/* * This file is part of Cleanflight. * * Cleanflight is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Cleanflight is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Cleanflight. If not, see . */ #include #include #include #include "platform.h" #ifdef USE_ADC #include "build/build_config.h" #include "drivers/accgyro/accgyro.h" #include "drivers/system.h" #include "drivers/sensor.h" #include "adc.h" #include "adc_impl.h" #include "drivers/io.h" #include "rcc.h" #include "dma.h" #ifndef ADC_INSTANCE #define ADC_INSTANCE ADC1 #endif const adcDevice_t adcHardware[] = { { .ADCx = ADC1, .rccADC = RCC_APB2(ADC1), .DMAy_Channelx = DMA1_Channel1 } }; ADCDevice adcDeviceByInstance(ADC_TypeDef *instance) { if (instance == ADC1) return ADCDEV_1; /* TODO -- ADC2 available on large 10x devices. if (instance == ADC2) return ADCDEV_2; */ return ADCINVALID; } const adcTagMap_t adcTagMap[] = { { DEFIO_TAG_E__PA0, ADC_Channel_0 }, // ADC12 { DEFIO_TAG_E__PA1, ADC_Channel_1 }, // ADC12 { DEFIO_TAG_E__PA2, ADC_Channel_2 }, // ADC12 { DEFIO_TAG_E__PA3, ADC_Channel_3 }, // ADC12 { DEFIO_TAG_E__PA4, ADC_Channel_4 }, // ADC12 { DEFIO_TAG_E__PA5, ADC_Channel_5 }, // ADC12 { DEFIO_TAG_E__PA6, ADC_Channel_6 }, // ADC12 { DEFIO_TAG_E__PA7, ADC_Channel_7 }, // ADC12 { DEFIO_TAG_E__PB0, ADC_Channel_8 }, // ADC12 { DEFIO_TAG_E__PB1, ADC_Channel_9 }, // ADC12 }; // Driver for STM32F103CB onboard ADC // // Naze32 // Battery Voltage (VBAT) is connected to PA4 (ADC1_IN4) with 10k:1k divider // RSSI ADC uses CH2 (PA1, ADC1_IN1) // Current ADC uses CH8 (PB1, ADC1_IN9) // // NAZE rev.5 hardware has PA5 (ADC1_IN5) on breakout pad on bottom of board // void adcInit(const adcConfig_t *config) { uint8_t configuredAdcChannels = 0; memset(&adcOperatingConfig, 0, sizeof(adcOperatingConfig)); if (config->vbat.enabled) { adcOperatingConfig[ADC_BATTERY].tag = config->vbat.ioTag; } if (config->rssi.enabled) { adcOperatingConfig[ADC_RSSI].tag = config->rssi.ioTag; //RSSI_ADC_CHANNEL; } if (config->external1.enabled) { adcOperatingConfig[ADC_EXTERNAL1].tag = config->external1.ioTag; //EXTERNAL1_ADC_CHANNEL; } if (config->current.enabled) { adcOperatingConfig[ADC_CURRENT].tag = config->current.ioTag; //CURRENT_METER_ADC_CHANNEL; } ADCDevice device = adcDeviceByInstance(ADC_INSTANCE); if (device == ADCINVALID) return; const adcDevice_t adc = adcHardware[device]; bool adcActive = false; for (int i = 0; i < ADC_CHANNEL_COUNT; i++) { if (!adcOperatingConfig[i].tag) continue; adcActive = true; IOInit(IOGetByTag(adcOperatingConfig[i].tag), OWNER_ADC_BATT + i, 0); IOConfigGPIO(IOGetByTag(adcOperatingConfig[i].tag), IO_CONFIG(GPIO_Mode_AIN, 0)); adcOperatingConfig[i].adcChannel = adcChannelByTag(adcOperatingConfig[i].tag); adcOperatingConfig[i].dmaIndex = configuredAdcChannels++; adcOperatingConfig[i].sampleTime = ADC_SampleTime_239Cycles5; adcOperatingConfig[i].enabled = true; } if (!adcActive) { return; } RCC_ADCCLKConfig(RCC_PCLK2_Div8); // 9MHz from 72MHz APB2 clock(HSE), 8MHz from 64MHz (HSI) RCC_ClockCmd(adc.rccADC, ENABLE); dmaInit(dmaGetIdentifier(adc.DMAy_Channelx), OWNER_ADC, 0); DMA_DeInit(adc.DMAy_Channelx); DMA_InitTypeDef DMA_InitStructure; DMA_StructInit(&DMA_InitStructure); DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&adc.ADCx->DR; DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)adcValues; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; DMA_InitStructure.DMA_BufferSize = configuredAdcChannels; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = configuredAdcChannels > 1 ? DMA_MemoryInc_Enable : DMA_MemoryInc_Disable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_Init(adc.DMAy_Channelx, &DMA_InitStructure); DMA_Cmd(adc.DMAy_Channelx, ENABLE); ADC_InitTypeDef ADC_InitStructure; ADC_StructInit(&ADC_InitStructure); ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; ADC_InitStructure.ADC_ScanConvMode = configuredAdcChannels > 1 ? ENABLE : DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = configuredAdcChannels; ADC_Init(adc.ADCx, &ADC_InitStructure); uint8_t rank = 1; for (int i = 0; i < ADC_CHANNEL_COUNT; i++) { if (!adcOperatingConfig[i].enabled) { continue; } ADC_RegularChannelConfig(adc.ADCx, adcOperatingConfig[i].adcChannel, rank++, adcOperatingConfig[i].sampleTime); } ADC_DMACmd(adc.ADCx, ENABLE); ADC_Cmd(adc.ADCx, ENABLE); ADC_ResetCalibration(adc.ADCx); while (ADC_GetResetCalibrationStatus(adc.ADCx)); ADC_StartCalibration(adc.ADCx); while (ADC_GetCalibrationStatus(adc.ADCx)); ADC_SoftwareStartConvCmd(adc.ADCx, ENABLE); } #endif