/* * This file is part of Cleanflight and Betaflight. * * Cleanflight and Betaflight are free software. You can redistribute * this software and/or modify this software under the terms of the * GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) * any later version. * * Cleanflight and Betaflight are distributed in the hope that they * will be useful, but WITHOUT ANY WARRANTY; without even the implied * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software. * * If not, see . */ #include #include #include #include #include "platform.h" #include "build/atomic.h" #include "build/build_config.h" #include "build/debug.h" #include "common/maths.h" #include "common/utils.h" #include "drivers/bus.h" #include "drivers/bus_i2c.h" #include "drivers/bus_spi.h" #include "drivers/exti.h" #include "drivers/io.h" #include "drivers/nvic.h" #include "drivers/sensor.h" #include "drivers/system.h" #include "drivers/time.h" #include "drivers/accgyro/accgyro.h" #include "drivers/accgyro/accgyro_mpu3050.h" #include "drivers/accgyro/accgyro_mpu6050.h" #include "drivers/accgyro/accgyro_mpu6500.h" #include "drivers/accgyro/accgyro_spi_bmi160.h" #include "drivers/accgyro/accgyro_spi_icm20649.h" #include "drivers/accgyro/accgyro_spi_icm20689.h" #include "drivers/accgyro/accgyro_spi_mpu6000.h" #include "drivers/accgyro/accgyro_spi_mpu6500.h" #include "drivers/accgyro/accgyro_spi_mpu9250.h" #include "drivers/accgyro/accgyro_mpu.h" #include "pg/pg.h" #include "pg/gyrodev.h" #ifndef MPU_ADDRESS #define MPU_ADDRESS 0x68 #endif #define MPU_INQUIRY_MASK 0x7E #ifdef USE_I2C_GYRO static void mpu6050FindRevision(gyroDev_t *gyro) { // There is a map of revision contained in the android source tree which is quite comprehensive and may help to understand this code // See https://android.googlesource.com/kernel/msm.git/+/eaf36994a3992b8f918c18e4f7411e8b2320a35f/drivers/misc/mpu6050/mldl_cfg.c // determine product ID and revision uint8_t readBuffer[6]; bool ack = busReadRegisterBuffer(&gyro->bus, MPU_RA_XA_OFFS_H, readBuffer, 6); uint8_t revision = ((readBuffer[5] & 0x01) << 2) | ((readBuffer[3] & 0x01) << 1) | (readBuffer[1] & 0x01); if (ack && revision) { // Congrats, these parts are better if (revision == 1) { gyro->mpuDetectionResult.resolution = MPU_HALF_RESOLUTION; } else if (revision == 2) { gyro->mpuDetectionResult.resolution = MPU_FULL_RESOLUTION; } else if ((revision == 3) || (revision == 7)) { gyro->mpuDetectionResult.resolution = MPU_FULL_RESOLUTION; } else { failureMode(FAILURE_ACC_INCOMPATIBLE); } } else { uint8_t productId; ack = busReadRegisterBuffer(&gyro->bus, MPU_RA_PRODUCT_ID, &productId, 1); revision = productId & 0x0F; if (!ack || revision == 0) { failureMode(FAILURE_ACC_INCOMPATIBLE); } else if (revision == 4) { gyro->mpuDetectionResult.resolution = MPU_HALF_RESOLUTION; } else { gyro->mpuDetectionResult.resolution = MPU_FULL_RESOLUTION; } } } #endif /* * Gyro interrupt service routine */ #ifdef USE_GYRO_EXTI static void mpuIntExtiHandler(extiCallbackRec_t *cb) { #ifdef DEBUG_MPU_DATA_READY_INTERRUPT static uint32_t lastCalledAtUs = 0; const uint32_t nowUs = micros(); debug[0] = (uint16_t)(nowUs - lastCalledAtUs); lastCalledAtUs = nowUs; #endif gyroDev_t *gyro = container_of(cb, gyroDev_t, exti); gyro->dataReady = true; #ifdef DEBUG_MPU_DATA_READY_INTERRUPT const uint32_t now2Us = micros(); debug[1] = (uint16_t)(now2Us - nowUs); #endif } static void mpuIntExtiInit(gyroDev_t *gyro) { if (gyro->mpuIntExtiTag == IO_TAG_NONE) { return; } const IO_t mpuIntIO = IOGetByTag(gyro->mpuIntExtiTag); #ifdef ENSURE_MPU_DATA_READY_IS_LOW uint8_t status = IORead(mpuIntIO); if (status) { return; } #endif IOInit(mpuIntIO, OWNER_GYRO_EXTI, 0); EXTIHandlerInit(&gyro->exti, mpuIntExtiHandler); EXTIConfig(mpuIntIO, &gyro->exti, NVIC_PRIO_MPU_INT_EXTI, IOCFG_IN_FLOATING, EXTI_TRIGGER_RISING); EXTIEnable(mpuIntIO, true); } #endif // USE_GYRO_EXTI bool mpuAccRead(accDev_t *acc) { uint8_t data[6]; const bool ack = busReadRegisterBuffer(&acc->bus, MPU_RA_ACCEL_XOUT_H, data, 6); if (!ack) { return false; } acc->ADCRaw[X] = (int16_t)((data[0] << 8) | data[1]); acc->ADCRaw[Y] = (int16_t)((data[2] << 8) | data[3]); acc->ADCRaw[Z] = (int16_t)((data[4] << 8) | data[5]); return true; } bool mpuGyroRead(gyroDev_t *gyro) { uint8_t data[6]; const bool ack = busReadRegisterBuffer(&gyro->bus, MPU_RA_GYRO_XOUT_H, data, 6); if (!ack) { return false; } gyro->gyroADCRaw[X] = (int16_t)((data[0] << 8) | data[1]); gyro->gyroADCRaw[Y] = (int16_t)((data[2] << 8) | data[3]); gyro->gyroADCRaw[Z] = (int16_t)((data[4] << 8) | data[5]); return true; } #ifdef USE_SPI_GYRO bool mpuGyroReadSPI(gyroDev_t *gyro) { static const uint8_t dataToSend[7] = {MPU_RA_GYRO_XOUT_H | 0x80, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; uint8_t data[7]; const bool ack = spiBusTransfer(&gyro->bus, dataToSend, data, 7); if (!ack) { return false; } gyro->gyroADCRaw[X] = (int16_t)((data[1] << 8) | data[2]); gyro->gyroADCRaw[Y] = (int16_t)((data[3] << 8) | data[4]); gyro->gyroADCRaw[Z] = (int16_t)((data[5] << 8) | data[6]); return true; } typedef uint8_t (*gyroSpiDetectFn_t)(const busDevice_t *bus); static gyroSpiDetectFn_t gyroSpiDetectFnTable[] = { #ifdef USE_GYRO_SPI_MPU6000 mpu6000SpiDetect, #endif #ifdef USE_GYRO_SPI_MPU6500 mpu6500SpiDetect, // some targets using MPU_9250_SPI, ICM_20608_SPI or ICM_20602_SPI state sensor is MPU_65xx_SPI #endif #ifdef USE_GYRO_SPI_MPU9250 mpu9250SpiDetect, #endif #ifdef USE_GYRO_SPI_ICM20649 icm20649SpiDetect, #endif #ifdef USE_GYRO_SPI_ICM20689 icm20689SpiDetect, // icm20689SpiDetect detects ICM20602 and ICM20689 #endif #ifdef USE_ACCGYRO_BMI160 bmi160Detect, #endif NULL // Avoid an empty array }; static bool detectSPISensorsAndUpdateDetectionResult(gyroDev_t *gyro, const gyroDeviceConfig_t *config) { SPI_TypeDef *instance = spiInstanceByDevice(SPI_CFG_TO_DEV(config->spiBus)); if (!instance) { return false; } spiBusSetInstance(&gyro->bus, instance); gyro->bus.busdev_u.spi.csnPin = IOGetByTag(config->csnTag); IOInit(gyro->bus.busdev_u.spi.csnPin, OWNER_GYRO_CS, RESOURCE_INDEX(config->index)); IOConfigGPIO(gyro->bus.busdev_u.spi.csnPin, SPI_IO_CS_CFG); IOHi(gyro->bus.busdev_u.spi.csnPin); // Ensure device is disabled, important when two devices are on the same bus. uint8_t sensor = MPU_NONE; // It is hard to use hardware to optimize the detection loop here, // as hardware type and detection function name doesn't match. // May need a bitmap of hardware to detection function to do it right? for (size_t index = 0 ; gyroSpiDetectFnTable[index] ; index++) { sensor = (gyroSpiDetectFnTable[index])(&gyro->bus); if (sensor != MPU_NONE) { gyro->mpuDetectionResult.sensor = sensor; return true; } } spiPreinitByTag(config->csnTag); return false; } #endif void mpuPreInit(const struct gyroDeviceConfig_s *config) { #ifdef USE_SPI_GYRO spiPreinitRegister(config->csnTag, IOCFG_IPU, 1); #else UNUSED(config); #endif } void mpuDetect(gyroDev_t *gyro, const gyroDeviceConfig_t *config) { // MPU datasheet specifies 30ms. delay(35); if (config->bustype == BUSTYPE_NONE) { return; } if (config->bustype == BUSTYPE_GYRO_AUTO) { gyro->bus.bustype = BUSTYPE_I2C; } else { gyro->bus.bustype = config->bustype; } #ifdef USE_I2C_GYRO if (gyro->bus.bustype == BUSTYPE_I2C) { gyro->bus.busdev_u.i2c.address = config->i2cAddress ? config->i2cAddress : MPU_ADDRESS; uint8_t sig = 0; bool ack = busReadRegisterBuffer(&gyro->bus, MPU_RA_WHO_AM_I, &sig, 1); if (ack) { // If an MPU3050 is connected sig will contain 0. uint8_t inquiryResult; ack = busReadRegisterBuffer(&gyro->bus, MPU_RA_WHO_AM_I_LEGACY, &inquiryResult, 1); inquiryResult &= MPU_INQUIRY_MASK; if (ack && inquiryResult == MPUx0x0_WHO_AM_I_CONST) { gyro->mpuDetectionResult.sensor = MPU_3050; return; } sig &= MPU_INQUIRY_MASK; if (sig == MPUx0x0_WHO_AM_I_CONST) { gyro->mpuDetectionResult.sensor = MPU_60x0; mpu6050FindRevision(gyro); } else if (sig == MPU6500_WHO_AM_I_CONST) { gyro->mpuDetectionResult.sensor = MPU_65xx_I2C; } return; } } #endif #ifdef USE_SPI_GYRO gyro->bus.bustype = BUSTYPE_SPI; detectSPISensorsAndUpdateDetectionResult(gyro, config); #endif } void mpuGyroInit(gyroDev_t *gyro) { #ifdef USE_GYRO_EXTI mpuIntExtiInit(gyro); #else UNUSED(gyro); #endif } uint8_t mpuGyroDLPF(gyroDev_t *gyro) { uint8_t ret = 0; // If gyro is in 32KHz mode then the DLPF bits aren't used if (gyro->gyroRateKHz <= GYRO_RATE_8_kHz) { switch (gyro->hardware_lpf) { #ifdef USE_GYRO_DLPF_EXPERIMENTAL case GYRO_HARDWARE_LPF_EXPERIMENTAL: // experimental mode not supported for MPU60x0 family if ((gyro->gyroHardware != GYRO_MPU6050) && (gyro->gyroHardware != GYRO_MPU6000)) { ret = 7; } else { ret = 0; } break; #endif case GYRO_HARDWARE_LPF_1KHZ_SAMPLE: ret = 1; break; case GYRO_HARDWARE_LPF_NORMAL: default: ret = 0; break; } } return ret; } uint8_t mpuGyroFCHOICE(gyroDev_t *gyro) { if (gyro->gyroRateKHz > GYRO_RATE_8_kHz) { #ifdef USE_GYRO_DLPF_EXPERIMENTAL if (gyro->hardware_32khz_lpf == GYRO_32KHZ_HARDWARE_LPF_EXPERIMENTAL) { return FCB_8800_32; } else { return FCB_3600_32; } #else return FCB_3600_32; #endif } else { return FCB_DISABLED; // Not in 32KHz mode, set FCHOICE to select 8KHz sampling } } #ifdef USE_GYRO_REGISTER_DUMP uint8_t mpuGyroReadRegister(const busDevice_t *bus, uint8_t reg) { uint8_t data; const bool ack = busReadRegisterBuffer(bus, reg, &data, 1); if (ack) { return data; } else { return 0; } } #endif