCLK;
RCC_PeriphClkInit.Uart8ClockSelection = RCC_UART8CLKSOURCE_SYSCLK;
HAL_RCCEx_PeriphCLKConfig(&RCC_PeriphClkInit);*/
HAL_UART_DeInit(&uartPort->Handle);
uartPort->Handle.Init.BaudRate = uartPort->port.baudRate;
// according to the stm32 documentation wordlen has to be 9 for parity bits
@ -208,47 +195,6 @@ void uartReconfigure(uartPort_t *uartPort)
return;
}
serialPort_t *uartOpen(UARTDevice_e device, serialReceiveCallbackPtr callback, void *callbackData, uint32_t baudRate, portMode_e mode, portOptions_e options)
{
uartPort_t *s = serialUART(device, baudRate, mode, options);
if (!s) {
return (serialPort_t *)s;
}
#ifdef USE_DMA
s->txDMAEmpty = true;
#endif
// common serial initialisation code should move to serialPort::init()
s->port.rxBufferHead = s->port.rxBufferTail = 0;
s->port.txBufferHead = s->port.txBufferTail = 0;
// callback works for IRQ-based RX ONLY
s->port.rxCallback = callback;
s->port.rxCallbackData = callbackData;
s->port.mode = mode;
s->port.baudRate = baudRate;
s->port.options = options;
uartReconfigure(s);
return (serialPort_t *)s;
}
void uartSetBaudRate(serialPort_t *instance, uint32_t baudRate)
{
uartPort_t *uartPort = (uartPort_t *)instance;
uartPort->port.baudRate = baudRate;
uartReconfigure(uartPort);
}
void uartSetMode(serialPort_t *instance, portMode_e mode)
{
uartPort_t *uartPort = (uartPort_t *)instance;
uartPort->port.mode = mode;
uartReconfigure(uartPort);
}
#ifdef USE_DMA
void uartTryStartTxDMA(uartPort_t *s)
{
@ -286,209 +232,4 @@ void uartTryStartTxDMA(uartPort_t *s)
}
#endif
uint32_t uartTotalRxBytesWaiting(const serialPort_t *instance)
{
uartPort_t *s = (uartPort_t*)instance;
#ifdef USE_DMA
if (s->rxDMAResource) {
uint32_t rxDMAHead = __HAL_DMA_GET_COUNTER(s->Handle.hdmarx);
if (rxDMAHead >= s->rxDMAPos) {
return rxDMAHead - s->rxDMAPos;
} else {
return s->port.rxBufferSize + rxDMAHead - s->rxDMAPos;
}
}
#endif
if (s->port.rxBufferHead >= s->port.rxBufferTail) {
return s->port.rxBufferHead - s->port.rxBufferTail;
} else {
return s->port.rxBufferSize + s->port.rxBufferHead - s->port.rxBufferTail;
}
}
uint32_t uartTotalTxBytesFree(const serialPort_t *instance)
{
uartPort_t *s = (uartPort_t*)instance;
uint32_t bytesUsed;
if (s->port.txBufferHead >= s->port.txBufferTail) {
bytesUsed = s->port.txBufferHead - s->port.txBufferTail;
} else {
bytesUsed = s->port.txBufferSize + s->port.txBufferHead - s->port.txBufferTail;
}
#ifdef USE_DMA
if (s->txDMAResource) {
/*
* When we queue up a DMA request, we advance the Tx buffer tail before the transfer finishes, so we must add
* the remaining size of that in-progress transfer here instead:
*/
bytesUsed += __HAL_DMA_GET_COUNTER(s->Handle.hdmatx);
/*
* If the Tx buffer is being written to very quickly, we might have advanced the head into the buffer
* space occupied by the current DMA transfer. In that case the "bytesUsed" total will actually end up larger
* than the total Tx buffer size, because we'll end up transmitting the same buffer region twice. (So we'll be
* transmitting a garbage mixture of old and new bytes).
*
* Be kind to callers and pretend like our buffer can only ever be 100% full.
*/
if (bytesUsed >= s->port.txBufferSize - 1) {
return 0;
}
}
#endif
return (s->port.txBufferSize - 1) - bytesUsed;
}
bool isUartTransmitBufferEmpty(const serialPort_t *instance)
{
const uartPort_t *s = (uartPort_t *)instance;
#ifdef USE_DMA
if (s->txDMAResource)
return s->txDMAEmpty;
else
#endif
return s->port.txBufferTail == s->port.txBufferHead;
}
uint8_t uartRead(serialPort_t *instance)
{
uint8_t ch;
uartPort_t *s = (uartPort_t *)instance;
#ifdef USE_DMA
if (s->rxDMAResource) {
ch = s->port.rxBuffer[s->port.rxBufferSize - s->rxDMAPos];
if (--s->rxDMAPos == 0)
s->rxDMAPos = s->port.rxBufferSize;
} else
#endif
{
ch = s->port.rxBuffer[s->port.rxBufferTail];
if (s->port.rxBufferTail + 1 >= s->port.rxBufferSize) {
s->port.rxBufferTail = 0;
} else {
s->port.rxBufferTail++;
}
}
return ch;
}
void uartWrite(serialPort_t *instance, uint8_t ch)
{
uartPort_t *s = (uartPort_t *)instance;
s->port.txBuffer[s->port.txBufferHead] = ch;
if (s->port.txBufferHead + 1 >= s->port.txBufferSize) {
s->port.txBufferHead = 0;
} else {
s->port.txBufferHead++;
}
#ifdef USE_DMA
if (s->txDMAResource) {
uartTryStartTxDMA(s);
} else
#endif
{
__HAL_UART_ENABLE_IT(&s->Handle, UART_IT_TXE);
}
}
const struct serialPortVTable uartVTable[] = {
{
.serialWrite = uartWrite,
.serialTotalRxWaiting = uartTotalRxBytesWaiting,
.serialTotalTxFree = uartTotalTxBytesFree,
.serialRead = uartRead,
.serialSetBaudRate = uartSetBaudRate,
.isSerialTransmitBufferEmpty = isUartTransmitBufferEmpty,
.setMode = uartSetMode,
.setCtrlLineStateCb = NULL,
.setBaudRateCb = NULL,
.writeBuf = NULL,
.beginWrite = NULL,
.endWrite = NULL,
}
};
#ifdef USE_UART1
// USART1 Rx/Tx IRQ Handler
void USART1_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_1]->port);
uartIrqHandler(s);
}
#endif
#ifdef USE_UART2
// USART2 Rx/Tx IRQ Handler
void USART2_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_2]->port);
uartIrqHandler(s);
}
#endif
#ifdef USE_UART3
// USART3 Rx/Tx IRQ Handler
void USART3_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_3]->port);
uartIrqHandler(s);
}
#endif
#ifdef USE_UART4
// UART4 Rx/Tx IRQ Handler
void UART4_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_4]->port);
uartIrqHandler(s);
}
#endif
#ifdef USE_UART5
// UART5 Rx/Tx IRQ Handler
void UART5_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_5]->port);
uartIrqHandler(s);
}
#endif
#ifdef USE_UART6
// USART6 Rx/Tx IRQ Handler
void USART6_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_6]->port);
uartIrqHandler(s);
}
#endif
#ifdef USE_UART7
// UART7 Rx/Tx IRQ Handler
void UART7_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_7]->port);
uartIrqHandler(s);
}
#endif
#ifdef USE_UART8
// UART8 Rx/Tx IRQ Handler
void UART8_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_8]->port);
uartIrqHandler(s);
}
#endif
#endif
#endif // USE_UART

View File

@ -37,9 +37,11 @@
#ifdef USE_UART
#include "build/build_config.h"
#include "build/atomic.h"
#include "common/utils.h"
#include "drivers/inverter.h"
#include "drivers/nvic.h"
#include "drivers/rcc.h"
#include "drivers/serial.h"
@ -114,137 +116,140 @@ void uartReconfigure(uartPort_t *uartPort)
USART_HalfDuplexCmd(uartPort->USARTx, DISABLE);
USART_Cmd(uartPort->USARTx, ENABLE);
}
serialPort_t *uartOpen(UARTDevice_e device, serialReceiveCallbackPtr rxCallback, void *rxCallbackData, uint32_t baudRate, portMode_e mode, portOptions_e options)
{
uartPort_t *s = serialUART(device, baudRate, mode, options);
if (!s)
return (serialPort_t *)s;
s->txDMAEmpty = true;
// common serial initialisation code should move to serialPort::init()
s->port.rxBufferHead = s->port.rxBufferTail = 0;
s->port.txBufferHead = s->port.txBufferTail = 0;
// callback works for IRQ-based RX ONLY
s->port.rxCallback = rxCallback;
s->port.rxCallbackData = rxCallbackData;
s->port.mode = mode;
s->port.baudRate = baudRate;
s->port.options = options;
uartReconfigure(s);
// Receive DMA or IRQ
DMA_InitTypeDef DMA_InitStructure;
if (mode & MODE_RX) {
#ifdef STM32F4
if (s->rxDMAResource) {
if (uartPort->port.mode & MODE_RX) {
if (uartPort->rxDMAResource) {
DMA_StructInit(&DMA_InitStructure);
DMA_InitStructure.DMA_PeripheralBaseAddr = s->rxDMAPeripheralBaseAddr;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_PeripheralBaseAddr = uartPort->rxDMAPeripheralBaseAddr;
DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_BufferSize = uartPort->port.rxBufferSize;
#ifdef STM32F4
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable ;
DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_1QuarterFull ;
DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single ;
DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
#else
if (s->rxDMAResource) {
DMA_StructInit(&DMA_InitStructure);
DMA_InitStructure.DMA_PeripheralBaseAddr = s->rxDMAPeripheralBaseAddr;
DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
#endif
DMA_InitStructure.DMA_BufferSize = s->port.rxBufferSize;
#ifdef STM32F4
DMA_InitStructure.DMA_Channel = s->rxDMAChannel;
DMA_InitStructure.DMA_Channel = uartPort->rxDMAChannel;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)s->port.rxBuffer;
xDMA_DeInit(s->rxDMAResource);
xDMA_Init(s->rxDMAResource, &DMA_InitStructure);
xDMA_Cmd(s->rxDMAResource, ENABLE);
USART_DMACmd(s->USARTx, USART_DMAReq_Rx, ENABLE);
s->rxDMAPos = xDMA_GetCurrDataCounter(s->rxDMAResource);
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)uartPort->port.rxBuffer;
#else
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)s->port.rxBuffer;
xDMA_DeInit(s->rxDMAResource);
xDMA_Init(s->rxDMAResource, &DMA_InitStructure);
xDMA_Cmd(s->rxDMAResource, ENABLE);
USART_DMACmd(s->USARTx, USART_DMAReq_Rx, ENABLE);
s->rxDMAPos = xDMA_GetCurrDataCounter(s->rxDMAResource);
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)uartPort->port.rxBuffer;
#endif
xDMA_DeInit(uartPort->rxDMAResource);
xDMA_Init(uartPort->rxDMAResource, &DMA_InitStructure);
xDMA_Cmd(uartPort->rxDMAResource, ENABLE);
USART_DMACmd(uartPort->USARTx, USART_DMAReq_Rx, ENABLE);
uartPort->rxDMAPos = xDMA_GetCurrDataCounter(uartPort->rxDMAResource);
} else {
USART_ClearITPendingBit(s->USARTx, USART_IT_RXNE);
USART_ITConfig(s->USARTx, USART_IT_RXNE, ENABLE);
USART_ITConfig(s->USARTx, USART_IT_IDLE, ENABLE);
USART_ClearITPendingBit(uartPort->USARTx, USART_IT_RXNE);
USART_ITConfig(uartPort->USARTx, USART_IT_RXNE, ENABLE);
USART_ITConfig(uartPort->USARTx, USART_IT_IDLE, ENABLE);
}
}
// Transmit DMA or IRQ
if (mode & MODE_TX) {
#ifdef STM32F4
if (s->txDMAResource) {
if (uartPort->port.mode & MODE_TX) {
if (uartPort->txDMAResource) {
DMA_StructInit(&DMA_InitStructure);
DMA_InitStructure.DMA_PeripheralBaseAddr = s->txDMAPeripheralBaseAddr;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
DMA_InitStructure.DMA_PeripheralBaseAddr = uartPort->txDMAPeripheralBaseAddr;
DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_BufferSize = uartPort->port.txBufferSize;
#ifdef STM32F4
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable ;
DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_1QuarterFull ;
DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single ;
DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_InitStructure.DMA_Channel = uartPort->txDMAChannel;
DMA_InitStructure.DMA_DIR = DMA_DIR_MemoryToPeripheral;
#else
if (s->txDMAResource) {
DMA_StructInit(&DMA_InitStructure);
DMA_InitStructure.DMA_PeripheralBaseAddr = s->txDMAPeripheralBaseAddr;
DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
#endif
DMA_InitStructure.DMA_BufferSize = s->port.txBufferSize;
xDMA_DeInit(uartPort->txDMAResource);
xDMA_Init(uartPort->txDMAResource, &DMA_InitStructure);
#ifdef STM32F4
DMA_InitStructure.DMA_Channel = s->txDMAChannel;
DMA_InitStructure.DMA_DIR = DMA_DIR_MemoryToPeripheral;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
xDMA_DeInit(s->txDMAResource);
xDMA_Init(s->txDMAResource, &DMA_InitStructure);
xDMA_ITConfig(s->txDMAResource, DMA_IT_TC | DMA_IT_FE | DMA_IT_TE | DMA_IT_DME, ENABLE);
xDMA_SetCurrDataCounter(s->txDMAResource, 0);
xDMA_ITConfig(uartPort->txDMAResource, DMA_IT_TC | DMA_IT_FE | DMA_IT_TE | DMA_IT_DME, ENABLE);
#else
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
xDMA_DeInit(s->txDMAResource);
xDMA_Init(s->txDMAResource, &DMA_InitStructure);
xDMA_ITConfig(s->txDMAResource, DMA_IT_TC, ENABLE);
xDMA_SetCurrDataCounter(s->txDMAResource, 0);
xDMA_ITConfig(uartPort->txDMAResource, DMA_IT_TC, ENABLE);
#endif
USART_DMACmd(s->USARTx, USART_DMAReq_Tx, ENABLE);
xDMA_SetCurrDataCounter(uartPort->txDMAResource, 0);
USART_DMACmd(uartPort->USARTx, USART_DMAReq_Tx, ENABLE);
} else {
USART_ITConfig(s->USARTx, USART_IT_TXE, ENABLE);
USART_ITConfig(uartPort->USARTx, USART_IT_TXE, ENABLE);
}
}
USART_Cmd(s->USARTx, ENABLE);
USART_Cmd(uartPort->USARTx, ENABLE);
}
return (serialPort_t *)s;
#ifdef USE_DMA
void uartTryStartTxDMA(uartPort_t *s)
{
// uartTryStartTxDMA must be protected, since it is called from
// uartWrite and handleUsartTxDma (an ISR).
ATOMIC_BLOCK(NVIC_PRIO_SERIALUART_TXDMA) {
if (IS_DMA_ENABLED(s->txDMAResource)) {
// DMA is already in progress
return;
}
// For F4 (and F1), there are cases that NDTR (CNDTR for F1) is non-zero upon TC interrupt.
// We couldn't find out the root cause, so mask the case here.
// F3 is not confirmed to be vulnerable, but not excluded as a safety.
if (xDMA_GetCurrDataCounter(s->txDMAResource)) {
// Possible premature TC case.
goto reenable;
}
if (s->port.txBufferHead == s->port.txBufferTail) {
// No more data to transmit.
s->txDMAEmpty = true;
return;
}
// Start a new transaction.
#ifdef STM32F4
xDMA_MemoryTargetConfig(s->txDMAResource, (uint32_t)&s->port.txBuffer[s->port.txBufferTail], DMA_Memory_0);
#else
DMAx_SetMemoryAddress(s->txDMAResource, (uint32_t)&s->port.txBuffer[s->port.txBufferTail]);
#endif
if (s->port.txBufferHead > s->port.txBufferTail) {
xDMA_SetCurrDataCounter(s->txDMAResource, s->port.txBufferHead - s->port.txBufferTail);
s->port.txBufferTail = s->port.txBufferHead;
} else {
xDMA_SetCurrDataCounter(s->txDMAResource, s->port.txBufferSize - s->port.txBufferTail);
s->port.txBufferTail = 0;
}
s->txDMAEmpty = false;
reenable:
xDMA_Cmd(s->txDMAResource, ENABLE);
}
}
#endif
#endif // USE_UART