/* * This file is part of Cleanflight. * * Cleanflight is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Cleanflight is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Cleanflight. If not, see . */ #include #include #include #include "platform.h" #include "build_config.h" #include "common/axis.h" #include "drivers/gpio.h" #include "drivers/system.h" #include "drivers/exti.h" #include "drivers/sensor.h" #include "drivers/accgyro.h" #include "drivers/accgyro_adxl345.h" #include "drivers/accgyro_bma280.h" #include "drivers/accgyro_l3g4200d.h" #include "drivers/accgyro_mma845x.h" #include "drivers/accgyro_mpu.h" #include "drivers/accgyro_mpu3050.h" #include "drivers/accgyro_mpu6050.h" #include "drivers/accgyro_mpu6500.h" #include "drivers/accgyro_l3gd20.h" #include "drivers/accgyro_lsm303dlhc.h" #include "drivers/bus_spi.h" #include "drivers/accgyro_spi_mpu6000.h" #include "drivers/accgyro_spi_mpu6500.h" #include "drivers/accgyro_spi_mpu9250.h" #include "drivers/gyro_sync.h" #include "drivers/barometer.h" #include "drivers/barometer_bmp085.h" #include "drivers/barometer_bmp280.h" #include "drivers/barometer_ms5611.h" #include "drivers/compass.h" #include "drivers/compass_hmc5883l.h" #include "drivers/compass_ak8975.h" #include "drivers/compass_ak8963.h" #include "drivers/sonar_hcsr04.h" #include "config/runtime_config.h" #include "sensors/sensors.h" #include "sensors/acceleration.h" #include "sensors/barometer.h" #include "sensors/gyro.h" #include "sensors/compass.h" #include "sensors/sonar.h" #include "sensors/initialisation.h" #ifdef USE_HARDWARE_REVISION_DETECTION #include "hardware_revision.h" #endif extern float magneticDeclination; extern gyro_t gyro; extern baro_t baro; extern acc_t acc; uint8_t detectedSensors[MAX_SENSORS_TO_DETECT] = { GYRO_NONE, ACC_NONE, BARO_NONE, MAG_NONE }; const extiConfig_t *selectMPUIntExtiConfig(void) { #if defined(MPU_INT_EXTI) static const extiConfig_t mpuIntExtiConfig = { .tag = IO_TAG(MPU_INT_EXTI) }; return &mpuIntExtiConfig; #elif defined(USE_HARDWARE_REVISION_DETECTION) return selectMPUIntExtiConfigByHardwareRevision(); #else return NULL; #endif } #ifdef USE_FAKE_GYRO int16_t fake_gyro_values[XYZ_AXIS_COUNT] = { 0,0,0 }; static void fakeGyroInit(uint8_t lpf) { UNUSED(lpf); } static bool fakeGyroRead(int16_t *gyroADC) { for (int i = 0; i < XYZ_AXIS_COUNT; ++i) { gyroADC[i] = fake_gyro_values[i]; } return true; } static bool fakeGyroReadTemp(int16_t *tempData) { UNUSED(tempData); return true; } bool fakeGyroDetect(gyro_t *gyro) { gyro->init = fakeGyroInit; gyro->read = fakeGyroRead; gyro->temperature = fakeGyroReadTemp; gyro->scale = 1.0f / 16.4f; return true; } #endif #ifdef USE_FAKE_ACC int16_t fake_acc_values[XYZ_AXIS_COUNT] = {0,0,0}; static void fakeAccInit(acc_t *acc) {UNUSED(acc);} static bool fakeAccRead(int16_t *accData) { for(int i=0;iinit = fakeAccInit; acc->read = fakeAccRead; acc->revisionCode = 0; return true; } #endif bool detectGyro(void) { gyroSensor_e gyroHardware = GYRO_DEFAULT; gyroAlign = ALIGN_DEFAULT; switch(gyroHardware) { case GYRO_DEFAULT: ; // fallthrough case GYRO_MPU6050: #ifdef USE_GYRO_MPU6050 if (mpu6050GyroDetect(&gyro)) { #ifdef GYRO_MPU6050_ALIGN gyroHardware = GYRO_MPU6050; gyroAlign = GYRO_MPU6050_ALIGN; #endif break; } #endif ; // fallthrough case GYRO_L3G4200D: #ifdef USE_GYRO_L3G4200D if (l3g4200dDetect(&gyro)) { #ifdef GYRO_L3G4200D_ALIGN gyroHardware = GYRO_L3G4200D; gyroAlign = GYRO_L3G4200D_ALIGN; #endif break; } #endif ; // fallthrough case GYRO_MPU3050: #ifdef USE_GYRO_MPU3050 if (mpu3050Detect(&gyro)) { #ifdef GYRO_MPU3050_ALIGN gyroHardware = GYRO_MPU3050; gyroAlign = GYRO_MPU3050_ALIGN; #endif break; } #endif ; // fallthrough case GYRO_L3GD20: #ifdef USE_GYRO_L3GD20 if (l3gd20Detect(&gyro)) { #ifdef GYRO_L3GD20_ALIGN gyroHardware = GYRO_L3GD20; gyroAlign = GYRO_L3GD20_ALIGN; #endif break; } #endif ; // fallthrough case GYRO_MPU6000: #ifdef USE_GYRO_SPI_MPU6000 if (mpu6000SpiGyroDetect(&gyro)) { #ifdef GYRO_MPU6000_ALIGN gyroHardware = GYRO_MPU6000; gyroAlign = GYRO_MPU6000_ALIGN; #endif break; } #endif ; // fallthrough case GYRO_MPU6500: #ifdef USE_GYRO_MPU6500 #ifdef USE_GYRO_SPI_MPU6500 if (mpu6500GyroDetect(&gyro) || mpu6500SpiGyroDetect(&gyro)) #else if (mpu6500GyroDetect(&gyro)) #endif { gyroHardware = GYRO_MPU6500; #ifdef GYRO_MPU6500_ALIGN gyroAlign = GYRO_MPU6500_ALIGN; #endif break; } #endif ; // fallthrough case GYRO_MPU9250: #ifdef USE_GYRO_SPI_MPU9250 if (mpu9250SpiGyroDetect(&gyro)) { gyroHardware = GYRO_MPU9250; #ifdef GYRO_MPU9250_ALIGN gyroAlign = GYRO_MPU9250_ALIGN; #endif break; } #endif ; // fallthrough case GYRO_FAKE: #ifdef USE_FAKE_GYRO if (fakeGyroDetect(&gyro)) { gyroHardware = GYRO_FAKE; break; } #endif ; // fallthrough case GYRO_NONE: gyroHardware = GYRO_NONE; } if (gyroHardware == GYRO_NONE) { return false; } detectedSensors[SENSOR_INDEX_GYRO] = gyroHardware; sensorsSet(SENSOR_GYRO); return true; } static void detectAcc(accelerationSensor_e accHardwareToUse) { accelerationSensor_e accHardware; #ifdef USE_ACC_ADXL345 drv_adxl345_config_t acc_params; #endif retry: accAlign = ALIGN_DEFAULT; switch (accHardwareToUse) { case ACC_DEFAULT: ; // fallthrough case ACC_ADXL345: // ADXL345 #ifdef USE_ACC_ADXL345 acc_params.useFifo = false; acc_params.dataRate = 800; // unused currently #ifdef NAZE if (hardwareRevision < NAZE32_REV5 && adxl345Detect(&acc_params, &acc)) { #else if (adxl345Detect(&acc_params, &acc)) { #endif #ifdef ACC_ADXL345_ALIGN accAlign = ACC_ADXL345_ALIGN; #endif accHardware = ACC_ADXL345; break; } #endif ; // fallthrough case ACC_LSM303DLHC: #ifdef USE_ACC_LSM303DLHC if (lsm303dlhcAccDetect(&acc)) { #ifdef ACC_LSM303DLHC_ALIGN accAlign = ACC_LSM303DLHC_ALIGN; #endif accHardware = ACC_LSM303DLHC; break; } #endif ; // fallthrough case ACC_MPU6050: // MPU6050 #ifdef USE_ACC_MPU6050 if (mpu6050AccDetect(&acc)) { #ifdef ACC_MPU6050_ALIGN accAlign = ACC_MPU6050_ALIGN; #endif accHardware = ACC_MPU6050; break; } #endif ; // fallthrough case ACC_MMA8452: // MMA8452 #ifdef USE_ACC_MMA8452 #ifdef NAZE // Not supported with this frequency if (hardwareRevision < NAZE32_REV5 && mma8452Detect(&acc)) { #else if (mma8452Detect(&acc)) { #endif #ifdef ACC_MMA8452_ALIGN accAlign = ACC_MMA8452_ALIGN; #endif accHardware = ACC_MMA8452; break; } #endif ; // fallthrough case ACC_BMA280: // BMA280 #ifdef USE_ACC_BMA280 if (bma280Detect(&acc)) { #ifdef ACC_BMA280_ALIGN accAlign = ACC_BMA280_ALIGN; #endif accHardware = ACC_BMA280; break; } #endif ; // fallthrough case ACC_MPU6000: #ifdef USE_ACC_SPI_MPU6000 if (mpu6000SpiAccDetect(&acc)) { #ifdef ACC_MPU6000_ALIGN accAlign = ACC_MPU6000_ALIGN; #endif accHardware = ACC_MPU6000; break; } #endif ; // fallthrough case ACC_MPU6500: #ifdef USE_ACC_MPU6500 #ifdef USE_ACC_SPI_MPU6500 if (mpu6500AccDetect(&acc) || mpu6500SpiAccDetect(&acc)) #else if (mpu6500AccDetect(&acc)) #endif { #ifdef ACC_MPU6500_ALIGN accAlign = ACC_MPU6500_ALIGN; #endif accHardware = ACC_MPU6500; break; } #endif ; // fallthrough case ACC_FAKE: #ifdef USE_FAKE_ACC if (fakeAccDetect(&acc)) { accHardware = ACC_FAKE; break; } #endif ; // fallthrough case ACC_NONE: // disable ACC accHardware = ACC_NONE; break; } // Found anything? Check if error or ACC is really missing. if (accHardware == ACC_NONE && accHardwareToUse != ACC_DEFAULT && accHardwareToUse != ACC_NONE) { // Nothing was found and we have a forced sensor that isn't present. accHardwareToUse = ACC_DEFAULT; goto retry; } if (accHardware == ACC_NONE) { return; } detectedSensors[SENSOR_INDEX_ACC] = accHardware; sensorsSet(SENSOR_ACC); } static void detectBaro(baroSensor_e baroHardwareToUse) { #ifndef BARO UNUSED(baroHardwareToUse); #else // Detect what pressure sensors are available. baro->update() is set to sensor-specific update function baroSensor_e baroHardware = baroHardwareToUse; #ifdef USE_BARO_BMP085 const bmp085Config_t *bmp085Config = NULL; #if defined(BARO_XCLR_GPIO) && defined(BARO_EOC_GPIO) static const bmp085Config_t defaultBMP085Config = { .xclrIO = IO_TAG(BARO_XCLR_PIN), .eocIO = IO_TAG(BARO_EOC_PIN), }; bmp085Config = &defaultBMP085Config; #endif #ifdef NAZE if (hardwareRevision == NAZE32) { bmp085Disable(bmp085Config); } #endif #endif switch (baroHardware) { case BARO_DEFAULT: ; // fallthough case BARO_MS5611: #ifdef USE_BARO_MS5611 if (ms5611Detect(&baro)) { baroHardware = BARO_MS5611; break; } #endif ; // fallthough case BARO_BMP085: #ifdef USE_BARO_BMP085 if (bmp085Detect(bmp085Config, &baro)) { baroHardware = BARO_BMP085; break; } #endif ; // fallthough case BARO_BMP280: #ifdef USE_BARO_BMP280 if (bmp280Detect(&baro)) { baroHardware = BARO_BMP280; break; } #endif case BARO_NONE: baroHardware = BARO_NONE; break; } if (baroHardware == BARO_NONE) { return; } detectedSensors[SENSOR_INDEX_BARO] = baroHardware; sensorsSet(SENSOR_BARO); #endif } static void detectMag(magSensor_e magHardwareToUse) { magSensor_e magHardware; #ifdef USE_MAG_HMC5883 const hmc5883Config_t *hmc5883Config = 0; #ifdef NAZE static const hmc5883Config_t nazeHmc5883Config_v1_v4 = { .gpioAPB2Peripherals = RCC_APB2Periph_GPIOB, .gpioPin = Pin_12, .gpioPort = GPIOB, /* Disabled for v4 needs more work. .exti_port_source = GPIO_PortSourceGPIOB, .exti_pin_source = GPIO_PinSource12, .exti_line = EXTI_Line12, .exti_irqn = EXTI15_10_IRQn */ }; static const hmc5883Config_t nazeHmc5883Config_v5 = { .gpioAPB2Peripherals = RCC_APB2Periph_GPIOC, .gpioPin = Pin_14, .gpioPort = GPIOC, .exti_port_source = GPIO_PortSourceGPIOC, .exti_line = EXTI_Line14, .exti_pin_source = GPIO_PinSource14, .exti_irqn = EXTI15_10_IRQn }; if (hardwareRevision < NAZE32_REV5) { hmc5883Config = &nazeHmc5883Config_v1_v4; } else { hmc5883Config = &nazeHmc5883Config_v5; } #endif #ifdef SPRACINGF3 static const hmc5883Config_t spRacingF3Hmc5883Config = { .gpioAHBPeripherals = RCC_AHBPeriph_GPIOC, .gpioPin = Pin_14, .gpioPort = GPIOC, .exti_port_source = EXTI_PortSourceGPIOC, .exti_pin_source = EXTI_PinSource14, .exti_line = EXTI_Line14, .exti_irqn = EXTI15_10_IRQn }; hmc5883Config = &spRacingF3Hmc5883Config; #endif #endif retry: magAlign = ALIGN_DEFAULT; switch(magHardwareToUse) { case MAG_DEFAULT: ; // fallthrough case MAG_HMC5883: #ifdef USE_MAG_HMC5883 if (hmc5883lDetect(&mag, hmc5883Config)) { #ifdef MAG_HMC5883_ALIGN magAlign = MAG_HMC5883_ALIGN; #endif magHardware = MAG_HMC5883; break; } #endif ; // fallthrough case MAG_AK8975: #ifdef USE_MAG_AK8975 if (ak8975detect(&mag)) { #ifdef MAG_AK8975_ALIGN magAlign = MAG_AK8975_ALIGN; #endif magHardware = MAG_AK8975; break; } #endif ; // fallthrough case MAG_AK8963: #ifdef USE_MAG_AK8963 if (ak8963Detect(&mag)) { #ifdef MAG_AK8963_ALIGN magAlign = MAG_AK8963_ALIGN; #endif magHardware = MAG_AK8963; break; } #endif ; // fallthrough case MAG_NONE: magHardware = MAG_NONE; break; } if (magHardware == MAG_NONE && magHardwareToUse != MAG_DEFAULT && magHardwareToUse != MAG_NONE) { // Nothing was found and we have a forced sensor that isn't present. magHardwareToUse = MAG_DEFAULT; goto retry; } if (magHardware == MAG_NONE) { return; } detectedSensors[SENSOR_INDEX_MAG] = magHardware; sensorsSet(SENSOR_MAG); } void reconfigureAlignment(sensorAlignmentConfig_t *sensorAlignmentConfig) { if (sensorAlignmentConfig->gyro_align != ALIGN_DEFAULT) { gyroAlign = sensorAlignmentConfig->gyro_align; } if (sensorAlignmentConfig->acc_align != ALIGN_DEFAULT) { accAlign = sensorAlignmentConfig->acc_align; } if (sensorAlignmentConfig->mag_align != ALIGN_DEFAULT) { magAlign = sensorAlignmentConfig->mag_align; } } bool sensorsAutodetect(sensorAlignmentConfig_t *sensorAlignmentConfig, uint8_t accHardwareToUse, uint8_t magHardwareToUse, uint8_t baroHardwareToUse, int16_t magDeclinationFromConfig, uint8_t gyroLpf, uint8_t gyroSyncDenominator) { int16_t deg, min; memset(&acc, 0, sizeof(acc)); memset(&gyro, 0, sizeof(gyro)); #if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) || defined(USE_ACC_MPU6050) || defined(USE_GYRO_SPI_MPU9250) const extiConfig_t *extiConfig = selectMPUIntExtiConfig(); mpuDetectionResult_t *mpuDetectionResult = detectMpu(extiConfig); UNUSED(mpuDetectionResult); #endif if (!detectGyro()) { return false; } detectAcc(accHardwareToUse); detectBaro(baroHardwareToUse); // Now time to init things, acc first if (sensors(SENSOR_ACC)) { acc.acc_1G = 256; // set default acc.init(&acc); } // this is safe because either mpu6050 or mpu3050 or lg3d20 sets it, and in case of fail, we never get here. gyroUpdateSampleRate(gyroLpf, gyroSyncDenominator); // Set gyro refresh rate before initialisation gyro.init(gyroLpf); detectMag(magHardwareToUse); reconfigureAlignment(sensorAlignmentConfig); // FIXME extract to a method to reduce dependencies, maybe move to sensors_compass.c if (sensors(SENSOR_MAG)) { // calculate magnetic declination deg = magDeclinationFromConfig / 100; min = magDeclinationFromConfig % 100; magneticDeclination = (deg + ((float)min * (1.0f / 60.0f))) * 10; // heading is in 0.1deg units } else { magneticDeclination = 0.0f; // TODO investigate if this is actually needed if there is no mag sensor or if the value stored in the config should be used. } return true; }