/* * This file is part of Cleanflight. * * Cleanflight is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Cleanflight is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Cleanflight. If not, see . */ #include #include #include "axis.h" #include "maths.h" #if defined(FAST_MATH) || defined(VERY_FAST_MATH) #if defined(VERY_FAST_MATH) // http://lolengine.net/blog/2011/12/21/better-function-approximations // Chebyshev http://stackoverflow.com/questions/345085/how-do-trigonometric-functions-work/345117#345117 // Thanks for ledvinap for making such accuracy possible! See: https://github.com/cleanflight/cleanflight/issues/940#issuecomment-110323384 // https://github.com/Crashpilot1000/HarakiriWebstore1/blob/master/src/mw.c#L1235 // sin_approx maximum absolute error = 2.305023e-06 // cos_approx maximum absolute error = 2.857298e-06 #define sinPolyCoef3 -1.666568107e-1f #define sinPolyCoef5 8.312366210e-3f #define sinPolyCoef7 -1.849218155e-4f #define sinPolyCoef9 0 #else #define sinPolyCoef3 -1.666665710e-1f // Double: -1.666665709650470145824129400050267289858e-1 #define sinPolyCoef5 8.333017292e-3f // Double: 8.333017291562218127986291618761571373087e-3 #define sinPolyCoef7 -1.980661520e-4f // Double: -1.980661520135080504411629636078917643846e-4 #define sinPolyCoef9 2.600054768e-6f // Double: 2.600054767890361277123254766503271638682e-6 #endif float sin_approx(float x) { int32_t xint = x; if (xint < -32 || xint > 32) return 0.0f; // Stop here on error input (5 * 360 Deg) while (x > M_PIf) x -= (2.0f * M_PIf); // always wrap input angle to -PI..PI while (x < -M_PIf) x += (2.0f * M_PIf); if (x > (0.5f * M_PIf)) x = (0.5f * M_PIf) - (x - (0.5f * M_PIf)); // We just pick -90..+90 Degree else if (x < -(0.5f * M_PIf)) x = -(0.5f * M_PIf) - ((0.5f * M_PIf) + x); float x2 = x * x; return x + x * x2 * (sinPolyCoef3 + x2 * (sinPolyCoef5 + x2 * (sinPolyCoef7 + x2 * sinPolyCoef9))); } float cos_approx(float x) { return sin_approx(x + (0.5f * M_PIf)); } // Initial implementation by Crashpilot1000 (https://github.com/Crashpilot1000/HarakiriWebstore1/blob/396715f73c6fcf859e0db0f34e12fe44bace6483/src/mw.c#L1292) // Polynomial coefficients by Andor (http://www.dsprelated.com/showthread/comp.dsp/21872-1.php) optimized by Ledvinap to save one multiplication // Max absolute error 0,000027 degree // atan2_approx maximum absolute error = 7.152557e-07 rads (4.098114e-05 degree) float atan2_approx(float y, float x) { #define atanPolyCoef1 3.14551665884836e-07f #define atanPolyCoef2 0.99997356613987f #define atanPolyCoef3 0.14744007058297684f #define atanPolyCoef4 0.3099814292351353f #define atanPolyCoef5 0.05030176425872175f #define atanPolyCoef6 0.1471039133652469f #define atanPolyCoef7 0.6444640676891548f float res, absX, absY; absX = fabsf(x); absY = fabsf(y); res = MAX(absX, absY); if (res) res = MIN(absX, absY) / res; else res = 0.0f; res = -((((atanPolyCoef5 * res - atanPolyCoef4) * res - atanPolyCoef3) * res - atanPolyCoef2) * res - atanPolyCoef1) / ((atanPolyCoef7 * res + atanPolyCoef6) * res + 1.0f); if (absY > absX) res = (M_PIf / 2.0f) - res; if (x < 0) res = M_PIf - res; if (y < 0) res = -res; return res; } // http://http.developer.nvidia.com/Cg/acos.html // Handbook of Mathematical Functions // M. Abramowitz and I.A. Stegun, Ed. // acos_approx maximum absolute error = 6.760856e-05 rads (3.873685e-03 degree) float acos_approx(float x) { float xa = fabsf(x); float result = sqrtf(1.0f - xa) * (1.5707288f + xa * (-0.2121144f + xa * (0.0742610f + (-0.0187293f * xa)))); if (x < 0.0f) return M_PIf - result; else return result; } #endif int32_t applyDeadband(int32_t value, int32_t deadband) { if (ABS(value) < deadband) { value = 0; } else if (value > 0) { value -= deadband; } else if (value < 0) { value += deadband; } return value; } void devClear(stdev_t *dev) { dev->m_n = 0; } void devPush(stdev_t *dev, float x) { dev->m_n++; if (dev->m_n == 1) { dev->m_oldM = dev->m_newM = x; dev->m_oldS = 0.0f; } else { dev->m_newM = dev->m_oldM + (x - dev->m_oldM) / dev->m_n; dev->m_newS = dev->m_oldS + (x - dev->m_oldM) * (x - dev->m_newM); dev->m_oldM = dev->m_newM; dev->m_oldS = dev->m_newS; } } float devVariance(stdev_t *dev) { return ((dev->m_n > 1) ? dev->m_newS / (dev->m_n - 1) : 0.0f); } float devStandardDeviation(stdev_t *dev) { return sqrtf(devVariance(dev)); } float degreesToRadians(int16_t degrees) { return degrees * RAD; } int scaleRange(int x, int srcMin, int srcMax, int destMin, int destMax) { long int a = ((long int) destMax - (long int) destMin) * ((long int) x - (long int) srcMin); long int b = (long int) srcMax - (long int) srcMin; return ((a / b) - (destMax - destMin)) + destMax; } // Normalize a vector void normalizeV(struct fp_vector *src, struct fp_vector *dest) { float length; length = sqrtf(src->X * src->X + src->Y * src->Y + src->Z * src->Z); if (length != 0) { dest->X = src->X / length; dest->Y = src->Y / length; dest->Z = src->Z / length; } } void buildRotationMatrix(fp_angles_t *delta, float matrix[3][3]) { float cosx, sinx, cosy, siny, cosz, sinz; float coszcosx, sinzcosx, coszsinx, sinzsinx; cosx = cos_approx(delta->angles.roll); sinx = sin_approx(delta->angles.roll); cosy = cos_approx(delta->angles.pitch); siny = sin_approx(delta->angles.pitch); cosz = cos_approx(delta->angles.yaw); sinz = sin_approx(delta->angles.yaw); coszcosx = cosz * cosx; sinzcosx = sinz * cosx; coszsinx = sinx * cosz; sinzsinx = sinx * sinz; matrix[0][X] = cosz * cosy; matrix[0][Y] = -cosy * sinz; matrix[0][Z] = siny; matrix[1][X] = sinzcosx + (coszsinx * siny); matrix[1][Y] = coszcosx - (sinzsinx * siny); matrix[1][Z] = -sinx * cosy; matrix[2][X] = (sinzsinx) - (coszcosx * siny); matrix[2][Y] = (coszsinx) + (sinzcosx * siny); matrix[2][Z] = cosy * cosx; } // Rotate a vector *v by the euler angles defined by the 3-vector *delta. void rotateV(struct fp_vector *v, fp_angles_t *delta) { struct fp_vector v_tmp = *v; float matrix[3][3]; buildRotationMatrix(delta, matrix); v->X = v_tmp.X * matrix[0][X] + v_tmp.Y * matrix[1][X] + v_tmp.Z * matrix[2][X]; v->Y = v_tmp.X * matrix[0][Y] + v_tmp.Y * matrix[1][Y] + v_tmp.Z * matrix[2][Y]; v->Z = v_tmp.X * matrix[0][Z] + v_tmp.Y * matrix[1][Z] + v_tmp.Z * matrix[2][Z]; } // Quick median filter implementation // (c) N. Devillard - 1998 // http://ndevilla.free.fr/median/median.pdf #define QMF_SORT(a,b) { if ((a)>(b)) QMF_SWAP((a),(b)); } #define QMF_SWAP(a,b) { int32_t temp=(a);(a)=(b);(b)=temp; } #define QMF_COPY(p,v,n) { int32_t i; for (i=0; i(b)) QMF_SWAPF((a),(b)); } #define QMF_SWAPF(a,b) { float temp=(a);(a)=(b);(b)=temp; } int32_t quickMedianFilter3(int32_t * v) { int32_t p[3]; QMF_COPY(p, v, 3); QMF_SORT(p[0], p[1]); QMF_SORT(p[1], p[2]); QMF_SORT(p[0], p[1]) ; return p[1]; } int32_t quickMedianFilter5(int32_t * v) { int32_t p[5]; QMF_COPY(p, v, 5); QMF_SORT(p[0], p[1]); QMF_SORT(p[3], p[4]); QMF_SORT(p[0], p[3]); QMF_SORT(p[1], p[4]); QMF_SORT(p[1], p[2]); QMF_SORT(p[2], p[3]); QMF_SORT(p[1], p[2]); return p[2]; } int32_t quickMedianFilter7(int32_t * v) { int32_t p[7]; QMF_COPY(p, v, 7); QMF_SORT(p[0], p[5]); QMF_SORT(p[0], p[3]); QMF_SORT(p[1], p[6]); QMF_SORT(p[2], p[4]); QMF_SORT(p[0], p[1]); QMF_SORT(p[3], p[5]); QMF_SORT(p[2], p[6]); QMF_SORT(p[2], p[3]); QMF_SORT(p[3], p[6]); QMF_SORT(p[4], p[5]); QMF_SORT(p[1], p[4]); QMF_SORT(p[1], p[3]); QMF_SORT(p[3], p[4]); return p[3]; } int32_t quickMedianFilter9(int32_t * v) { int32_t p[9]; QMF_COPY(p, v, 9); QMF_SORT(p[1], p[2]); QMF_SORT(p[4], p[5]); QMF_SORT(p[7], p[8]); QMF_SORT(p[0], p[1]); QMF_SORT(p[3], p[4]); QMF_SORT(p[6], p[7]); QMF_SORT(p[1], p[2]); QMF_SORT(p[4], p[5]); QMF_SORT(p[7], p[8]); QMF_SORT(p[0], p[3]); QMF_SORT(p[5], p[8]); QMF_SORT(p[4], p[7]); QMF_SORT(p[3], p[6]); QMF_SORT(p[1], p[4]); QMF_SORT(p[2], p[5]); QMF_SORT(p[4], p[7]); QMF_SORT(p[4], p[2]); QMF_SORT(p[6], p[4]); QMF_SORT(p[4], p[2]); return p[4]; } float quickMedianFilter3f(float * v) { float p[3]; QMF_COPY(p, v, 3); QMF_SORTF(p[0], p[1]); QMF_SORTF(p[1], p[2]); QMF_SORTF(p[0], p[1]) ; return p[1]; } float quickMedianFilter5f(float * v) { float p[5]; QMF_COPY(p, v, 5); QMF_SORTF(p[0], p[1]); QMF_SORTF(p[3], p[4]); QMF_SORTF(p[0], p[3]); QMF_SORTF(p[1], p[4]); QMF_SORTF(p[1], p[2]); QMF_SORTF(p[2], p[3]); QMF_SORTF(p[1], p[2]); return p[2]; } float quickMedianFilter7f(float * v) { float p[7]; QMF_COPY(p, v, 7); QMF_SORTF(p[0], p[5]); QMF_SORTF(p[0], p[3]); QMF_SORTF(p[1], p[6]); QMF_SORTF(p[2], p[4]); QMF_SORTF(p[0], p[1]); QMF_SORTF(p[3], p[5]); QMF_SORTF(p[2], p[6]); QMF_SORTF(p[2], p[3]); QMF_SORTF(p[3], p[6]); QMF_SORTF(p[4], p[5]); QMF_SORTF(p[1], p[4]); QMF_SORTF(p[1], p[3]); QMF_SORTF(p[3], p[4]); return p[3]; } float quickMedianFilter9f(float * v) { float p[9]; QMF_COPY(p, v, 9); QMF_SORTF(p[1], p[2]); QMF_SORTF(p[4], p[5]); QMF_SORTF(p[7], p[8]); QMF_SORTF(p[0], p[1]); QMF_SORTF(p[3], p[4]); QMF_SORTF(p[6], p[7]); QMF_SORTF(p[1], p[2]); QMF_SORTF(p[4], p[5]); QMF_SORTF(p[7], p[8]); QMF_SORTF(p[0], p[3]); QMF_SORTF(p[5], p[8]); QMF_SORTF(p[4], p[7]); QMF_SORTF(p[3], p[6]); QMF_SORTF(p[1], p[4]); QMF_SORTF(p[2], p[5]); QMF_SORTF(p[4], p[7]); QMF_SORTF(p[4], p[2]); QMF_SORTF(p[6], p[4]); QMF_SORTF(p[4], p[2]); return p[4]; } void arraySubInt32(int32_t *dest, int32_t *array1, int32_t *array2, int count) { for (int i = 0; i < count; i++) { dest[i] = array1[i] - array2[i]; } } int16_t qPercent(fix12_t q) { return (100 * q) >> 12; } int16_t qMultiply(fix12_t q, int16_t input) { return (input * q) >> 12; } fix12_t qConstruct(int16_t num, int16_t den) { return (num << 12) / den; }