/** ****************************************************************************** * @file stm32f7xx_hal_crc.c * @author MCD Application Team * @version V1.1.0 * @date 22-April-2016 * @brief CRC HAL module driver. * This file provides firmware functions to manage the following * functionalities of the Cyclic Redundancy Check (CRC) peripheral: * + Initialization and de-initialization functions * + Peripheral Control functions * + Peripheral State functions * @verbatim =============================================================================== ##### CRC How to use this driver ##### =============================================================================== [..] (#) Enable CRC AHB clock using __HAL_RCC_CRC_CLK_ENABLE(); (#) Initialize CRC calculator (++) specify generating polynomial (IP default or non-default one) (++) specify initialization value (IP default or non-default one) (++) specify input data format (++) specify input or output data inversion mode if any (#) Use HAL_CRC_Accumulate() function to compute the CRC value of the input data buffer starting with the previously computed CRC as initialization value (#) Use HAL_CRC_Calculate() function to compute the CRC value of the input data buffer starting with the defined initialization value (default or non-default) to initiate CRC calculation @endverbatim ****************************************************************************** * @attention * *

© COPYRIGHT(c) 2016 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f7xx_hal.h" /** @addtogroup STM32F7xx_HAL_Driver * @{ */ /** @defgroup CRC CRC * @brief CRC HAL module driver. * @{ */ #ifdef HAL_CRC_MODULE_ENABLED /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ static uint32_t CRC_Handle_8(CRC_HandleTypeDef *hcrc, uint8_t pBuffer[], uint32_t BufferLength); static uint32_t CRC_Handle_16(CRC_HandleTypeDef *hcrc, uint16_t pBuffer[], uint32_t BufferLength); /* Exported functions --------------------------------------------------------*/ /** @defgroup CRC_Exported_Functions CRC Exported Functions * @{ */ /** @defgroup HAL_CRC_Group1 Initialization/de-initialization functions * @brief Initialization and Configuration functions. * @verbatim =============================================================================== ##### Initialization and de-initialization functions ##### =============================================================================== [..] This section provides functions allowing to: (+) Initialize the CRC according to the specified parameters in the CRC_InitTypeDef and create the associated handle (+) DeInitialize the CRC peripheral (+) Initialize the CRC MSP (+) DeInitialize CRC MSP @endverbatim * @{ */ /** * @brief Initialize the CRC according to the specified * parameters in the CRC_InitTypeDef and create the associated handle. * @param hcrc: CRC handle * @retval HAL status */ HAL_StatusTypeDef HAL_CRC_Init(CRC_HandleTypeDef *hcrc) { /* Check the CRC handle allocation */ if(hcrc == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_CRC_ALL_INSTANCE(hcrc->Instance)); if(hcrc->State == HAL_CRC_STATE_RESET) { /* Allocate lock resource and initialize it */ hcrc->Lock = HAL_UNLOCKED; /* Init the low level hardware */ HAL_CRC_MspInit(hcrc); } /* Change CRC peripheral state */ hcrc->State = HAL_CRC_STATE_BUSY; /* check whether or not non-default generating polynomial has been * picked up by user */ assert_param(IS_DEFAULT_POLYNOMIAL(hcrc->Init.DefaultPolynomialUse)); if(hcrc->Init.DefaultPolynomialUse == DEFAULT_POLYNOMIAL_ENABLE) { /* initialize IP with default generating polynomial */ WRITE_REG(hcrc->Instance->POL, DEFAULT_CRC32_POLY); MODIFY_REG(hcrc->Instance->CR, CRC_CR_POLYSIZE, CRC_POLYLENGTH_32B); } else { /* initialize CRC IP with generating polynomial defined by user */ if(HAL_CRCEx_Polynomial_Set(hcrc, hcrc->Init.GeneratingPolynomial, hcrc->Init.CRCLength) != HAL_OK) { return HAL_ERROR; } } /* check whether or not non-default CRC initial value has been * picked up by user */ assert_param(IS_DEFAULT_INIT_VALUE(hcrc->Init.DefaultInitValueUse)); if(hcrc->Init.DefaultInitValueUse == DEFAULT_INIT_VALUE_ENABLE) { WRITE_REG(hcrc->Instance->INIT, DEFAULT_CRC_INITVALUE); } else { WRITE_REG(hcrc->Instance->INIT, hcrc->Init.InitValue); } /* set input data inversion mode */ assert_param(IS_CRC_INPUTDATA_INVERSION_MODE(hcrc->Init.InputDataInversionMode)); MODIFY_REG(hcrc->Instance->CR, CRC_CR_REV_IN, hcrc->Init.InputDataInversionMode); /* set output data inversion mode */ assert_param(IS_CRC_OUTPUTDATA_INVERSION_MODE(hcrc->Init.OutputDataInversionMode)); MODIFY_REG(hcrc->Instance->CR, CRC_CR_REV_OUT, hcrc->Init.OutputDataInversionMode); /* makes sure the input data format (bytes, halfwords or words stream) * is properly specified by user */ assert_param(IS_CRC_INPUTDATA_FORMAT(hcrc->InputDataFormat)); /* Change CRC peripheral state */ hcrc->State = HAL_CRC_STATE_READY; /* Return function status */ return HAL_OK; } /** * @brief DeInitialize the CRC peripheral. * @param hcrc: CRC handle * @retval HAL status */ HAL_StatusTypeDef HAL_CRC_DeInit(CRC_HandleTypeDef *hcrc) { /* Check the CRC handle allocation */ if(hcrc == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_CRC_ALL_INSTANCE(hcrc->Instance)); /* Check the CRC peripheral state */ if(hcrc->State == HAL_CRC_STATE_BUSY) { return HAL_BUSY; } /* Change CRC peripheral state */ hcrc->State = HAL_CRC_STATE_BUSY; /* Reset CRC calculation unit */ __HAL_CRC_DR_RESET(hcrc); /* DeInit the low level hardware */ HAL_CRC_MspDeInit(hcrc); /* Change CRC peripheral state */ hcrc->State = HAL_CRC_STATE_RESET; /* Process unlocked */ __HAL_UNLOCK(hcrc); /* Return function status */ return HAL_OK; } /** * @brief Initialize the CRC MSP. * @param hcrc: CRC handle * @retval None */ __weak void HAL_CRC_MspInit(CRC_HandleTypeDef *hcrc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcrc); /* NOTE : This function should not be modified, when the callback is needed, the HAL_CRC_MspInit can be implemented in the user file */ } /** * @brief DeInitialize the CRC MSP. * @param hcrc: CRC handle * @retval None */ __weak void HAL_CRC_MspDeInit(CRC_HandleTypeDef *hcrc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hcrc); /* NOTE : This function should not be modified, when the callback is needed, the HAL_CRC_MspDeInit can be implemented in the user file */ } /** * @} */ /** @defgroup HAL_CRC_Group2 Peripheral Control functions * @brief Peripheral Control functions * @verbatim ============================================================================== ##### Peripheral Control functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer using combination of the previous CRC value and the new one. or (+) Compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer independently of the previous CRC value. @endverbatim * @{ */ /** * @brief Compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer * starting with the previously computed CRC as initialization value. * @param hcrc: CRC handle * @param pBuffer: pointer to the input data buffer, exact input data format is * provided by hcrc->InputDataFormat. * @param BufferLength: input data buffer length (number of bytes if pBuffer * type is * uint8_t, number of half-words if pBuffer type is * uint16_t, * number of words if pBuffer type is * uint32_t). * @note By default, the API expects a uint32_t pointer as input buffer parameter. * Input buffer pointers with other types simply need to be cast in uint32_t * and the API will internally adjust its input data processing based on the * handle field hcrc->InputDataFormat. * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits) */ uint32_t HAL_CRC_Accumulate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength) { uint32_t index = 0; /* CRC input data buffer index */ uint32_t temp = 0; /* CRC output (read from hcrc->Instance->DR register) */ /* Process locked */ __HAL_LOCK(hcrc); /* Change CRC peripheral state */ hcrc->State = HAL_CRC_STATE_BUSY; switch (hcrc->InputDataFormat) { case CRC_INPUTDATA_FORMAT_WORDS: /* Enter Data to the CRC calculator */ for(index = 0; index < BufferLength; index++) { hcrc->Instance->DR = pBuffer[index]; } temp = hcrc->Instance->DR; break; case CRC_INPUTDATA_FORMAT_BYTES: temp = CRC_Handle_8(hcrc, (uint8_t*)pBuffer, BufferLength); break; case CRC_INPUTDATA_FORMAT_HALFWORDS: temp = CRC_Handle_16(hcrc, (uint16_t*)pBuffer, BufferLength); break; default: break; } /* Change CRC peripheral state */ hcrc->State = HAL_CRC_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hcrc); /* Return the CRC computed value */ return temp; } /** * @brief Compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer * starting with hcrc->Instance->INIT as initialization value. * @param hcrc: CRC handle * @param pBuffer: pointer to the input data buffer, exact input data format is * provided by hcrc->InputDataFormat. * @param BufferLength: input data buffer length (number of bytes if pBuffer * type is * uint8_t, number of half-words if pBuffer type is * uint16_t, * number of words if pBuffer type is * uint32_t). * @note By default, the API expects a uint32_t pointer as input buffer parameter. * Input buffer pointers with other types simply need to be cast in uint32_t * and the API will internally adjust its input data processing based on the * handle field hcrc->InputDataFormat. * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits) */ uint32_t HAL_CRC_Calculate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength) { uint32_t index = 0; /* CRC input data buffer index */ uint32_t temp = 0; /* CRC output (read from hcrc->Instance->DR register) */ /* Process locked */ __HAL_LOCK(hcrc); /* Change CRC peripheral state */ hcrc->State = HAL_CRC_STATE_BUSY; /* Reset CRC Calculation Unit (hcrc->Instance->INIT is * written in hcrc->Instance->DR) */ __HAL_CRC_DR_RESET(hcrc); switch (hcrc->InputDataFormat) { case CRC_INPUTDATA_FORMAT_WORDS: /* Enter 32-bit input data to the CRC calculator */ for(index = 0; index < BufferLength; index++) { hcrc->Instance->DR = pBuffer[index]; } temp = hcrc->Instance->DR; break; case CRC_INPUTDATA_FORMAT_BYTES: /* Specific 8-bit input data handling */ temp = CRC_Handle_8(hcrc, (uint8_t*)pBuffer, BufferLength); break; case CRC_INPUTDATA_FORMAT_HALFWORDS: /* Specific 16-bit input data handling */ temp = CRC_Handle_16(hcrc, (uint16_t*)pBuffer, BufferLength); break; default: break; } /* Change CRC peripheral state */ hcrc->State = HAL_CRC_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hcrc); /* Return the CRC computed value */ return temp; } /** * @brief Enter 8-bit input data to the CRC calculator. * Specific data handling to optimize processing time. * @param hcrc: CRC handle * @param pBuffer: pointer to the input data buffer * @param BufferLength: input data buffer length * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits) */ static uint32_t CRC_Handle_8(CRC_HandleTypeDef *hcrc, uint8_t pBuffer[], uint32_t BufferLength) { uint32_t i = 0; /* input data buffer index */ /* Processing time optimization: 4 bytes are entered in a row with a single word write, * last bytes must be carefully fed to the CRC calculator to ensure a correct type * handling by the IP */ for(i = 0; i < (BufferLength/4); i++) { hcrc->Instance->DR = (uint32_t)(((uint32_t)(pBuffer[4*i])<<24) | ((uint32_t)(pBuffer[4*i+1])<<16) | ((uint32_t)(pBuffer[4*i+2])<<8) | (uint32_t)(pBuffer[4*i+3])); } /* last bytes specific handling */ if((BufferLength%4) != 0) { if(BufferLength%4 == 1) { *(__IO uint8_t*) (&hcrc->Instance->DR) = pBuffer[4*i]; } if(BufferLength%4 == 2) { *(__IO uint16_t*) (&hcrc->Instance->DR) = (uint16_t)((uint16_t)((uint16_t)(pBuffer[4*i])<<8) | (uint16_t)(pBuffer[4*i+1])); } if(BufferLength%4 == 3) { *(__IO uint16_t*) (&hcrc->Instance->DR) = (uint16_t)((uint16_t)((uint16_t)(pBuffer[4*i])<<8) | (uint16_t)(pBuffer[4*i+1])); *(__IO uint8_t*) (&hcrc->Instance->DR) = pBuffer[4*i+2]; } } /* Return the CRC computed value */ return hcrc->Instance->DR; } /** * @brief Enter 16-bit input data to the CRC calculator. * Specific data handling to optimize processing time. * @param hcrc: CRC handle * @param pBuffer: pointer to the input data buffer * @param BufferLength: input data buffer length * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits) */ static uint32_t CRC_Handle_16(CRC_HandleTypeDef *hcrc, uint16_t pBuffer[], uint32_t BufferLength) { uint32_t i = 0; /* input data buffer index */ /* Processing time optimization: 2 HalfWords are entered in a row with a single word write, * in case of odd length, last HalfWord must be carefully fed to the CRC calculator to ensure * a correct type handling by the IP */ for(i = 0; i < (BufferLength/2); i++) { hcrc->Instance->DR = (((uint32_t)(pBuffer[2*i])<<16) | (uint32_t)(pBuffer[2*i+1])); } if((BufferLength%2) != 0) { *(__IO uint16_t*) (&hcrc->Instance->DR) = pBuffer[2*i]; } /* Return the CRC computed value */ return hcrc->Instance->DR; } /** * @} */ /** @defgroup HAL_CRC_Group3 Peripheral State functions * @brief Peripheral State functions. * @verbatim ============================================================================== ##### Peripheral State functions ##### ============================================================================== [..] This subsection permits to get in run-time the status of the peripheral and the data flow. @endverbatim * @{ */ /** * @brief Return the CRC state. * @param hcrc: CRC handle * @retval HAL state */ HAL_CRC_StateTypeDef HAL_CRC_GetState(CRC_HandleTypeDef *hcrc) { return hcrc->State; } /** * @} */ /** * @} */ #endif /* HAL_CRC_MODULE_ENABLED */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/