/* * This file is part of Cleanflight. * * Cleanflight is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Cleanflight is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Cleanflight. If not, see . */ #include #include #include #include #include #include #include #include "platform.h" // FIXME remove this for targets that don't need a CLI. Perhaps use a no-op macro when USE_CLI is not enabled // signal that we're in cli mode uint8_t cliMode = 0; #ifdef USE_CLI #include "blackbox/blackbox.h" #include "build/build_config.h" #include "build/debug.h" #include "build/version.h" #include "cms/cms.h" #include "common/axis.h" #include "common/color.h" #include "common/maths.h" #include "common/printf.h" #include "common/typeconversion.h" #include "config/config_master.h" #include "config/config_eeprom.h" #include "config/config_profile.h" #include "config/feature.h" #include "config/parameter_group.h" #include "config/parameter_group_ids.h" #include "drivers/accgyro.h" #include "drivers/buf_writer.h" #include "drivers/bus_i2c.h" #include "drivers/compass.h" #include "drivers/display.h" #include "drivers/dma.h" #include "drivers/flash.h" #include "drivers/io.h" #include "drivers/io_impl.h" #include "drivers/rx_pwm.h" #include "drivers/sdcard.h" #include "drivers/sensor.h" #include "drivers/serial.h" #include "drivers/serial_escserial.h" #include "drivers/stack_check.h" #include "drivers/system.h" #include "drivers/timer.h" #include "drivers/vcd.h" #include "fc/cli.h" #include "fc/config.h" #include "fc/rc_adjustments.h" #include "fc/rc_controls.h" #include "fc/runtime_config.h" #include "flight/failsafe.h" #include "flight/imu.h" #include "flight/mixer.h" #include "flight/navigation.h" #include "flight/pid.h" #include "flight/servos.h" #include "io/asyncfatfs/asyncfatfs.h" #include "io/beeper.h" #include "io/flashfs.h" #include "io/gimbal.h" #include "io/gps.h" #include "io/ledstrip.h" #include "io/osd.h" #include "io/serial.h" #include "io/vtx.h" #include "rx/rx.h" #include "rx/spektrum.h" #include "scheduler/scheduler.h" #include "sensors/acceleration.h" #include "sensors/barometer.h" #include "sensors/battery.h" #include "sensors/boardalignment.h" #include "sensors/compass.h" #include "sensors/gyro.h" #include "sensors/sensors.h" #include "telemetry/frsky.h" #include "telemetry/telemetry.h" static serialPort_t *cliPort; static bufWriter_t *cliWriter; static uint8_t cliWriteBuffer[sizeof(*cliWriter) + 128]; static char cliBuffer[48]; static uint32_t bufferIndex = 0; static const char* const emptyName = "-"; #ifndef USE_QUAD_MIXER_ONLY // sync this with mixerMode_e static const char * const mixerNames[] = { "TRI", "QUADP", "QUADX", "BI", "GIMBAL", "Y6", "HEX6", "FLYING_WING", "Y4", "HEX6X", "OCTOX8", "OCTOFLATP", "OCTOFLATX", "AIRPLANE", "HELI_120_CCPM", "HELI_90_DEG", "VTAIL4", "HEX6H", "PPM_TO_SERVO", "DUALCOPTER", "SINGLECOPTER", "ATAIL4", "CUSTOM", "CUSTOMAIRPLANE", "CUSTOMTRI", "QUADX1234", NULL }; #endif // sync this with features_e static const char * const featureNames[] = { "RX_PPM", "VBAT", "INFLIGHT_ACC_CAL", "RX_SERIAL", "MOTOR_STOP", "SERVO_TILT", "SOFTSERIAL", "GPS", "FAILSAFE", "SONAR", "TELEMETRY", "CURRENT_METER", "3D", "RX_PARALLEL_PWM", "RX_MSP", "RSSI_ADC", "LED_STRIP", "DISPLAY", "OSD", "BLACKBOX", "CHANNEL_FORWARDING", "TRANSPONDER", "AIRMODE", "SDCARD", "VTX", "RX_SPI", "SOFTSPI", "ESC_SENSOR", NULL }; // sync this with rxFailsafeChannelMode_e static const char rxFailsafeModeCharacters[] = "ahs"; static const rxFailsafeChannelMode_e rxFailsafeModesTable[RX_FAILSAFE_TYPE_COUNT][RX_FAILSAFE_MODE_COUNT] = { { RX_FAILSAFE_MODE_AUTO, RX_FAILSAFE_MODE_HOLD, RX_FAILSAFE_MODE_INVALID }, { RX_FAILSAFE_MODE_INVALID, RX_FAILSAFE_MODE_HOLD, RX_FAILSAFE_MODE_SET } }; // sync this with accelerationSensor_e static const char * const lookupTableAccHardware[] = { "AUTO", "NONE", "ADXL345", "MPU6050", "MMA8452", "BMA280", "LSM303DLHC", "MPU6000", "MPU6500", "MPU9250", "ICM20689", "FAKE" }; #ifdef BARO // sync this with baroSensor_e static const char * const lookupTableBaroHardware[] = { "AUTO", "NONE", "BMP085", "MS5611", "BMP280" }; #endif #ifdef MAG // sync this with magSensor_e static const char * const lookupTableMagHardware[] = { "AUTO", "NONE", "HMC5883", "AK8975", "AK8963" }; #endif #if defined(USE_SENSOR_NAMES) // sync this with sensors_e static const char * const sensorTypeNames[] = { "GYRO", "ACC", "BARO", "MAG", "SONAR", "GPS", "GPS+MAG", NULL }; #define SENSOR_NAMES_MASK (SENSOR_GYRO | SENSOR_ACC | SENSOR_BARO | SENSOR_MAG) static const char * const sensorHardwareNames[4][15] = { { "", "None", "MPU6050", "L3G4200D", "MPU3050", "L3GD20", "MPU6000", "MPU6500", "MPU9250", "ICM20689", "ICM20608G", "ICM20602", "FAKE", NULL }, { "", "None", "ADXL345", "MPU6050", "MMA845x", "BMA280", "LSM303DLHC", "MPU6000", "MPU6500", "ICM20689", "MPU9250", "ICM20608G", "ICM20602", "FAKE", NULL }, { "", "None", "BMP085", "MS5611", "BMP280", NULL }, { "", "None", "HMC5883", "AK8975", "AK8963", NULL } }; #endif /* USE_SENSOR_NAMES */ static const char * const lookupTableOffOn[] = { "OFF", "ON" }; static const char * const lookupTableUnit[] = { "IMPERIAL", "METRIC" }; static const char * const lookupTableAlignment[] = { "DEFAULT", "CW0", "CW90", "CW180", "CW270", "CW0FLIP", "CW90FLIP", "CW180FLIP", "CW270FLIP" }; #ifdef GPS static const char * const lookupTableGPSProvider[] = { "NMEA", "UBLOX" }; static const char * const lookupTableGPSSBASMode[] = { "AUTO", "EGNOS", "WAAS", "MSAS", "GAGAN" }; #endif static const char * const lookupTableCurrentSensor[] = { "NONE", "ADC", "VIRTUAL", "ESC" }; static const char * const lookupTableBatterySensor[] = { "ADC", "ESC" }; #ifdef USE_SERVOS static const char * const lookupTableGimbalMode[] = { "NORMAL", "MIXTILT" }; #endif #ifdef BLACKBOX static const char * const lookupTableBlackboxDevice[] = { "SERIAL", "SPIFLASH", "SDCARD" }; #endif #ifdef SERIAL_RX static const char * const lookupTableSerialRX[] = { "SPEK1024", "SPEK2048", "SBUS", "SUMD", "SUMH", "XB-B", "XB-B-RJ01", "IBUS", "JETIEXBUS", "CRSF", "SRXL" }; #endif #ifdef USE_RX_SPI // sync with rx_spi_protocol_e static const char * const lookupTableRxSpi[] = { "V202_250K", "V202_1M", "SYMA_X", "SYMA_X5C", "CX10", "CX10A", "H8_3D", "INAV" }; #endif static const char * const lookupTableGyroLpf[] = { "OFF", "188HZ", "98HZ", "42HZ", "20HZ", "10HZ", "5HZ", "EXPERIMENTAL" }; static const char * const lookupTableDebug[DEBUG_COUNT] = { "NONE", "CYCLETIME", "BATTERY", "GYRO", "ACCELEROMETER", "MIXER", "AIRMODE", "PIDLOOP", "NOTCH", "RC_INTERPOLATION", "VELOCITY", "DFILTER", "ANGLERATE", "ESC_SENSOR", "SCHEDULER", "STACK" }; #ifdef OSD static const char * const lookupTableOsdType[] = { "AUTO", "PAL", "NTSC" }; #endif static const char * const lookupTableSuperExpoYaw[] = { "OFF", "ON", "ALWAYS" }; static const char * const lookupTablePwmProtocol[] = { "OFF", "ONESHOT125", "ONESHOT42", "MULTISHOT", "BRUSHED", #ifdef USE_DSHOT "DSHOT150", "DSHOT300", "DSHOT600", "DSHOT1200", #endif }; static const char * const lookupTableRcInterpolation[] = { "OFF", "PRESET", "AUTO", "MANUAL" }; static const char * const lookupTableRcInterpolationChannels[] = { "RP", "RPY", "RPYT" }; static const char * const lookupTableLowpassType[] = { "PT1", "BIQUAD", "FIR" }; static const char * const lookupTableFailsafe[] = { "AUTO-LAND", "DROP" }; typedef struct lookupTableEntry_s { const char * const *values; const uint8_t valueCount; } lookupTableEntry_t; typedef enum { TABLE_OFF_ON = 0, TABLE_UNIT, TABLE_ALIGNMENT, #ifdef GPS TABLE_GPS_PROVIDER, TABLE_GPS_SBAS_MODE, #endif #ifdef BLACKBOX TABLE_BLACKBOX_DEVICE, #endif TABLE_CURRENT_SENSOR, TABLE_BATTERY_SENSOR, #ifdef USE_SERVOS TABLE_GIMBAL_MODE, #endif #ifdef SERIAL_RX TABLE_SERIAL_RX, #endif #ifdef USE_RX_SPI TABLE_RX_SPI, #endif TABLE_GYRO_LPF, TABLE_ACC_HARDWARE, #ifdef BARO TABLE_BARO_HARDWARE, #endif #ifdef MAG TABLE_MAG_HARDWARE, #endif TABLE_DEBUG, TABLE_SUPEREXPO_YAW, TABLE_MOTOR_PWM_PROTOCOL, TABLE_RC_INTERPOLATION, TABLE_RC_INTERPOLATION_CHANNELS, TABLE_LOWPASS_TYPE, TABLE_FAILSAFE, #ifdef OSD TABLE_OSD, #endif LOOKUP_TABLE_COUNT } lookupTableIndex_e; static const lookupTableEntry_t lookupTables[] = { { lookupTableOffOn, sizeof(lookupTableOffOn) / sizeof(char *) }, { lookupTableUnit, sizeof(lookupTableUnit) / sizeof(char *) }, { lookupTableAlignment, sizeof(lookupTableAlignment) / sizeof(char *) }, #ifdef GPS { lookupTableGPSProvider, sizeof(lookupTableGPSProvider) / sizeof(char *) }, { lookupTableGPSSBASMode, sizeof(lookupTableGPSSBASMode) / sizeof(char *) }, #endif #ifdef BLACKBOX { lookupTableBlackboxDevice, sizeof(lookupTableBlackboxDevice) / sizeof(char *) }, #endif { lookupTableCurrentSensor, sizeof(lookupTableCurrentSensor) / sizeof(char *) }, { lookupTableBatterySensor, sizeof(lookupTableBatterySensor) / sizeof(char *) }, #ifdef USE_SERVOS { lookupTableGimbalMode, sizeof(lookupTableGimbalMode) / sizeof(char *) }, #endif #ifdef SERIAL_RX { lookupTableSerialRX, sizeof(lookupTableSerialRX) / sizeof(char *) }, #endif #ifdef USE_RX_SPI { lookupTableRxSpi, sizeof(lookupTableRxSpi) / sizeof(char *) }, #endif { lookupTableGyroLpf, sizeof(lookupTableGyroLpf) / sizeof(char *) }, { lookupTableAccHardware, sizeof(lookupTableAccHardware) / sizeof(char *) }, #ifdef BARO { lookupTableBaroHardware, sizeof(lookupTableBaroHardware) / sizeof(char *) }, #endif #ifdef MAG { lookupTableMagHardware, sizeof(lookupTableMagHardware) / sizeof(char *) }, #endif { lookupTableDebug, sizeof(lookupTableDebug) / sizeof(char *) }, { lookupTableSuperExpoYaw, sizeof(lookupTableSuperExpoYaw) / sizeof(char *) }, { lookupTablePwmProtocol, sizeof(lookupTablePwmProtocol) / sizeof(char *) }, { lookupTableRcInterpolation, sizeof(lookupTableRcInterpolation) / sizeof(char *) }, { lookupTableRcInterpolationChannels, sizeof(lookupTableRcInterpolationChannels) / sizeof(char *) }, { lookupTableLowpassType, sizeof(lookupTableLowpassType) / sizeof(char *) }, { lookupTableFailsafe, sizeof(lookupTableFailsafe) / sizeof(char *) }, #ifdef OSD { lookupTableOsdType, sizeof(lookupTableOsdType) / sizeof(char *) }, #endif }; #define VALUE_TYPE_OFFSET 0 #define VALUE_SECTION_OFFSET 4 #define VALUE_MODE_OFFSET 6 typedef enum { // value type, bits 0-3 VAR_UINT8 = (0 << VALUE_TYPE_OFFSET), VAR_INT8 = (1 << VALUE_TYPE_OFFSET), VAR_UINT16 = (2 << VALUE_TYPE_OFFSET), VAR_INT16 = (3 << VALUE_TYPE_OFFSET), //VAR_UINT32 = (4 << VALUE_TYPE_OFFSET), VAR_FLOAT = (5 << VALUE_TYPE_OFFSET), // 0x05 // value section, bits 4-5 MASTER_VALUE = (0 << VALUE_SECTION_OFFSET), PROFILE_VALUE = (1 << VALUE_SECTION_OFFSET), PROFILE_RATE_VALUE = (2 << VALUE_SECTION_OFFSET), // 0x20 // value mode MODE_DIRECT = (0 << VALUE_MODE_OFFSET), // 0x40 MODE_LOOKUP = (1 << VALUE_MODE_OFFSET) // 0x80 } cliValueFlag_e; #define VALUE_TYPE_MASK (0x0F) #define VALUE_SECTION_MASK (0x30) #define VALUE_MODE_MASK (0xC0) typedef struct cliMinMaxConfig_s { const int16_t min; const int16_t max; } cliMinMaxConfig_t; typedef struct cliLookupTableConfig_s { const lookupTableIndex_e tableIndex; } cliLookupTableConfig_t; typedef union { cliLookupTableConfig_t lookup; cliMinMaxConfig_t minmax; } cliValueConfig_t; #ifdef USE_PARAMETER_GROUPS typedef struct { const char *name; const uint8_t type; // see cliValueFlag_e const cliValueConfig_t config; pgn_t pgn; uint16_t offset; } __attribute__((packed)) clivalue_t; static const clivalue_t valueTable[] = { { "dummy", VAR_UINT8 | MASTER_VALUE, .config.minmax = { 0, 255 }, 0, 0 } }; #else typedef struct { const char *name; const uint8_t type; // see cliValueFlag_e void *ptr; const cliValueConfig_t config; } clivalue_t; static const clivalue_t valueTable[] = { #ifndef SKIP_TASK_STATISTICS { "task_statistics", VAR_INT8 | MASTER_VALUE | MODE_LOOKUP, &masterConfig.task_statistics, .config.lookup = { TABLE_OFF_ON } }, #endif { "mid_rc", VAR_UINT16 | MASTER_VALUE, &rxConfig()->midrc, .config.minmax = { 1200, 1700 } }, { "min_check", VAR_UINT16 | MASTER_VALUE, &rxConfig()->mincheck, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } }, { "max_check", VAR_UINT16 | MASTER_VALUE, &rxConfig()->maxcheck, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } }, { "rssi_channel", VAR_INT8 | MASTER_VALUE, &rxConfig()->rssi_channel, .config.minmax = { 0, MAX_SUPPORTED_RC_CHANNEL_COUNT } }, { "rssi_scale", VAR_UINT8 | MASTER_VALUE, &rxConfig()->rssi_scale, .config.minmax = { RSSI_SCALE_MIN, RSSI_SCALE_MAX } }, { "rc_interp", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &rxConfig()->rcInterpolation, .config.lookup = { TABLE_RC_INTERPOLATION } }, { "rc_interp_ch", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &rxConfig()->rcInterpolationChannels, .config.lookup = { TABLE_RC_INTERPOLATION_CHANNELS } }, { "rc_interp_int", VAR_UINT8 | MASTER_VALUE, &rxConfig()->rcInterpolationInterval, .config.minmax = { 1, 50 } }, { "rssi_ppm_invert", VAR_INT8 | MASTER_VALUE | MODE_LOOKUP, &rxConfig()->rssi_ppm_invert, .config.lookup = { TABLE_OFF_ON } }, #if defined(USE_PWM) { "input_filtering_mode", VAR_INT8 | MASTER_VALUE | MODE_LOOKUP, &pwmConfig()->inputFilteringMode, .config.lookup = { TABLE_OFF_ON } }, #endif { "fpv_mix_degrees", VAR_UINT8 | MASTER_VALUE, &rxConfig()->fpvCamAngleDegrees, .config.minmax = { 0, 50 } }, { "max_aux_channels", VAR_UINT8 | MASTER_VALUE, &rxConfig()->max_aux_channel, .config.minmax = { 0, MAX_AUX_CHANNELS } }, { "debug_mode", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &systemConfig()->debug_mode, .config.lookup = { TABLE_DEBUG } }, { "min_throttle", VAR_UINT16 | MASTER_VALUE, &motorConfig()->minthrottle, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } }, { "max_throttle", VAR_UINT16 | MASTER_VALUE, &motorConfig()->maxthrottle, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } }, { "min_command", VAR_UINT16 | MASTER_VALUE, &motorConfig()->mincommand, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } }, #ifdef USE_DSHOT { "digital_idle_percent", VAR_FLOAT | MASTER_VALUE, &motorConfig()->digitalIdleOffsetPercent, .config.minmax = { 0, 20} }, #endif { "3d_deadband_low", VAR_UINT16 | MASTER_VALUE, &flight3DConfig()->deadband3d_low, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } }, // FIXME upper limit should match code in the mixer, 1500 currently { "3d_deadband_high", VAR_UINT16 | MASTER_VALUE, &flight3DConfig()->deadband3d_high, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } }, // FIXME lower limit should match code in the mixer, 1500 currently, { "3d_neutral", VAR_UINT16 | MASTER_VALUE, &flight3DConfig()->neutral3d, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } }, { "3d_deadband_throttle", VAR_UINT16 | MASTER_VALUE, &flight3DConfig()->deadband3d_throttle, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } }, { "use_unsynced_pwm", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &motorConfig()->dev.useUnsyncedPwm, .config.lookup = { TABLE_OFF_ON } }, { "motor_pwm_protocol", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &motorConfig()->dev.motorPwmProtocol, .config.lookup = { TABLE_MOTOR_PWM_PROTOCOL } }, { "motor_pwm_rate", VAR_UINT16 | MASTER_VALUE, &motorConfig()->dev.motorPwmRate, .config.minmax = { 200, 32000 } }, { "motor_pwm_inversion", VAR_UINT8 | MASTER_VALUE, &motorConfig()->dev.motorPwmInversion, .config.lookup = { TABLE_OFF_ON } }, { "disarm_kill_switch", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &armingConfig()->disarm_kill_switch, .config.lookup = { TABLE_OFF_ON } }, { "gyro_cal_on_first_arm", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &armingConfig()->gyro_cal_on_first_arm, .config.lookup = { TABLE_OFF_ON } }, { "auto_disarm_delay", VAR_UINT8 | MASTER_VALUE, &armingConfig()->auto_disarm_delay, .config.minmax = { 0, 60 } }, { "small_angle", VAR_UINT8 | MASTER_VALUE, &imuConfig()->small_angle, .config.minmax = { 0, 180 } }, { "fixedwing_althold_dir", VAR_INT8 | MASTER_VALUE, &airplaneConfig()->fixedwing_althold_dir, .config.minmax = { -1, 1 } }, { "reboot_character", VAR_UINT8 | MASTER_VALUE, &serialConfig()->reboot_character, .config.minmax = { 48, 126 } }, { "serial_update_rate_hz", VAR_UINT16 | MASTER_VALUE, &serialConfig()->serial_update_rate_hz, .config.minmax = { 100, 2000 } }, #ifdef GPS { "gps_provider", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gpsConfig()->provider, .config.lookup = { TABLE_GPS_PROVIDER } }, { "gps_sbas_mode", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gpsConfig()->sbasMode, .config.lookup = { TABLE_GPS_SBAS_MODE } }, { "gps_auto_config", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gpsConfig()->autoConfig, .config.lookup = { TABLE_OFF_ON } }, { "gps_auto_baud", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gpsConfig()->autoBaud, .config.lookup = { TABLE_OFF_ON } }, { "gps_pos_p", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.P8[PIDPOS], .config.minmax = { 0, 200 } }, { "gps_pos_i", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.I8[PIDPOS], .config.minmax = { 0, 200 } }, { "gps_pos_d", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.D8[PIDPOS], .config.minmax = { 0, 200 } }, { "gps_posr_p", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.P8[PIDPOSR], .config.minmax = { 0, 200 } }, { "gps_posr_i", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.I8[PIDPOSR], .config.minmax = { 0, 200 } }, { "gps_posr_d", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.D8[PIDPOSR], .config.minmax = { 0, 200 } }, { "gps_nav_p", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.P8[PIDNAVR], .config.minmax = { 0, 200 } }, { "gps_nav_i", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.I8[PIDNAVR], .config.minmax = { 0, 200 } }, { "gps_nav_d", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.D8[PIDNAVR], .config.minmax = { 0, 200 } }, { "gps_wp_radius", VAR_UINT16 | MASTER_VALUE, &gpsProfile()->gps_wp_radius, .config.minmax = { 0, 2000 } }, { "nav_controls_heading", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gpsProfile()->nav_controls_heading, .config.lookup = { TABLE_OFF_ON } }, { "nav_speed_min", VAR_UINT16 | MASTER_VALUE, &gpsProfile()->nav_speed_min, .config.minmax = { 10, 2000 } }, { "nav_speed_max", VAR_UINT16 | MASTER_VALUE, &gpsProfile()->nav_speed_max, .config.minmax = { 10, 2000 } }, { "nav_slew_rate", VAR_UINT8 | MASTER_VALUE, &gpsProfile()->nav_slew_rate, .config.minmax = { 0, 100 } }, #endif #ifdef BEEPER { "beeper_inversion", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &beeperDevConfig()->isInverted, .config.lookup = { TABLE_OFF_ON } }, { "beeper_od", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &beeperDevConfig()->isOpenDrain, .config.lookup = { TABLE_OFF_ON } }, #endif #ifdef SERIAL_RX { "serialrx_provider", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &rxConfig()->serialrx_provider, .config.lookup = { TABLE_SERIAL_RX } }, #endif { "sbus_inversion", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &rxConfig()->sbus_inversion, .config.lookup = { TABLE_OFF_ON } }, #ifdef SPEKTRUM_BIND { "spektrum_sat_bind", VAR_UINT8 | MASTER_VALUE, &rxConfig()->spektrum_sat_bind, .config.minmax = { SPEKTRUM_SAT_BIND_DISABLED, SPEKTRUM_SAT_BIND_MAX} }, { "spektrum_sat_bind_autorst", VAR_UINT8 | MASTER_VALUE, &rxConfig()->spektrum_sat_bind_autoreset, .config.minmax = { 0, 1} }, #endif #ifdef TELEMETRY { "tlm_switch", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &telemetryConfig()->telemetry_switch, .config.lookup = { TABLE_OFF_ON } }, { "tlm_inversion", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &telemetryConfig()->telemetry_inversion, .config.lookup = { TABLE_OFF_ON } }, { "sport_halfduplex", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &telemetryConfig()->sportHalfDuplex, .config.lookup = { TABLE_OFF_ON } }, { "frsky_default_lat", VAR_FLOAT | MASTER_VALUE, &telemetryConfig()->gpsNoFixLatitude, .config.minmax = { -90.0, 90.0 } }, { "frsky_default_long", VAR_FLOAT | MASTER_VALUE, &telemetryConfig()->gpsNoFixLongitude, .config.minmax = { -180.0, 180.0 } }, { "frsky_gps_format", VAR_UINT8 | MASTER_VALUE, &telemetryConfig()->frsky_coordinate_format, .config.minmax = { 0, FRSKY_FORMAT_NMEA } }, { "frsky_unit", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &telemetryConfig()->frsky_unit, .config.lookup = { TABLE_UNIT } }, { "frsky_vfas_precision", VAR_UINT8 | MASTER_VALUE, &telemetryConfig()->frsky_vfas_precision, .config.minmax = { FRSKY_VFAS_PRECISION_LOW, FRSKY_VFAS_PRECISION_HIGH } }, { "frsky_vfas_cell_voltage", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &telemetryConfig()->frsky_vfas_cell_voltage, .config.lookup = { TABLE_OFF_ON } }, { "hott_alarm_int", VAR_UINT8 | MASTER_VALUE, &telemetryConfig()->hottAlarmSoundInterval, .config.minmax = { 0, 120 } }, { "pid_in_tlm", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &telemetryConfig()->pidValuesAsTelemetry, .config.lookup = {TABLE_OFF_ON } }, #if defined(TELEMETRY_IBUS) { "ibus_report_cell_voltage", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &ibusTelemetryConfig()->report_cell_voltage, .config.lookup = { TABLE_OFF_ON } }, #endif #endif { "bat_capacity", VAR_UINT16 | MASTER_VALUE, &batteryConfig()->batteryCapacity, .config.minmax = { 0, 20000 } }, { "vbat_scale", VAR_UINT8 | MASTER_VALUE, &batteryConfig()->vbatscale, .config.minmax = { VBAT_SCALE_MIN, VBAT_SCALE_MAX } }, { "vbat_max_cell_voltage", VAR_UINT8 | MASTER_VALUE, &batteryConfig()->vbatmaxcellvoltage, .config.minmax = { 10, 50 } }, { "vbat_min_cell_voltage", VAR_UINT8 | MASTER_VALUE, &batteryConfig()->vbatmincellvoltage, .config.minmax = { 10, 50 } }, { "vbat_warning_cell_voltage", VAR_UINT8 | MASTER_VALUE, &batteryConfig()->vbatwarningcellvoltage, .config.minmax = { 10, 50 } }, { "vbat_hysteresis", VAR_UINT8 | MASTER_VALUE, &batteryConfig()->vbathysteresis, .config.minmax = { 0, 250 } }, { "ibat_scale", VAR_INT16 | MASTER_VALUE, &batteryConfig()->currentMeterScale, .config.minmax = { -16000, 16000 } }, { "ibat_offset", VAR_INT16 | MASTER_VALUE, &batteryConfig()->currentMeterOffset, .config.minmax = { -16000, 16000 } }, { "mwii_ibat_output", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &batteryConfig()->multiwiiCurrentMeterOutput, .config.lookup = { TABLE_OFF_ON } }, { "current_meter_type", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &batteryConfig()->currentMeterType, .config.lookup = { TABLE_CURRENT_SENSOR } }, { "battery_meter_type", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &batteryConfig()->batteryMeterType, .config.lookup = { TABLE_BATTERY_SENSOR } }, { "bat_detect_thresh", VAR_UINT8 | MASTER_VALUE, &batteryConfig()->batterynotpresentlevel, .config.minmax = { 0, 200 } }, { "use_vbat_alerts", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &batteryConfig()->useVBatAlerts, .config.lookup = { TABLE_OFF_ON } }, { "use_cbat_alerts", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &batteryConfig()->useConsumptionAlerts, .config.lookup = { TABLE_OFF_ON } }, { "cbat_alert_percent", VAR_UINT8 | MASTER_VALUE, &batteryConfig()->consumptionWarningPercentage, .config.minmax = { 0, 100 } }, { "align_gyro", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gyroConfig()->gyro_align, .config.lookup = { TABLE_ALIGNMENT } }, { "align_acc", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &accelerometerConfig()->acc_align, .config.lookup = { TABLE_ALIGNMENT } }, { "align_mag", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &compassConfig()->mag_align, .config.lookup = { TABLE_ALIGNMENT } }, { "align_board_roll", VAR_INT16 | MASTER_VALUE, &boardAlignment()->rollDegrees, .config.minmax = { -180, 360 } }, { "align_board_pitch", VAR_INT16 | MASTER_VALUE, &boardAlignment()->pitchDegrees, .config.minmax = { -180, 360 } }, { "align_board_yaw", VAR_INT16 | MASTER_VALUE, &boardAlignment()->yawDegrees, .config.minmax = { -180, 360 } }, { "gyro_lpf", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gyroConfig()->gyro_lpf, .config.lookup = { TABLE_GYRO_LPF } }, { "gyro_sync_denom", VAR_UINT8 | MASTER_VALUE, &gyroConfig()->gyro_sync_denom, .config.minmax = { 1, 32 } }, #if defined(GYRO_USES_SPI) && defined(USE_MPU_DATA_READY_SIGNAL) { "gyro_isr_update", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gyroConfig()->gyro_isr_update, .config.lookup = { TABLE_OFF_ON } }, #endif { "gyro_use_32khz", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gyroConfig()->gyro_use_32khz, .config.lookup = { TABLE_OFF_ON } }, { "gyro_lowpass_type", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gyroConfig()->gyro_soft_lpf_type, .config.lookup = { TABLE_LOWPASS_TYPE } }, { "gyro_lowpass", VAR_UINT8 | MASTER_VALUE, &gyroConfig()->gyro_soft_lpf_hz, .config.minmax = { 0, 255 } }, { "gyro_notch1_hz", VAR_UINT16 | MASTER_VALUE, &gyroConfig()->gyro_soft_notch_hz_1, .config.minmax = { 0, 16000 } }, { "gyro_notch1_cut", VAR_UINT16 | MASTER_VALUE, &gyroConfig()->gyro_soft_notch_cutoff_1, .config.minmax = { 1, 16000 } }, { "gyro_notch2_hz", VAR_UINT16 | MASTER_VALUE, &gyroConfig()->gyro_soft_notch_hz_2, .config.minmax = { 0, 16000 } }, { "gyro_notch2_cut", VAR_UINT16 | MASTER_VALUE, &gyroConfig()->gyro_soft_notch_cutoff_2, .config.minmax = { 1, 16000 } }, { "moron_threshold", VAR_UINT8 | MASTER_VALUE, &gyroConfig()->gyroMovementCalibrationThreshold, .config.minmax = { 0, 200 } }, { "imu_dcm_kp", VAR_UINT16 | MASTER_VALUE, &imuConfig()->dcm_kp, .config.minmax = { 0, 32000 } }, { "imu_dcm_ki", VAR_UINT16 | MASTER_VALUE, &imuConfig()->dcm_ki, .config.minmax = { 0, 32000 } }, { "alt_hold_deadband", VAR_UINT8 | MASTER_VALUE, &rcControlsConfig()->alt_hold_deadband, .config.minmax = { 1, 250 } }, { "alt_hold_fast_change", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &rcControlsConfig()->alt_hold_fast_change, .config.lookup = { TABLE_OFF_ON } }, { "deadband", VAR_UINT8 | MASTER_VALUE, &rcControlsConfig()->deadband, .config.minmax = { 0, 32 } }, { "yaw_deadband", VAR_UINT8 | MASTER_VALUE, &rcControlsConfig()->yaw_deadband, .config.minmax = { 0, 100 } }, { "thr_corr_value", VAR_UINT8 | MASTER_VALUE, &throttleCorrectionConfig()->throttle_correction_value, .config.minmax = { 0, 150 } }, { "thr_corr_angle", VAR_UINT16 | MASTER_VALUE, &throttleCorrectionConfig()->throttle_correction_angle, .config.minmax = { 1, 900 } }, { "yaw_control_direction", VAR_INT8 | MASTER_VALUE, &rcControlsConfig()->yaw_control_direction, .config.minmax = { -1, 1 } }, { "yaw_motor_direction", VAR_INT8 | MASTER_VALUE, &mixerConfig()->yaw_motor_direction, .config.minmax = { -1, 1 } }, { "yaw_p_limit", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.yaw_p_limit, .config.minmax = { YAW_P_LIMIT_MIN, YAW_P_LIMIT_MAX } }, { "pidsum_limit", VAR_FLOAT | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.pidSumLimit, .config.minmax = { 0.1, 1.0 } }, #ifdef USE_SERVOS { "servo_center_pulse", VAR_UINT16 | MASTER_VALUE, &servoConfig()->dev.servoCenterPulse, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } }, { "tri_unarmed_servo", VAR_INT8 | MASTER_VALUE | MODE_LOOKUP, &servoConfig()->tri_unarmed_servo, .config.lookup = { TABLE_OFF_ON } }, { "servo_lowpass_hz", VAR_UINT16 | MASTER_VALUE, &servoConfig()->servo_lowpass_freq, .config.minmax = { 0, 400} }, { "servo_pwm_rate", VAR_UINT16 | MASTER_VALUE, &servoConfig()->dev.servoPwmRate, .config.minmax = { 50, 498 } }, { "gimbal_mode", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gimbalConfig()->mode, .config.lookup = { TABLE_GIMBAL_MODE } }, { "channel_forwarding_start", VAR_UINT8 | MASTER_VALUE, &channelForwardingConfig()->startChannel, .config.minmax = { AUX1, MAX_SUPPORTED_RC_CHANNEL_COUNT } }, #endif { "rc_rate", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].rcRate8, .config.minmax = { 0, 255 } }, { "rc_rate_yaw", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].rcYawRate8, .config.minmax = { 0, 255 } }, { "rc_expo", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].rcExpo8, .config.minmax = { 0, 100 } }, { "rc_yaw_expo", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].rcYawExpo8, .config.minmax = { 0, 100 } }, { "thr_mid", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].thrMid8, .config.minmax = { 0, 100 } }, { "thr_expo", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].thrExpo8, .config.minmax = { 0, 100 } }, { "roll_srate", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].rates[FD_ROLL], .config.minmax = { 0, CONTROL_RATE_CONFIG_ROLL_PITCH_RATE_MAX } }, { "pitch_srate", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].rates[FD_PITCH], .config.minmax = { 0, CONTROL_RATE_CONFIG_ROLL_PITCH_RATE_MAX } }, { "yaw_srate", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].rates[FD_YAW], .config.minmax = { 0, CONTROL_RATE_CONFIG_YAW_RATE_MAX } }, { "tpa_rate", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].dynThrPID, .config.minmax = { 0, CONTROL_RATE_CONFIG_TPA_MAX} }, { "tpa_breakpoint", VAR_UINT16 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].tpa_breakpoint, .config.minmax = { PWM_RANGE_MIN, PWM_RANGE_MAX} }, { "airmode_start_throttle", VAR_UINT16 | MASTER_VALUE, &rxConfig()->airModeActivateThreshold, .config.minmax = {1000, 2000 } }, { "failsafe_delay", VAR_UINT8 | MASTER_VALUE, &failsafeConfig()->failsafe_delay, .config.minmax = { 0, 200 } }, { "failsafe_off_delay", VAR_UINT8 | MASTER_VALUE, &failsafeConfig()->failsafe_off_delay, .config.minmax = { 0, 200 } }, { "failsafe_throttle", VAR_UINT16 | MASTER_VALUE, &failsafeConfig()->failsafe_throttle, .config.minmax = { PWM_RANGE_MIN, PWM_RANGE_MAX } }, { "failsafe_kill_switch", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &failsafeConfig()->failsafe_kill_switch, .config.lookup = { TABLE_OFF_ON } }, { "failsafe_throttle_low_delay",VAR_UINT16 | MASTER_VALUE, &failsafeConfig()->failsafe_throttle_low_delay, .config.minmax = { 0, 300 } }, { "failsafe_procedure", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &failsafeConfig()->failsafe_procedure, .config.lookup = { TABLE_FAILSAFE } }, { "rx_min_usec", VAR_UINT16 | MASTER_VALUE, &rxConfig()->rx_min_usec, .config.minmax = { PWM_PULSE_MIN, PWM_PULSE_MAX } }, { "rx_max_usec", VAR_UINT16 | MASTER_VALUE, &rxConfig()->rx_max_usec, .config.minmax = { PWM_PULSE_MIN, PWM_PULSE_MAX } }, { "acc_hardware", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &accelerometerConfig()->acc_hardware, .config.lookup = { TABLE_ACC_HARDWARE } }, { "acc_lpf_hz", VAR_UINT16 | MASTER_VALUE, &accelerometerConfig()->acc_lpf_hz, .config.minmax = { 0, 400 } }, { "accxy_deadband", VAR_UINT8 | MASTER_VALUE, &imuConfig()->accDeadband.xy, .config.minmax = { 0, 100 } }, { "accz_deadband", VAR_UINT8 | MASTER_VALUE, &imuConfig()->accDeadband.z, .config.minmax = { 0, 100 } }, { "acc_unarmedcal", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &imuConfig()->acc_unarmedcal, .config.lookup = { TABLE_OFF_ON } }, { "acc_trim_pitch", VAR_INT16 | MASTER_VALUE, &accelerometerConfig()->accelerometerTrims.values.pitch, .config.minmax = { -300, 300 } }, { "acc_trim_roll", VAR_INT16 | MASTER_VALUE, &accelerometerConfig()->accelerometerTrims.values.roll, .config.minmax = { -300, 300 } }, #ifdef BARO { "baro_tab_size", VAR_UINT8 | MASTER_VALUE, &barometerConfig()->baro_sample_count, .config.minmax = { 0, BARO_SAMPLE_COUNT_MAX } }, { "baro_noise_lpf", VAR_FLOAT | MASTER_VALUE, &barometerConfig()->baro_noise_lpf, .config.minmax = { 0 , 1 } }, { "baro_cf_vel", VAR_FLOAT | MASTER_VALUE, &barometerConfig()->baro_cf_vel, .config.minmax = { 0 , 1 } }, { "baro_cf_alt", VAR_FLOAT | MASTER_VALUE, &barometerConfig()->baro_cf_alt, .config.minmax = { 0 , 1 } }, { "baro_hardware", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &barometerConfig()->baro_hardware, .config.lookup = { TABLE_BARO_HARDWARE } }, #endif #ifdef MAG { "mag_hardware", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &compassConfig()->mag_hardware, .config.lookup = { TABLE_MAG_HARDWARE } }, { "mag_declination", VAR_INT16 | MASTER_VALUE, &compassConfig()->mag_declination, .config.minmax = { -18000, 18000 } }, #endif { "d_lowpass_type", VAR_UINT8 | PROFILE_VALUE | MODE_LOOKUP, &masterConfig.profile[0].pidProfile.dterm_filter_type, .config.lookup = { TABLE_LOWPASS_TYPE } }, { "d_lowpass", VAR_INT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.dterm_lpf_hz, .config.minmax = {0, 16000 } }, { "d_notch_hz", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.dterm_notch_hz, .config.minmax = { 0, 16000 } }, { "d_notch_cut", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.dterm_notch_cutoff, .config.minmax = { 1, 16000 } }, { "vbat_pid_gain", VAR_UINT8 | PROFILE_VALUE | MODE_LOOKUP, &masterConfig.profile[0].pidProfile.vbatPidCompensation, .config.lookup = { TABLE_OFF_ON } }, { "pid_at_min_throttle", VAR_UINT8 | PROFILE_VALUE | MODE_LOOKUP, &masterConfig.profile[0].pidProfile.pidAtMinThrottle, .config.lookup = { TABLE_OFF_ON } }, { "anti_gravity_thresh", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.itermThrottleThreshold, .config.minmax = {20, 1000 } }, { "anti_gravity_gain", VAR_FLOAT | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.itermAcceleratorGain, .config.minmax = {1, 30 } }, { "setpoint_relax_ratio", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.setpointRelaxRatio, .config.minmax = {0, 100 } }, { "d_setpoint_weight", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.dtermSetpointWeight, .config.minmax = {0, 255 } }, { "yaw_accel_limit", VAR_FLOAT | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.yawRateAccelLimit, .config.minmax = {0.1f, 50.0f } }, { "accel_limit", VAR_FLOAT | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.rateAccelLimit, .config.minmax = {0.1f, 50.0f } }, { "iterm_windup", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.itermWindupPointPercent, .config.minmax = {30, 100 } }, { "yaw_lowpass", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.yaw_lpf_hz, .config.minmax = {0, 500 } }, { "pid_process_denom", VAR_UINT8 | MASTER_VALUE, &pidConfig()->pid_process_denom, .config.minmax = { 1, MAX_PID_PROCESS_DENOM } }, { "p_pitch", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.P8[PITCH], .config.minmax = { 0, 200 } }, { "i_pitch", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.I8[PITCH], .config.minmax = { 0, 200 } }, { "d_pitch", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.D8[PITCH], .config.minmax = { 0, 200 } }, { "p_roll", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.P8[ROLL], .config.minmax = { 0, 200 } }, { "i_roll", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.I8[ROLL], .config.minmax = { 0, 200 } }, { "d_roll", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.D8[ROLL], .config.minmax = { 0, 200 } }, { "p_yaw", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.P8[YAW], .config.minmax = { 0, 200 } }, { "i_yaw", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.I8[YAW], .config.minmax = { 0, 200 } }, { "d_yaw", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.D8[YAW], .config.minmax = { 0, 200 } }, { "p_alt", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.P8[PIDALT], .config.minmax = { 0, 200 } }, { "i_alt", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.I8[PIDALT], .config.minmax = { 0, 200 } }, { "d_alt", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.D8[PIDALT], .config.minmax = { 0, 200 } }, { "p_level", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.P8[PIDLEVEL], .config.minmax = { 0, 200 } }, { "i_level", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.I8[PIDLEVEL], .config.minmax = { 0, 200 } }, { "d_level", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.D8[PIDLEVEL], .config.minmax = { 0, 200 } }, { "p_vel", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.P8[PIDVEL], .config.minmax = { 0, 200 } }, { "i_vel", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.I8[PIDVEL], .config.minmax = { 0, 200 } }, { "d_vel", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.D8[PIDVEL], .config.minmax = { 0, 200 } }, { "level_sensitivity", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.levelSensitivity, .config.minmax = { 10, 200 } }, { "level_limit", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.levelAngleLimit, .config.minmax = { 10, 120 } }, #ifdef BLACKBOX { "blackbox_rate_num", VAR_UINT8 | MASTER_VALUE, &blackboxConfig()->rate_num, .config.minmax = { 1, 32 } }, { "blackbox_rate_denom", VAR_UINT8 | MASTER_VALUE, &blackboxConfig()->rate_denom, .config.minmax = { 1, 32 } }, { "blackbox_device", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &blackboxConfig()->device, .config.lookup = { TABLE_BLACKBOX_DEVICE } }, { "blackbox_on_motor_test", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &blackboxConfig()->on_motor_test, .config.lookup = { TABLE_OFF_ON } }, #endif #ifdef VTX { "vtx_band", VAR_UINT8 | MASTER_VALUE, &masterConfig.vtx_band, .config.minmax = { 1, 5 } }, { "vtx_channel", VAR_UINT8 | MASTER_VALUE, &masterConfig.vtx_channel, .config.minmax = { 1, 8 } }, { "vtx_mode", VAR_UINT8 | MASTER_VALUE, &masterConfig.vtx_mode, .config.minmax = { 0, 2 } }, { "vtx_mhz", VAR_UINT16 | MASTER_VALUE, &masterConfig.vtx_mhz, .config.minmax = { 5600, 5950 } }, #endif #ifdef MAG { "magzero_x", VAR_INT16 | MASTER_VALUE, &compassConfig()->magZero.raw[X], .config.minmax = { INT16_MIN, INT16_MAX } }, { "magzero_y", VAR_INT16 | MASTER_VALUE, &compassConfig()->magZero.raw[Y], .config.minmax = { INT16_MIN, INT16_MAX } }, { "magzero_z", VAR_INT16 | MASTER_VALUE, &compassConfig()->magZero.raw[Z], .config.minmax = { INT16_MIN, INT16_MAX } }, #endif #ifdef LED_STRIP { "ledstrip_visual_beeper", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &ledStripConfig()->ledstrip_visual_beeper, .config.lookup = { TABLE_OFF_ON } }, #endif #if defined(USE_RTC6705) { "vtx_channel", VAR_UINT8 | MASTER_VALUE, &masterConfig.vtx_channel, .config.minmax = { 0, 39 } }, { "vtx_power", VAR_UINT8 | MASTER_VALUE, &masterConfig.vtx_power, .config.minmax = { 0, 1 } }, #endif #ifdef USE_SDCARD { "sdcard_dma", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &sdcardConfig()->useDma, .config.lookup = { TABLE_OFF_ON } }, #endif #ifdef OSD { "osd_units", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &osdProfile()->units, .config.lookup = { TABLE_UNIT } }, { "osd_rssi_alarm", VAR_UINT8 | MASTER_VALUE, &osdProfile()->rssi_alarm, .config.minmax = { 0, 100 } }, { "osd_cap_alarm", VAR_UINT16 | MASTER_VALUE, &osdProfile()->cap_alarm, .config.minmax = { 0, 20000 } }, { "osd_time_alarm", VAR_UINT16 | MASTER_VALUE, &osdProfile()->time_alarm, .config.minmax = { 0, 60 } }, { "osd_alt_alarm", VAR_UINT16 | MASTER_VALUE, &osdProfile()->alt_alarm, .config.minmax = { 0, 10000 } }, { "osd_vbat_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_MAIN_BATT_VOLTAGE], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_rssi_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_RSSI_VALUE], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_flytimer_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_FLYTIME], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_ontimer_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_ONTIME], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_flymode_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_FLYMODE], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_throttle_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_THROTTLE_POS], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_vtx_channel_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_VTX_CHANNEL], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_crosshairs", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_CROSSHAIRS], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_horizon_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_ARTIFICIAL_HORIZON], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_current_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_CURRENT_DRAW], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_mah_drawn_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_MAH_DRAWN], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_craft_name_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_CRAFT_NAME], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_gps_speed_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_GPS_SPEED], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_gps_sats_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_GPS_SATS], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_altitude_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_ALTITUDE], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_pid_roll_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_ROLL_PIDS], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_pid_pitch_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_PITCH_PIDS], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_pid_yaw_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_YAW_PIDS], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_power_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_POWER], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_pidrate_profile_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_PIDRATE_PROFILE], .config.minmax = { 0, OSD_POSCFG_MAX } }, { "osd_battery_warning_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_MAIN_BATT_WARNING], .config.minmax = { 0, OSD_POSCFG_MAX } }, #endif #ifdef USE_MAX7456 { "vcd_video_system", VAR_UINT8 | MASTER_VALUE, &vcdProfile()->video_system, .config.minmax = { 0, 2 } }, { "vcd_h_offset", VAR_INT8 | MASTER_VALUE, &vcdProfile()->h_offset, .config.minmax = { -32, 31 } }, { "vcd_v_offset", VAR_INT8 | MASTER_VALUE, &vcdProfile()->v_offset, .config.minmax = { -15, 16 } }, #endif #ifdef USE_MSP_DISPLAYPORT { "displayport_msp_col_adjust", VAR_INT8 | MASTER_VALUE, &displayPortProfileMsp()->colAdjust, .config.minmax = { -6, 0 } }, { "displayport_msp_row_adjust", VAR_INT8 | MASTER_VALUE, &displayPortProfileMsp()->rowAdjust, .config.minmax = { -3, 0 } }, #endif #ifdef OSD { "displayport_max7456_col_adjust", VAR_INT8 | MASTER_VALUE, &displayPortProfileMax7456()->colAdjust, .config.minmax = { -6, 0 } }, { "displayport_max7456_row_adjust", VAR_INT8 | MASTER_VALUE, &displayPortProfileMax7456()->rowAdjust, .config.minmax = { -3, 0 } }, #endif }; #endif #ifdef USE_PARAMETER_GROUPS static featureConfig_t featureConfigCopy; static gyroConfig_t gyroConfigCopy; static accelerometerConfig_t accelerometerConfigCopy; #ifdef MAG static compassConfig_t compassConfigCopy; #endif #ifdef BARO static barometerConfig_t barometerConfigCopy; #endif #ifdef PITOT static pitotmeterConfig_t pitotmeterConfigCopy; #endif static featureConfig_t featureConfigCopy; static rxConfig_t rxConfigCopy; #ifdef BLACKBOX static blackboxConfig_t blackboxConfigCopy; #endif static rxFailsafeChannelConfig_t rxFailsafeChannelConfigsCopy[MAX_SUPPORTED_RC_CHANNEL_COUNT]; static rxChannelRangeConfig_t rxChannelRangeConfigsCopy[NON_AUX_CHANNEL_COUNT]; static motorConfig_t motorConfigCopy; static failsafeConfig_t failsafeConfigCopy; static boardAlignment_t boardAlignmentCopy; #ifdef USE_SERVOS static servoConfig_t servoConfigCopy; static gimbalConfig_t gimbalConfigCopy; static servoMixer_t customServoMixersCopy[MAX_SERVO_RULES]; static servoParam_t servoParamsCopy[MAX_SUPPORTED_SERVOS]; #endif static batteryConfig_t batteryConfigCopy; static motorMixer_t customMotorMixerCopy[MAX_SUPPORTED_MOTORS]; static mixerConfig_t mixerConfigCopy; static flight3DConfig_t flight3DConfigCopy; static serialConfig_t serialConfigCopy; static imuConfig_t imuConfigCopy; static armingConfig_t armingConfigCopy; static rcControlsConfig_t rcControlsConfigCopy; #ifdef GPS static gpsConfig_t gpsConfigCopy; #endif #ifdef NAV static positionEstimationConfig_t positionEstimationConfigCopy; static navConfig_t navConfigCopy; #endif #ifdef TELEMETRY static telemetryConfig_t telemetryConfigCopy; #endif static modeActivationCondition_t modeActivationConditionsCopy[MAX_MODE_ACTIVATION_CONDITION_COUNT]; static adjustmentRange_t adjustmentRangesCopy[MAX_ADJUSTMENT_RANGE_COUNT]; #ifdef LED_STRIP static ledStripConfig_t ledStripConfigCopy; #endif #ifdef OSD static osdConfig_t osdConfigCopy; #endif static systemConfig_t systemConfigCopy; #ifdef BEEPER static beeperDevConfig_t beeperDevConfigCopy; #endif static controlRateConfig_t controlRateProfilesCopy[MAX_CONTROL_RATE_PROFILE_COUNT]; static pidProfile_t pidProfileCopy[MAX_PROFILE_COUNT]; #endif // USE_PARAMETER_GROUPS static void cliPrint(const char *str) { while (*str) { bufWriterAppend(cliWriter, *str++); } bufWriterFlush(cliWriter); } #ifdef MINIMAL_CLI #define cliPrintHashLine(str) #else static void cliPrintHashLine(const char *str) { cliPrint("\r\n# "); cliPrint(str); cliPrint("\r\n"); } #endif static void cliPutp(void *p, char ch) { bufWriterAppend(p, ch); } typedef enum { DUMP_MASTER = (1 << 0), DUMP_PROFILE = (1 << 1), DUMP_RATES = (1 << 2), DUMP_ALL = (1 << 3), DO_DIFF = (1 << 4), SHOW_DEFAULTS = (1 << 5), HIDE_UNUSED = (1 << 6) } dumpFlags_e; static bool cliDumpPrintf(uint8_t dumpMask, bool equalsDefault, const char *format, ...) { if (!((dumpMask & DO_DIFF) && equalsDefault)) { va_list va; va_start(va, format); tfp_format(cliWriter, cliPutp, format, va); va_end(va); bufWriterFlush(cliWriter); return true; } else { return false; } } static void cliWrite(uint8_t ch) { bufWriterAppend(cliWriter, ch); } static bool cliDefaultPrintf(uint8_t dumpMask, bool equalsDefault, const char *format, ...) { if ((dumpMask & SHOW_DEFAULTS) && !equalsDefault) { cliWrite('#'); va_list va; va_start(va, format); tfp_format(cliWriter, cliPutp, format, va); va_end(va); bufWriterFlush(cliWriter); return true; } else { return false; } } static void cliPrintf(const char *format, ...) { va_list va; va_start(va, format); tfp_format(cliWriter, cliPutp, format, va); va_end(va); bufWriterFlush(cliWriter); } static void printValuePointer(const clivalue_t *var, const void *valuePointer, uint32_t full) { int32_t value = 0; char buf[8]; switch (var->type & VALUE_TYPE_MASK) { case VAR_UINT8: value = *(uint8_t *)valuePointer; break; case VAR_INT8: value = *(int8_t *)valuePointer; break; case VAR_UINT16: value = *(uint16_t *)valuePointer; break; case VAR_INT16: value = *(int16_t *)valuePointer; break; /* not currently used case VAR_UINT32: value = *(uint32_t *)valuePointer; break; */ case VAR_FLOAT: cliPrintf("%s", ftoa(*(float *)valuePointer, buf)); if (full && (var->type & VALUE_MODE_MASK) == MODE_DIRECT) { cliPrintf(" %s", ftoa((float)var->config.minmax.min, buf)); cliPrintf(" %s", ftoa((float)var->config.minmax.max, buf)); } return; // return from case for float only } switch(var->type & VALUE_MODE_MASK) { case MODE_DIRECT: cliPrintf("%d", value); if (full) { cliPrintf(" %d %d", var->config.minmax.min, var->config.minmax.max); } break; case MODE_LOOKUP: cliPrintf(lookupTables[var->config.lookup.tableIndex].values[value]); break; } } #ifdef USE_PARAMETER_GROUPS static bool valuePtrEqualsDefault(uint8_t type, const void *ptr, const void *ptrDefault) { bool result = false; switch (type & VALUE_TYPE_MASK) { case VAR_UINT8: result = *(uint8_t *)ptr == *(uint8_t *)ptrDefault; break; case VAR_INT8: result = *(int8_t *)ptr == *(int8_t *)ptrDefault; break; case VAR_UINT16: result = *(uint16_t *)ptr == *(uint16_t *)ptrDefault; break; case VAR_INT16: result = *(int16_t *)ptr == *(int16_t *)ptrDefault; break; /* not currently used case VAR_UINT32: result = *(uint32_t *)ptr == *(uint32_t *)ptrDefault; break;*/ case VAR_FLOAT: result = *(float *)ptr == *(float *)ptrDefault; break; } return result; } typedef struct cliCurrentAndDefaultConfig_s { const void *currentConfig; // the copy const void *defaultConfig; // the PG value as set by default } cliCurrentAndDefaultConfig_t; static const cliCurrentAndDefaultConfig_t *getCurrentAndDefaultConfigs(pgn_t pgn) { static cliCurrentAndDefaultConfig_t ret; switch (pgn) { case PG_GYRO_CONFIG: ret.currentConfig = &gyroConfigCopy; ret.defaultConfig = gyroConfig(); break; case PG_ACCELEROMETER_CONFIG: ret.currentConfig = &accelerometerConfigCopy; ret.defaultConfig = accelerometerConfig(); break; #ifdef MAG case PG_COMPASS_CONFIG: ret.currentConfig = &compassConfigCopy; ret.defaultConfig = compassConfig(); break; #endif #ifdef BARO case PG_BAROMETER_CONFIG: ret.currentConfig = &barometerConfigCopy; ret.defaultConfig = barometerConfig(); break; #endif #ifdef PITOT case PG_PITOTMETER_CONFIG: ret.currentConfig = &pitotmeterConfigCopy; ret.defaultConfig = pitotmeterConfig(); break; #endif case PG_FEATURE_CONFIG: ret.currentConfig = &featureConfigCopy; ret.defaultConfig = featureConfig(); break; case PG_RX_CONFIG: ret.currentConfig = &rxConfigCopy; ret.defaultConfig = rxConfig(); break; #ifdef BLACKBOX case PG_BLACKBOX_CONFIG: ret.currentConfig = &blackboxConfigCopy; ret.defaultConfig = blackboxConfig(); break; #endif case PG_MOTOR_CONFIG: ret.currentConfig = &motorConfigCopy; ret.defaultConfig = motorConfig(); break; case PG_FAILSAFE_CONFIG: ret.currentConfig = &failsafeConfigCopy; ret.defaultConfig = failsafeConfig(); break; case PG_BOARD_ALIGNMENT: ret.currentConfig = &boardAlignmentCopy; ret.defaultConfig = boardAlignment(); break; case PG_MIXER_CONFIG: ret.currentConfig = &mixerConfigCopy; ret.defaultConfig = mixerConfig(); break; case PG_MOTOR_3D_CONFIG: ret.currentConfig = &flight3DConfigCopy; ret.defaultConfig = flight3DConfig(); break; #ifdef USE_SERVOS case PG_SERVO_CONFIG: ret.currentConfig = &servoConfigCopy; ret.defaultConfig = servoConfig(); break; case PG_GIMBAL_CONFIG: ret.currentConfig = &gimbalConfigCopy; ret.defaultConfig = gimbalConfig(); break; #endif case PG_BATTERY_CONFIG: ret.currentConfig = &batteryConfigCopy; ret.defaultConfig = batteryConfig(); break; case PG_SERIAL_CONFIG: ret.currentConfig = &serialConfigCopy; ret.defaultConfig = serialConfig(); break; case PG_IMU_CONFIG: ret.currentConfig = &imuConfigCopy; ret.defaultConfig = imuConfig(); break; case PG_RC_CONTROLS_CONFIG: ret.currentConfig = &rcControlsConfigCopy; ret.defaultConfig = rcControlsConfig(); break; case PG_ARMING_CONFIG: ret.currentConfig = &armingConfigCopy; ret.defaultConfig = armingConfig(); break; #ifdef GPS case PG_GPS_CONFIG: ret.currentConfig = &gpsConfigCopy; ret.defaultConfig = gpsConfig(); break; #endif #ifdef NAV case PG_POSITION_ESTIMATION_CONFIG: ret.currentConfig = &positionEstimationConfigCopy; ret.defaultConfig = positionEstimationConfig(); break; case PG_NAV_CONFIG: ret.currentConfig = &navConfigCopy; ret.defaultConfig = navConfig(); break; #endif #ifdef TELEMETRY case PG_TELEMETRY_CONFIG: ret.currentConfig = &telemetryConfigCopy; ret.defaultConfig = telemetryConfig(); break; #endif #ifdef LED_STRIP case PG_LED_STRIP_CONFIG: ret.currentConfig = &ledStripConfigCopy; ret.defaultConfig = ledStripConfig(); break; #endif #ifdef OSD case PG_OSD_CONFIG: ret.currentConfig = &osdConfigCopy; ret.defaultConfig = osdConfig(); break; #endif case PG_SYSTEM_CONFIG: ret.currentConfig = &systemConfigCopy; ret.defaultConfig = systemConfig(); break; case PG_CONTROL_RATE_PROFILES: ret.currentConfig = &controlRateProfilesCopy[0]; ret.defaultConfig = controlRateProfiles(0); break; case PG_PID_PROFILE: ret.currentConfig = &pidProfileCopy[getConfigProfile()]; ret.defaultConfig = pidProfile(); break; case PG_RX_FAILSAFE_CHANNEL_CONFIG: ret.currentConfig = &rxFailsafeChannelConfigsCopy[0]; ret.defaultConfig = rxFailsafeChannelConfigs(0); break; case PG_RX_CHANNEL_RANGE_CONFIG: ret.currentConfig = &rxChannelRangeConfigsCopy[0]; ret.defaultConfig = rxChannelRangeConfigs(0); break; #ifdef USE_SERVOS case PG_SERVO_MIXER: ret.currentConfig = &customServoMixersCopy[0]; ret.defaultConfig = customServoMixers(0); break; case PG_SERVO_PARAMS: ret.currentConfig = &servoParamsCopy[0]; ret.defaultConfig = servoParams(0); break; #endif case PG_MOTOR_MIXER: ret.currentConfig = &customMotorMixerCopy[0]; ret.defaultConfig = customMotorMixer(0); break; case PG_MODE_ACTIVATION_PROFILE: ret.currentConfig = &modeActivationConditionsCopy[0]; ret.defaultConfig = modeActivationConditions(0); break; case PG_ADJUSTMENT_RANGE_CONFIG: ret.currentConfig = &adjustmentRangesCopy[0]; ret.defaultConfig = adjustmentRanges(0); break; case PG_BEEPER_CONFIG: ret.currentConfig = &beeperDevConfigCopy; ret.defaultConfig = beeperDevConfig(); break; default: ret.currentConfig = NULL; ret.defaultConfig = NULL; break; } return &ret; } static uint16_t getValueOffset(const clivalue_t *value) { switch (value->type & VALUE_SECTION_MASK) { case MASTER_VALUE: case PROFILE_VALUE: return value->offset; case PROFILE_RATE_VALUE: return value->offset + sizeof(controlRateConfig_t) * getCurrentControlRateProfile(); } return 0; } static void *getValuePointer(const clivalue_t *value) { const pgRegistry_t* rec = pgFind(value->pgn); switch (value->type & VALUE_SECTION_MASK) { case MASTER_VALUE: case PROFILE_VALUE: return rec->address + value->offset; case PROFILE_RATE_VALUE: return rec->address + value->offset + sizeof(controlRateConfig_t) * getCurrentControlRateProfile(); } return NULL; } static void dumpPgValue(const clivalue_t *value, uint8_t dumpMask) { const char *format = "set %s = "; const cliCurrentAndDefaultConfig_t *config = getCurrentAndDefaultConfigs(value->pgn); if (config->currentConfig == NULL || config->defaultConfig == NULL) { // has not been set up properly cliPrintf("VALUE %s ERROR\r\n", value->name); return; } const int valueOffset = getValueOffset(value); switch (dumpMask & (DO_DIFF | SHOW_DEFAULTS)) { case DO_DIFF: if (valuePtrEqualsDefault(value->type, (uint8_t*)config->currentConfig + valueOffset, (uint8_t*)config->defaultConfig + valueOffset)) { break; } // drop through, since not equal to default case 0: case SHOW_DEFAULTS: cliPrintf(format, value->name); printValuePointer(value, (uint8_t*)config->currentConfig + valueOffset, 0); cliPrint("\r\n"); break; } } static void dumpAllValues(uint16_t valueSection, uint8_t dumpMask) { for (uint32_t i = 0; i < ARRAYLEN(valueTable); i++) { const clivalue_t *value = &valueTable[i]; bufWriterFlush(cliWriter); if ((value->type & VALUE_SECTION_MASK) == valueSection) { dumpPgValue(value, dumpMask); } } } #else void *getValuePointer(const clivalue_t *value) { void *ptr = value->ptr; if ((value->type & VALUE_SECTION_MASK) == PROFILE_VALUE) { ptr = ((uint8_t *)ptr) + (sizeof(profile_t) * masterConfig.current_profile_index); } if ((value->type & VALUE_SECTION_MASK) == PROFILE_RATE_VALUE) { ptr = ((uint8_t *)ptr) + (sizeof(profile_t) * masterConfig.current_profile_index) + (sizeof(controlRateConfig_t) * getCurrentControlRateProfile()); } return ptr; } #endif static void *getDefaultPointer(void *valuePointer, const master_t *defaultConfig) { return ((uint8_t *)valuePointer) - (uint32_t)&masterConfig + (uint32_t)defaultConfig; } static bool valueEqualsDefault(const clivalue_t *value, const master_t *defaultConfig) { void *ptr = getValuePointer(value); void *ptrDefault = getDefaultPointer(ptr, defaultConfig); bool result = false; switch (value->type & VALUE_TYPE_MASK) { case VAR_UINT8: result = *(uint8_t *)ptr == *(uint8_t *)ptrDefault; break; case VAR_INT8: result = *(int8_t *)ptr == *(int8_t *)ptrDefault; break; case VAR_UINT16: result = *(uint16_t *)ptr == *(uint16_t *)ptrDefault; break; case VAR_INT16: result = *(int16_t *)ptr == *(int16_t *)ptrDefault; break; /* not currently used case VAR_UINT32: result = *(uint32_t *)ptr == *(uint32_t *)ptrDefault; break; */ case VAR_FLOAT: result = *(float *)ptr == *(float *)ptrDefault; break; } return result; } static void cliPrintVar(const clivalue_t *var, uint32_t full) { const void *ptr = getValuePointer(var); printValuePointer(var, ptr, full); } static void cliPrintVarDefault(const clivalue_t *var, uint32_t full, const master_t *defaultConfig) { void *ptr = getValuePointer(var); void *defaultPtr = getDefaultPointer(ptr, defaultConfig); printValuePointer(var, defaultPtr, full); } static void dumpValues(uint16_t valueSection, uint8_t dumpMask, const master_t *defaultConfig) { const clivalue_t *value; for (uint32_t i = 0; i < ARRAYLEN(valueTable); i++) { value = &valueTable[i]; if ((value->type & VALUE_SECTION_MASK) != valueSection) { continue; } const char *format = "set %s = "; if (cliDefaultPrintf(dumpMask, valueEqualsDefault(value, defaultConfig), format, valueTable[i].name)) { cliPrintVarDefault(value, 0, defaultConfig); cliPrint("\r\n"); } if (cliDumpPrintf(dumpMask, valueEqualsDefault(value, defaultConfig), format, valueTable[i].name)) { cliPrintVar(value, 0); cliPrint("\r\n"); } } } static void cliPrintVarRange(const clivalue_t *var) { switch (var->type & VALUE_MODE_MASK) { case (MODE_DIRECT): { cliPrintf("Allowed range: %d - %d\r\n", var->config.minmax.min, var->config.minmax.max); } break; case (MODE_LOOKUP): { const lookupTableEntry_t *tableEntry = &lookupTables[var->config.lookup.tableIndex]; cliPrint("Allowed values:"); for (uint32_t i = 0; i < tableEntry->valueCount ; i++) { if (i > 0) cliPrint(","); cliPrintf(" %s", tableEntry->values[i]); } cliPrint("\r\n"); } break; } } typedef union { int32_t int_value; float float_value; } int_float_value_t; static void cliSetVar(const clivalue_t *var, const int_float_value_t value) { void *ptr = getValuePointer(var); switch (var->type & VALUE_TYPE_MASK) { case VAR_UINT8: case VAR_INT8: *(int8_t *)ptr = value.int_value; break; case VAR_UINT16: case VAR_INT16: *(int16_t *)ptr = value.int_value; break; /* not currently used case VAR_UINT32: *(uint32_t *)ptr = value.int_value; break; */ case VAR_FLOAT: *(float *)ptr = (float)value.float_value; break; } } #ifndef MINIMAL_CLI static void cliRepeat(char ch, uint8_t len) { for (int i = 0; i < len; i++) { bufWriterAppend(cliWriter, ch); } cliPrint("\r\n"); } #endif static void cliPrompt(void) { cliPrint("\r\n# "); } static void cliShowParseError(void) { cliPrint("Parse error\r\n"); } static void cliShowArgumentRangeError(char *name, int min, int max) { cliPrintf("%s not between %d and %d\r\n", name, min, max); } static const char *nextArg(const char *currentArg) { const char *ptr = strchr(currentArg, ' '); while (ptr && *ptr == ' ') { ptr++; } return ptr; } static const char *processChannelRangeArgs(const char *ptr, channelRange_t *range, uint8_t *validArgumentCount) { for (uint32_t argIndex = 0; argIndex < 2; argIndex++) { ptr = nextArg(ptr); if (ptr) { int val = atoi(ptr); val = CHANNEL_VALUE_TO_STEP(val); if (val >= MIN_MODE_RANGE_STEP && val <= MAX_MODE_RANGE_STEP) { if (argIndex == 0) { range->startStep = val; } else { range->endStep = val; } (*validArgumentCount)++; } } } return ptr; } // Check if a string's length is zero static bool isEmpty(const char *string) { return (string == NULL || *string == '\0') ? true : false; } static void printRxFailsafe(uint8_t dumpMask, const rxFailsafeChannelConfig_t *failsafeChannelConfig, const rxFailsafeChannelConfig_t *failsafeChannelConfigDefault) { // print out rxConfig failsafe settings for (uint32_t channel = 0; channel < MAX_SUPPORTED_RC_CHANNEL_COUNT; channel++) { const rxFailsafeChannelConfig_t *channelFailsafeConfig = &failsafeChannelConfig[channel]; const rxFailsafeChannelConfig_t *channelFailsafeConfigDefault = &failsafeChannelConfigDefault[channel]; const bool equalsDefault = channelFailsafeConfig->mode == channelFailsafeConfigDefault->mode && channelFailsafeConfig->step == channelFailsafeConfigDefault->step; const bool requireValue = channelFailsafeConfig->mode == RX_FAILSAFE_MODE_SET; if (requireValue) { const char *format = "rxfail %u %c %d\r\n"; cliDefaultPrintf(dumpMask, equalsDefault, format, channel, rxFailsafeModeCharacters[channelFailsafeConfigDefault->mode], RXFAIL_STEP_TO_CHANNEL_VALUE(channelFailsafeConfigDefault->step) ); cliDumpPrintf(dumpMask, equalsDefault, format, channel, rxFailsafeModeCharacters[channelFailsafeConfig->mode], RXFAIL_STEP_TO_CHANNEL_VALUE(channelFailsafeConfig->step) ); } else { const char *format = "rxfail %u %c\r\n"; cliDefaultPrintf(dumpMask, equalsDefault, format, channel, rxFailsafeModeCharacters[channelFailsafeConfigDefault->mode] ); cliDumpPrintf(dumpMask, equalsDefault, format, channel, rxFailsafeModeCharacters[channelFailsafeConfig->mode] ); } } } static void cliRxFailsafe(char *cmdline) { uint8_t channel; char buf[3]; if (isEmpty(cmdline)) { // print out rxConfig failsafe settings for (channel = 0; channel < MAX_SUPPORTED_RC_CHANNEL_COUNT; channel++) { cliRxFailsafe(itoa(channel, buf, 10)); } } else { const char *ptr = cmdline; channel = atoi(ptr++); if ((channel < MAX_SUPPORTED_RC_CHANNEL_COUNT)) { rxFailsafeChannelConfig_t *channelFailsafeConfig = &rxConfigMutable()->failsafe_channel_configurations[channel]; const rxFailsafeChannelType_e type = (channel < NON_AUX_CHANNEL_COUNT) ? RX_FAILSAFE_TYPE_FLIGHT : RX_FAILSAFE_TYPE_AUX; rxFailsafeChannelMode_e mode = channelFailsafeConfig->mode; bool requireValue = channelFailsafeConfig->mode == RX_FAILSAFE_MODE_SET; ptr = nextArg(ptr); if (ptr) { const char *p = strchr(rxFailsafeModeCharacters, *(ptr)); if (p) { const uint8_t requestedMode = p - rxFailsafeModeCharacters; mode = rxFailsafeModesTable[type][requestedMode]; } else { mode = RX_FAILSAFE_MODE_INVALID; } if (mode == RX_FAILSAFE_MODE_INVALID) { cliShowParseError(); return; } requireValue = mode == RX_FAILSAFE_MODE_SET; ptr = nextArg(ptr); if (ptr) { if (!requireValue) { cliShowParseError(); return; } uint16_t value = atoi(ptr); value = CHANNEL_VALUE_TO_RXFAIL_STEP(value); if (value > MAX_RXFAIL_RANGE_STEP) { cliPrint("Value out of range\r\n"); return; } channelFailsafeConfig->step = value; } else if (requireValue) { cliShowParseError(); return; } channelFailsafeConfig->mode = mode; } char modeCharacter = rxFailsafeModeCharacters[channelFailsafeConfig->mode]; // double use of cliPrintf below // 1. acknowledge interpretation on command, // 2. query current setting on single item, if (requireValue) { cliPrintf("rxfail %u %c %d\r\n", channel, modeCharacter, RXFAIL_STEP_TO_CHANNEL_VALUE(channelFailsafeConfig->step) ); } else { cliPrintf("rxfail %u %c\r\n", channel, modeCharacter ); } } else { cliShowArgumentRangeError("channel", 0, MAX_SUPPORTED_RC_CHANNEL_COUNT - 1); } } } static void printAux(uint8_t dumpMask, const modeActivationCondition_t *modeActivationConditions, const modeActivationCondition_t *defaultModeActivationConditions) { const char *format = "aux %u %u %u %u %u\r\n"; // print out aux channel settings for (uint32_t i = 0; i < MAX_MODE_ACTIVATION_CONDITION_COUNT; i++) { const modeActivationCondition_t *mac = &modeActivationConditions[i]; bool equalsDefault = false; if (defaultModeActivationConditions) { const modeActivationCondition_t *macDefault = &defaultModeActivationConditions[i]; equalsDefault = mac->modeId == macDefault->modeId && mac->auxChannelIndex == macDefault->auxChannelIndex && mac->range.startStep == macDefault->range.startStep && mac->range.endStep == macDefault->range.endStep; cliDefaultPrintf(dumpMask, equalsDefault, format, i, macDefault->modeId, macDefault->auxChannelIndex, MODE_STEP_TO_CHANNEL_VALUE(macDefault->range.startStep), MODE_STEP_TO_CHANNEL_VALUE(macDefault->range.endStep) ); } cliDumpPrintf(dumpMask, equalsDefault, format, i, mac->modeId, mac->auxChannelIndex, MODE_STEP_TO_CHANNEL_VALUE(mac->range.startStep), MODE_STEP_TO_CHANNEL_VALUE(mac->range.endStep) ); } } static void cliAux(char *cmdline) { int i, val = 0; const char *ptr; if (isEmpty(cmdline)) { printAux(DUMP_MASTER, modeActivationProfile()->modeActivationConditions, NULL); } else { ptr = cmdline; i = atoi(ptr++); if (i < MAX_MODE_ACTIVATION_CONDITION_COUNT) { modeActivationCondition_t *mac = &modeActivationProfile()->modeActivationConditions[i]; uint8_t validArgumentCount = 0; ptr = nextArg(ptr); if (ptr) { val = atoi(ptr); if (val >= 0 && val < CHECKBOX_ITEM_COUNT) { mac->modeId = val; validArgumentCount++; } } ptr = nextArg(ptr); if (ptr) { val = atoi(ptr); if (val >= 0 && val < MAX_AUX_CHANNEL_COUNT) { mac->auxChannelIndex = val; validArgumentCount++; } } ptr = processChannelRangeArgs(ptr, &mac->range, &validArgumentCount); if (validArgumentCount != 4) { memset(mac, 0, sizeof(modeActivationCondition_t)); } } else { cliShowArgumentRangeError("index", 0, MAX_MODE_ACTIVATION_CONDITION_COUNT - 1); } } } static void printSerial(uint8_t dumpMask, const serialConfig_t *serialConfig, const serialConfig_t *serialConfigDefault) { const char *format = "serial %d %d %ld %ld %ld %ld\r\n"; for (uint32_t i = 0; i < SERIAL_PORT_COUNT; i++) { if (!serialIsPortAvailable(serialConfig->portConfigs[i].identifier)) { continue; }; bool equalsDefault = false; if (serialConfigDefault) { equalsDefault = serialConfig->portConfigs[i].identifier == serialConfigDefault->portConfigs[i].identifier && serialConfig->portConfigs[i].functionMask == serialConfigDefault->portConfigs[i].functionMask && serialConfig->portConfigs[i].msp_baudrateIndex == serialConfigDefault->portConfigs[i].msp_baudrateIndex && serialConfig->portConfigs[i].gps_baudrateIndex == serialConfigDefault->portConfigs[i].gps_baudrateIndex && serialConfig->portConfigs[i].telemetry_baudrateIndex == serialConfigDefault->portConfigs[i].telemetry_baudrateIndex && serialConfig->portConfigs[i].blackbox_baudrateIndex == serialConfigDefault->portConfigs[i].blackbox_baudrateIndex; cliDefaultPrintf(dumpMask, equalsDefault, format, serialConfigDefault->portConfigs[i].identifier, serialConfigDefault->portConfigs[i].functionMask, baudRates[serialConfigDefault->portConfigs[i].msp_baudrateIndex], baudRates[serialConfigDefault->portConfigs[i].gps_baudrateIndex], baudRates[serialConfigDefault->portConfigs[i].telemetry_baudrateIndex], baudRates[serialConfigDefault->portConfigs[i].blackbox_baudrateIndex] ); } cliDumpPrintf(dumpMask, equalsDefault, format, serialConfig->portConfigs[i].identifier, serialConfig->portConfigs[i].functionMask, baudRates[serialConfig->portConfigs[i].msp_baudrateIndex], baudRates[serialConfig->portConfigs[i].gps_baudrateIndex], baudRates[serialConfig->portConfigs[i].telemetry_baudrateIndex], baudRates[serialConfig->portConfigs[i].blackbox_baudrateIndex] ); } } static void cliSerial(char *cmdline) { if (isEmpty(cmdline)) { printSerial(DUMP_MASTER, serialConfig(), NULL); return; } serialPortConfig_t portConfig; memset(&portConfig, 0 , sizeof(portConfig)); serialPortConfig_t *currentConfig; uint8_t validArgumentCount = 0; const char *ptr = cmdline; int val = atoi(ptr++); currentConfig = serialFindPortConfiguration(val); if (currentConfig) { portConfig.identifier = val; validArgumentCount++; } ptr = nextArg(ptr); if (ptr) { val = atoi(ptr); portConfig.functionMask = val & 0xFFFF; validArgumentCount++; } for (int i = 0; i < 4; i ++) { ptr = nextArg(ptr); if (!ptr) { break; } val = atoi(ptr); uint8_t baudRateIndex = lookupBaudRateIndex(val); if (baudRates[baudRateIndex] != (uint32_t) val) { break; } switch(i) { case 0: if (baudRateIndex < BAUD_9600 || baudRateIndex > BAUD_1000000) { continue; } portConfig.msp_baudrateIndex = baudRateIndex; break; case 1: if (baudRateIndex < BAUD_9600 || baudRateIndex > BAUD_115200) { continue; } portConfig.gps_baudrateIndex = baudRateIndex; break; case 2: if (baudRateIndex != BAUD_AUTO && baudRateIndex > BAUD_115200) { continue; } portConfig.telemetry_baudrateIndex = baudRateIndex; break; case 3: if (baudRateIndex < BAUD_19200 || baudRateIndex > BAUD_250000) { continue; } portConfig.blackbox_baudrateIndex = baudRateIndex; break; } validArgumentCount++; } if (validArgumentCount < 6) { cliShowParseError(); return; } memcpy(currentConfig, &portConfig, sizeof(portConfig)); } #ifndef SKIP_SERIAL_PASSTHROUGH static void cliSerialPassthrough(char *cmdline) { if (isEmpty(cmdline)) { cliShowParseError(); return; } int id = -1; uint32_t baud = 0; unsigned mode = 0; char *saveptr; char* tok = strtok_r(cmdline, " ", &saveptr); int index = 0; while (tok != NULL) { switch(index) { case 0: id = atoi(tok); break; case 1: baud = atoi(tok); break; case 2: if (strstr(tok, "rx") || strstr(tok, "RX")) mode |= MODE_RX; if (strstr(tok, "tx") || strstr(tok, "TX")) mode |= MODE_TX; break; } index++; tok = strtok_r(NULL, " ", &saveptr); } serialPort_t *passThroughPort; serialPortUsage_t *passThroughPortUsage = findSerialPortUsageByIdentifier(id); if (!passThroughPortUsage || passThroughPortUsage->serialPort == NULL) { if (!baud) { printf("Port %d is closed, must specify baud.\r\n", id); return; } if (!mode) mode = MODE_RXTX; passThroughPort = openSerialPort(id, FUNCTION_NONE, NULL, baud, mode, SERIAL_NOT_INVERTED); if (!passThroughPort) { printf("Port %d could not be opened.\r\n", id); return; } printf("Port %d opened, baud = %d.\r\n", id, baud); } else { passThroughPort = passThroughPortUsage->serialPort; // If the user supplied a mode, override the port's mode, otherwise // leave the mode unchanged. serialPassthrough() handles one-way ports. printf("Port %d already open.\r\n", id); if (mode && passThroughPort->mode != mode) { printf("Adjusting mode from %d to %d.\r\n", passThroughPort->mode, mode); serialSetMode(passThroughPort, mode); } // If this port has a rx callback associated we need to remove it now. // Otherwise no data will be pushed in the serial port buffer! if (passThroughPort->rxCallback) { printf("Removing rxCallback\r\n"); passThroughPort->rxCallback = 0; } } printf("Forwarding data to %d, power cycle to exit.\r\n", id); serialPassthrough(cliPort, passThroughPort, NULL, NULL); } #endif static void printAdjustmentRange(uint8_t dumpMask, const adjustmentRange_t *adjustmentRanges, const adjustmentRange_t *defaultAdjustmentRanges) { const char *format = "adjrange %u %u %u %u %u %u %u\r\n"; // print out adjustment ranges channel settings for (uint32_t i = 0; i < MAX_ADJUSTMENT_RANGE_COUNT; i++) { const adjustmentRange_t *ar = &adjustmentRanges[i]; bool equalsDefault = false; if (defaultAdjustmentRanges) { const adjustmentRange_t *arDefault = &defaultAdjustmentRanges[i]; equalsDefault = ar->auxChannelIndex == arDefault->auxChannelIndex && ar->range.startStep == arDefault->range.startStep && ar->range.endStep == arDefault->range.endStep && ar->adjustmentFunction == arDefault->adjustmentFunction && ar->auxSwitchChannelIndex == arDefault->auxSwitchChannelIndex && ar->adjustmentIndex == arDefault->adjustmentIndex; cliDefaultPrintf(dumpMask, equalsDefault, format, i, arDefault->adjustmentIndex, arDefault->auxChannelIndex, MODE_STEP_TO_CHANNEL_VALUE(arDefault->range.startStep), MODE_STEP_TO_CHANNEL_VALUE(arDefault->range.endStep), arDefault->adjustmentFunction, arDefault->auxSwitchChannelIndex ); } cliDumpPrintf(dumpMask, equalsDefault, format, i, ar->adjustmentIndex, ar->auxChannelIndex, MODE_STEP_TO_CHANNEL_VALUE(ar->range.startStep), MODE_STEP_TO_CHANNEL_VALUE(ar->range.endStep), ar->adjustmentFunction, ar->auxSwitchChannelIndex ); } } static void cliAdjustmentRange(char *cmdline) { int i, val = 0; const char *ptr; if (isEmpty(cmdline)) { printAdjustmentRange(DUMP_MASTER, adjustmentProfile()->adjustmentRanges, NULL); } else { ptr = cmdline; i = atoi(ptr++); if (i < MAX_ADJUSTMENT_RANGE_COUNT) { adjustmentRange_t *ar = &adjustmentProfile()->adjustmentRanges[i]; uint8_t validArgumentCount = 0; ptr = nextArg(ptr); if (ptr) { val = atoi(ptr); if (val >= 0 && val < MAX_SIMULTANEOUS_ADJUSTMENT_COUNT) { ar->adjustmentIndex = val; validArgumentCount++; } } ptr = nextArg(ptr); if (ptr) { val = atoi(ptr); if (val >= 0 && val < MAX_AUX_CHANNEL_COUNT) { ar->auxChannelIndex = val; validArgumentCount++; } } ptr = processChannelRangeArgs(ptr, &ar->range, &validArgumentCount); ptr = nextArg(ptr); if (ptr) { val = atoi(ptr); if (val >= 0 && val < ADJUSTMENT_FUNCTION_COUNT) { ar->adjustmentFunction = val; validArgumentCount++; } } ptr = nextArg(ptr); if (ptr) { val = atoi(ptr); if (val >= 0 && val < MAX_AUX_CHANNEL_COUNT) { ar->auxSwitchChannelIndex = val; validArgumentCount++; } } if (validArgumentCount != 6) { memset(ar, 0, sizeof(adjustmentRange_t)); cliShowParseError(); } } else { cliShowArgumentRangeError("index", 0, MAX_ADJUSTMENT_RANGE_COUNT - 1); } } } #ifndef USE_QUAD_MIXER_ONLY static void printMotorMix(uint8_t dumpMask, const motorMixer_t *customMotorMixer, const motorMixer_t *defaultCustomMotorMixer) { const char *format = "mmix %d %s %s %s %s\r\n"; char buf0[8]; char buf1[8]; char buf2[8]; char buf3[8]; for (uint32_t i = 0; i < MAX_SUPPORTED_MOTORS; i++) { if (customMotorMixer[i].throttle == 0.0f) break; const float thr = customMotorMixer[i].throttle; const float roll = customMotorMixer[i].roll; const float pitch = customMotorMixer[i].pitch; const float yaw = customMotorMixer[i].yaw; bool equalsDefault = false; if (defaultCustomMotorMixer) { const float thrDefault = defaultCustomMotorMixer[i].throttle; const float rollDefault = defaultCustomMotorMixer[i].roll; const float pitchDefault = defaultCustomMotorMixer[i].pitch; const float yawDefault = defaultCustomMotorMixer[i].yaw; const bool equalsDefault = thr == thrDefault && roll == rollDefault && pitch == pitchDefault && yaw == yawDefault; cliDefaultPrintf(dumpMask, equalsDefault, format, i, ftoa(thrDefault, buf0), ftoa(rollDefault, buf1), ftoa(pitchDefault, buf2), ftoa(yawDefault, buf3)); } cliDumpPrintf(dumpMask, equalsDefault, format, i, ftoa(thr, buf0), ftoa(roll, buf1), ftoa(pitch, buf2), ftoa(yaw, buf3)); } } #endif // USE_QUAD_MIXER_ONLY static void cliMotorMix(char *cmdline) { #ifdef USE_QUAD_MIXER_ONLY UNUSED(cmdline); #else int check = 0; uint8_t len; const char *ptr; if (isEmpty(cmdline)) { printMotorMix(DUMP_MASTER, customMotorMixer(0), NULL); } else if (strncasecmp(cmdline, "reset", 5) == 0) { // erase custom mixer for (uint32_t i = 0; i < MAX_SUPPORTED_MOTORS; i++) { customMotorMixerMutable(i)->throttle = 0.0f; } } else if (strncasecmp(cmdline, "load", 4) == 0) { ptr = nextArg(cmdline); if (ptr) { len = strlen(ptr); for (uint32_t i = 0; ; i++) { if (mixerNames[i] == NULL) { cliPrint("Invalid name\r\n"); break; } if (strncasecmp(ptr, mixerNames[i], len) == 0) { mixerLoadMix(i, customMotorMixerMutable(0)); cliPrintf("Loaded %s\r\n", mixerNames[i]); cliMotorMix(""); break; } } } } else { ptr = cmdline; uint32_t i = atoi(ptr); // get motor number if (i < MAX_SUPPORTED_MOTORS) { ptr = nextArg(ptr); if (ptr) { customMotorMixerMutable(i)->throttle = fastA2F(ptr); check++; } ptr = nextArg(ptr); if (ptr) { customMotorMixerMutable(i)->roll = fastA2F(ptr); check++; } ptr = nextArg(ptr); if (ptr) { customMotorMixerMutable(i)->pitch = fastA2F(ptr); check++; } ptr = nextArg(ptr); if (ptr) { customMotorMixerMutable(i)->yaw = fastA2F(ptr); check++; } if (check != 4) { cliShowParseError(); } else { printMotorMix(DUMP_MASTER, customMotorMixer(0), NULL); } } else { cliShowArgumentRangeError("index", 0, MAX_SUPPORTED_MOTORS - 1); } } #endif } static void printRxRange(uint8_t dumpMask, const rxChannelRangeConfig_t *channelRangeConfigs, const rxChannelRangeConfig_t *defaultChannelRangeConfigs) { const char *format = "rxrange %u %u %u\r\n"; for (uint32_t i = 0; i < NON_AUX_CHANNEL_COUNT; i++) { bool equalsDefault = false; if (defaultChannelRangeConfigs) { equalsDefault = channelRangeConfigs[i].min == defaultChannelRangeConfigs[i].min && channelRangeConfigs[i].max == defaultChannelRangeConfigs[i].max; cliDefaultPrintf(dumpMask, equalsDefault, format, i, defaultChannelRangeConfigs[i].min, defaultChannelRangeConfigs[i].max ); } cliDumpPrintf(dumpMask, equalsDefault, format, i, channelRangeConfigs[i].min, channelRangeConfigs[i].max ); } } static void cliRxRange(char *cmdline) { int i, validArgumentCount = 0; const char *ptr; if (isEmpty(cmdline)) { printRxRange(DUMP_MASTER, rxConfig()->channelRanges, NULL); } else if (strcasecmp(cmdline, "reset") == 0) { resetAllRxChannelRangeConfigurations(rxConfigMutable()->channelRanges); } else { ptr = cmdline; i = atoi(ptr); if (i >= 0 && i < NON_AUX_CHANNEL_COUNT) { int rangeMin, rangeMax; ptr = nextArg(ptr); if (ptr) { rangeMin = atoi(ptr); validArgumentCount++; } ptr = nextArg(ptr); if (ptr) { rangeMax = atoi(ptr); validArgumentCount++; } if (validArgumentCount != 2) { cliShowParseError(); } else if (rangeMin < PWM_PULSE_MIN || rangeMin > PWM_PULSE_MAX || rangeMax < PWM_PULSE_MIN || rangeMax > PWM_PULSE_MAX) { cliShowParseError(); } else { rxChannelRangeConfig_t *channelRangeConfig = &rxConfigMutable()->channelRanges[i]; channelRangeConfig->min = rangeMin; channelRangeConfig->max = rangeMax; } } else { cliShowArgumentRangeError("channel", 0, NON_AUX_CHANNEL_COUNT - 1); } } } #ifdef LED_STRIP static void printLed(uint8_t dumpMask, const ledConfig_t *ledConfigs, const ledConfig_t *defaultLedConfigs) { const char *format = "led %u %s\r\n"; char ledConfigBuffer[20]; char ledConfigDefaultBuffer[20]; for (uint32_t i = 0; i < LED_MAX_STRIP_LENGTH; i++) { ledConfig_t ledConfig = ledConfigs[i]; generateLedConfig(&ledConfig, ledConfigBuffer, sizeof(ledConfigBuffer)); bool equalsDefault = false; if (defaultLedConfigs) { ledConfig_t ledConfigDefault = defaultLedConfigs[i]; equalsDefault = ledConfig == ledConfigDefault; generateLedConfig(&ledConfigDefault, ledConfigDefaultBuffer, sizeof(ledConfigDefaultBuffer)); cliDefaultPrintf(dumpMask, equalsDefault, format, i, ledConfigDefaultBuffer); } cliDumpPrintf(dumpMask, equalsDefault, format, i, ledConfigBuffer); } } static void cliLed(char *cmdline) { int i; const char *ptr; if (isEmpty(cmdline)) { printLed(DUMP_MASTER, ledStripConfig()->ledConfigs, NULL); } else { ptr = cmdline; i = atoi(ptr); if (i < LED_MAX_STRIP_LENGTH) { ptr = nextArg(cmdline); if (!parseLedStripConfig(i, ptr)) { cliShowParseError(); } } else { cliShowArgumentRangeError("index", 0, LED_MAX_STRIP_LENGTH - 1); } } } static void printColor(uint8_t dumpMask, const hsvColor_t *colors, const hsvColor_t *defaultColors) { const char *format = "color %u %d,%u,%u\r\n"; for (uint32_t i = 0; i < LED_CONFIGURABLE_COLOR_COUNT; i++) { const hsvColor_t *color = &colors[i]; bool equalsDefault = false; if (defaultColors) { const hsvColor_t *colorDefault = &defaultColors[i]; equalsDefault = color->h == colorDefault->h && color->s == colorDefault->s && color->v == colorDefault->v; cliDefaultPrintf(dumpMask, equalsDefault, format, i,colorDefault->h, colorDefault->s, colorDefault->v); } cliDumpPrintf(dumpMask, equalsDefault, format, i, color->h, color->s, color->v); } } static void cliColor(char *cmdline) { if (isEmpty(cmdline)) { printColor(DUMP_MASTER, ledStripConfig()->colors, NULL); } else { const char *ptr = cmdline; const int i = atoi(ptr); if (i < LED_CONFIGURABLE_COLOR_COUNT) { ptr = nextArg(cmdline); if (!parseColor(i, ptr)) { cliShowParseError(); } } else { cliShowArgumentRangeError("index", 0, LED_CONFIGURABLE_COLOR_COUNT - 1); } } } static void printModeColor(uint8_t dumpMask, const ledStripConfig_t *ledStripConfig, const ledStripConfig_t *defaultLedStripConfig) { const char *format = "mode_color %u %u %u\r\n"; for (uint32_t i = 0; i < LED_MODE_COUNT; i++) { for (uint32_t j = 0; j < LED_DIRECTION_COUNT; j++) { int colorIndex = ledStripConfig->modeColors[i].color[j]; bool equalsDefault = false; if (defaultLedStripConfig) { int colorIndexDefault = defaultLedStripConfig->modeColors[i].color[j]; equalsDefault = colorIndex == colorIndexDefault; cliDefaultPrintf(dumpMask, equalsDefault, format, i, j, colorIndexDefault); } cliDumpPrintf(dumpMask, equalsDefault, format, i, j, colorIndex); } } for (uint32_t j = 0; j < LED_SPECIAL_COLOR_COUNT; j++) { const int colorIndex = ledStripConfig->specialColors.color[j]; bool equalsDefault = false; if (defaultLedStripConfig) { const int colorIndexDefault = defaultLedStripConfig->specialColors.color[j]; equalsDefault = colorIndex == colorIndexDefault; cliDefaultPrintf(dumpMask, equalsDefault, format, LED_SPECIAL, j, colorIndexDefault); } cliDumpPrintf(dumpMask, equalsDefault, format, LED_SPECIAL, j, colorIndex); } const int ledStripAuxChannel = ledStripConfig->ledstrip_aux_channel; bool equalsDefault = false; if (defaultLedStripConfig) { const int ledStripAuxChannelDefault = defaultLedStripConfig->ledstrip_aux_channel; equalsDefault = ledStripAuxChannel == ledStripAuxChannelDefault; cliDefaultPrintf(dumpMask, equalsDefault, format, LED_AUX_CHANNEL, 0, ledStripAuxChannelDefault); } cliDumpPrintf(dumpMask, equalsDefault, format, LED_AUX_CHANNEL, 0, ledStripAuxChannel); } static void cliModeColor(char *cmdline) { if (isEmpty(cmdline)) { printModeColor(DUMP_MASTER, ledStripConfig(), NULL); } else { enum {MODE = 0, FUNCTION, COLOR, ARGS_COUNT}; int args[ARGS_COUNT]; int argNo = 0; char *saveptr; const char* ptr = strtok_r(cmdline, " ", &saveptr); while (ptr && argNo < ARGS_COUNT) { args[argNo++] = atoi(ptr); ptr = strtok_r(NULL, " ", &saveptr); } if (ptr != NULL || argNo != ARGS_COUNT) { cliShowParseError(); return; } int modeIdx = args[MODE]; int funIdx = args[FUNCTION]; int color = args[COLOR]; if(!setModeColor(modeIdx, funIdx, color)) { cliShowParseError(); return; } // values are validated cliPrintf("mode_color %u %u %u\r\n", modeIdx, funIdx, color); } } #endif #ifdef USE_SERVOS static void printServo(uint8_t dumpMask, const servoParam_t *servoParams, const servoParam_t *servoParamsDefault) { // print out servo settings const char *format = "servo %u %d %d %d %d %d %d %d\r\n"; for (uint32_t i = 0; i < MAX_SUPPORTED_SERVOS; i++) { const servoParam_t *servoConf = &servoParams[i]; bool equalsDefault = false; if (servoParamsDefault) { const servoParam_t *servoConfDefault = &servoParamsDefault[i]; equalsDefault = servoConf->min == servoConfDefault->min && servoConf->max == servoConfDefault->max && servoConf->middle == servoConfDefault->middle && servoConf->angleAtMin == servoConfDefault->angleAtMax && servoConf->rate == servoConfDefault->rate && servoConf->forwardFromChannel == servoConfDefault->forwardFromChannel; cliDefaultPrintf(dumpMask, equalsDefault, format, i, servoConfDefault->min, servoConfDefault->max, servoConfDefault->middle, servoConfDefault->angleAtMin, servoConfDefault->angleAtMax, servoConfDefault->rate, servoConfDefault->forwardFromChannel ); } cliDumpPrintf(dumpMask, equalsDefault, format, i, servoConf->min, servoConf->max, servoConf->middle, servoConf->angleAtMin, servoConf->angleAtMax, servoConf->rate, servoConf->forwardFromChannel ); } } static void cliServo(char *cmdline) { enum { SERVO_ARGUMENT_COUNT = 8 }; int16_t arguments[SERVO_ARGUMENT_COUNT]; servoParam_t *servo; int i; char *ptr; if (isEmpty(cmdline)) { printServo(DUMP_MASTER, servoProfile()->servoConf, NULL); } else { int validArgumentCount = 0; ptr = cmdline; // Command line is integers (possibly negative) separated by spaces, no other characters allowed. // If command line doesn't fit the format, don't modify the config while (*ptr) { if (*ptr == '-' || (*ptr >= '0' && *ptr <= '9')) { if (validArgumentCount >= SERVO_ARGUMENT_COUNT) { cliShowParseError(); return; } arguments[validArgumentCount++] = atoi(ptr); do { ptr++; } while (*ptr >= '0' && *ptr <= '9'); } else if (*ptr == ' ') { ptr++; } else { cliShowParseError(); return; } } enum {INDEX = 0, MIN, MAX, MIDDLE, ANGLE_AT_MIN, ANGLE_AT_MAX, RATE, FORWARD}; i = arguments[INDEX]; // Check we got the right number of args and the servo index is correct (don't validate the other values) if (validArgumentCount != SERVO_ARGUMENT_COUNT || i < 0 || i >= MAX_SUPPORTED_SERVOS) { cliShowParseError(); return; } servo = &servoProfile()->servoConf[i]; if ( arguments[MIN] < PWM_PULSE_MIN || arguments[MIN] > PWM_PULSE_MAX || arguments[MAX] < PWM_PULSE_MIN || arguments[MAX] > PWM_PULSE_MAX || arguments[MIDDLE] < arguments[MIN] || arguments[MIDDLE] > arguments[MAX] || arguments[MIN] > arguments[MAX] || arguments[MAX] < arguments[MIN] || arguments[RATE] < -100 || arguments[RATE] > 100 || arguments[FORWARD] >= MAX_SUPPORTED_RC_CHANNEL_COUNT || arguments[ANGLE_AT_MIN] < 0 || arguments[ANGLE_AT_MIN] > 180 || arguments[ANGLE_AT_MAX] < 0 || arguments[ANGLE_AT_MAX] > 180 ) { cliShowParseError(); return; } servo->min = arguments[1]; servo->max = arguments[2]; servo->middle = arguments[3]; servo->angleAtMin = arguments[4]; servo->angleAtMax = arguments[5]; servo->rate = arguments[6]; servo->forwardFromChannel = arguments[7]; } } #endif #ifdef USE_SERVOS static void printServoMix(uint8_t dumpMask, const master_t *defaultConfig) { const char *format = "smix %d %d %d %d %d %d %d %d\r\n"; for (uint32_t i = 0; i < MAX_SERVO_RULES; i++) { const servoMixer_t customServoMixer = *customServoMixers(i); if (customServoMixer.rate == 0) { break; } bool equalsDefault = false; if (defaultConfig) { servoMixer_t customServoMixerDefault = defaultConfig->customServoMixer[i]; equalsDefault = customServoMixer.targetChannel == customServoMixerDefault.targetChannel && customServoMixer.inputSource == customServoMixerDefault.inputSource && customServoMixer.rate == customServoMixerDefault.rate && customServoMixer.speed == customServoMixerDefault.speed && customServoMixer.min == customServoMixerDefault.min && customServoMixer.max == customServoMixerDefault.max && customServoMixer.box == customServoMixerDefault.box; cliDefaultPrintf(dumpMask, equalsDefault, format, i, customServoMixerDefault.targetChannel, customServoMixerDefault.inputSource, customServoMixerDefault.rate, customServoMixerDefault.speed, customServoMixerDefault.min, customServoMixerDefault.max, customServoMixerDefault.box ); } cliDumpPrintf(dumpMask, equalsDefault, format, i, customServoMixer.targetChannel, customServoMixer.inputSource, customServoMixer.rate, customServoMixer.speed, customServoMixer.min, customServoMixer.max, customServoMixer.box ); } cliPrint("\r\n"); // print servo directions for (uint32_t i = 0; i < MAX_SUPPORTED_SERVOS; i++) { const char *format = "smix reverse %d %d r\r\n"; const servoParam_t *servoConf = &servoProfile()->servoConf[i]; if (defaultConfig) { const servoParam_t *servoConfDefault = &defaultConfig->servoProfile.servoConf[i]; bool equalsDefault = servoConf->reversedSources == servoConfDefault->reversedSources; for (uint32_t channel = 0; channel < INPUT_SOURCE_COUNT; channel++) { equalsDefault = ~(servoConf->reversedSources ^ servoConfDefault->reversedSources) & (1 << channel); if (servoConfDefault->reversedSources & (1 << channel)) { cliDefaultPrintf(dumpMask, equalsDefault, format, i , channel); } if (servoConf->reversedSources & (1 << channel)) { cliDumpPrintf(dumpMask, equalsDefault, format, i , channel); } } } else { for (uint32_t channel = 0; channel < INPUT_SOURCE_COUNT; channel++) { if (servoConf->reversedSources & (1 << channel)) { cliDumpPrintf(dumpMask, true, format, i , channel); } } } } } static void cliServoMix(char *cmdline) { int args[8], check = 0; int len = strlen(cmdline); if (len == 0) { printServoMix(DUMP_MASTER, NULL); } else if (strncasecmp(cmdline, "reset", 5) == 0) { // erase custom mixer memset(masterConfig.customServoMixer, 0, sizeof(masterConfig.customServoMixer)); for (uint32_t i = 0; i < MAX_SUPPORTED_SERVOS; i++) { servoProfile()->servoConf[i].reversedSources = 0; } } else if (strncasecmp(cmdline, "load", 4) == 0) { const char *ptr = nextArg(cmdline); if (ptr) { len = strlen(ptr); for (uint32_t i = 0; ; i++) { if (mixerNames[i] == NULL) { cliPrintf("Invalid name\r\n"); break; } if (strncasecmp(ptr, mixerNames[i], len) == 0) { servoMixerLoadMix(i, masterConfig.customServoMixer); cliPrintf("Loaded %s\r\n", mixerNames[i]); cliServoMix(""); break; } } } } else if (strncasecmp(cmdline, "reverse", 7) == 0) { enum {SERVO = 0, INPUT, REVERSE, ARGS_COUNT}; char *ptr = strchr(cmdline, ' '); len = strlen(ptr); if (len == 0) { cliPrintf("s"); for (uint32_t inputSource = 0; inputSource < INPUT_SOURCE_COUNT; inputSource++) cliPrintf("\ti%d", inputSource); cliPrintf("\r\n"); for (uint32_t servoIndex = 0; servoIndex < MAX_SUPPORTED_SERVOS; servoIndex++) { cliPrintf("%d", servoIndex); for (uint32_t inputSource = 0; inputSource < INPUT_SOURCE_COUNT; inputSource++) cliPrintf("\t%s ", (servoProfile()->servoConf[servoIndex].reversedSources & (1 << inputSource)) ? "r" : "n"); cliPrintf("\r\n"); } return; } char *saveptr; ptr = strtok_r(ptr, " ", &saveptr); while (ptr != NULL && check < ARGS_COUNT - 1) { args[check++] = atoi(ptr); ptr = strtok_r(NULL, " ", &saveptr); } if (ptr == NULL || check != ARGS_COUNT - 1) { cliShowParseError(); return; } if (args[SERVO] >= 0 && args[SERVO] < MAX_SUPPORTED_SERVOS && args[INPUT] >= 0 && args[INPUT] < INPUT_SOURCE_COUNT && (*ptr == 'r' || *ptr == 'n')) { if (*ptr == 'r') servoProfile()->servoConf[args[SERVO]].reversedSources |= 1 << args[INPUT]; else servoProfile()->servoConf[args[SERVO]].reversedSources &= ~(1 << args[INPUT]); } else cliShowParseError(); cliServoMix("reverse"); } else { enum {RULE = 0, TARGET, INPUT, RATE, SPEED, MIN, MAX, BOX, ARGS_COUNT}; char *saveptr; char *ptr = strtok_r(cmdline, " ", &saveptr); while (ptr != NULL && check < ARGS_COUNT) { args[check++] = atoi(ptr); ptr = strtok_r(NULL, " ", &saveptr); } if (ptr != NULL || check != ARGS_COUNT) { cliShowParseError(); return; } int32_t i = args[RULE]; if (i >= 0 && i < MAX_SERVO_RULES && args[TARGET] >= 0 && args[TARGET] < MAX_SUPPORTED_SERVOS && args[INPUT] >= 0 && args[INPUT] < INPUT_SOURCE_COUNT && args[RATE] >= -100 && args[RATE] <= 100 && args[SPEED] >= 0 && args[SPEED] <= MAX_SERVO_SPEED && args[MIN] >= 0 && args[MIN] <= 100 && args[MAX] >= 0 && args[MAX] <= 100 && args[MIN] < args[MAX] && args[BOX] >= 0 && args[BOX] <= MAX_SERVO_BOXES) { customServoMixersMutable(i)->targetChannel = args[TARGET]; customServoMixersMutable(i)->inputSource = args[INPUT]; customServoMixersMutable(i)->rate = args[RATE]; customServoMixersMutable(i)->speed = args[SPEED]; customServoMixersMutable(i)->min = args[MIN]; customServoMixersMutable(i)->max = args[MAX]; customServoMixersMutable(i)->box = args[BOX]; cliServoMix(""); } else { cliShowParseError(); } } } #endif #ifdef USE_SDCARD static void cliWriteBytes(const uint8_t *buffer, int count) { while (count > 0) { cliWrite(*buffer); buffer++; count--; } } static void cliSdInfo(char *cmdline) { UNUSED(cmdline); cliPrint("SD card: "); if (!sdcard_isInserted()) { cliPrint("None inserted\r\n"); return; } if (!sdcard_isInitialized()) { cliPrint("Startup failed\r\n"); return; } const sdcardMetadata_t *metadata = sdcard_getMetadata(); cliPrintf("Manufacturer 0x%x, %ukB, %02d/%04d, v%d.%d, '", metadata->manufacturerID, metadata->numBlocks / 2, /* One block is half a kB */ metadata->productionMonth, metadata->productionYear, metadata->productRevisionMajor, metadata->productRevisionMinor ); cliWriteBytes((uint8_t*)metadata->productName, sizeof(metadata->productName)); cliPrint("'\r\n" "Filesystem: "); switch (afatfs_getFilesystemState()) { case AFATFS_FILESYSTEM_STATE_READY: cliPrint("Ready"); break; case AFATFS_FILESYSTEM_STATE_INITIALIZATION: cliPrint("Initializing"); break; case AFATFS_FILESYSTEM_STATE_UNKNOWN: case AFATFS_FILESYSTEM_STATE_FATAL: cliPrint("Fatal"); switch (afatfs_getLastError()) { case AFATFS_ERROR_BAD_MBR: cliPrint(" - no FAT MBR partitions"); break; case AFATFS_ERROR_BAD_FILESYSTEM_HEADER: cliPrint(" - bad FAT header"); break; case AFATFS_ERROR_GENERIC: case AFATFS_ERROR_NONE: ; // Nothing more detailed to print break; } break; } cliPrint("\r\n"); } #endif #ifdef USE_FLASHFS static void cliFlashInfo(char *cmdline) { const flashGeometry_t *layout = flashfsGetGeometry(); UNUSED(cmdline); cliPrintf("Flash sectors=%u, sectorSize=%u, pagesPerSector=%u, pageSize=%u, totalSize=%u, usedSize=%u\r\n", layout->sectors, layout->sectorSize, layout->pagesPerSector, layout->pageSize, layout->totalSize, flashfsGetOffset()); } static void cliFlashErase(char *cmdline) { UNUSED(cmdline); #ifndef MINIMAL_CLI uint32_t i = 0; cliPrintf("Erasing, please wait ... \r\n"); #else cliPrintf("Erasing,\r\n"); #endif bufWriterFlush(cliWriter); flashfsEraseCompletely(); while (!flashfsIsReady()) { #ifndef MINIMAL_CLI cliPrintf("."); if (i++ > 120) { i=0; cliPrintf("\r\n"); } bufWriterFlush(cliWriter); #endif delay(100); } beeper(BEEPER_BLACKBOX_ERASE); cliPrintf("\r\nDone.\r\n"); } #ifdef USE_FLASH_TOOLS static void cliFlashWrite(char *cmdline) { const uint32_t address = atoi(cmdline); const char *text = strchr(cmdline, ' '); if (!text) { cliShowParseError(); } else { flashfsSeekAbs(address); flashfsWrite((uint8_t*)text, strlen(text), true); flashfsFlushSync(); cliPrintf("Wrote %u bytes at %u.\r\n", strlen(text), address); } } static void cliFlashRead(char *cmdline) { uint32_t address = atoi(cmdline); uint8_t buffer[32]; const char *nextArg = strchr(cmdline, ' '); if (!nextArg) { cliShowParseError(); } else { uint32_t length = atoi(nextArg); cliPrintf("Reading %u bytes at %u:\r\n", length, address); while (length > 0) { int bytesRead = flashfsReadAbs(address, buffer, length < sizeof(buffer) ? length : sizeof(buffer)); for (int i = 0; i < bytesRead; i++) { cliWrite(buffer[i]); } length -= bytesRead; address += bytesRead; if (bytesRead == 0) { //Assume we reached the end of the volume or something fatal happened break; } } cliPrintf("\r\n"); } } #endif #endif #ifdef VTX static void printVtx(uint8_t dumpMask, const master_t *defaultConfig) { // print out vtx channel settings const char *format = "vtx %u %u %u %u %u %u\r\n"; bool equalsDefault = false; for (uint32_t i = 0; i < MAX_CHANNEL_ACTIVATION_CONDITION_COUNT; i++) { const vtxChannelActivationCondition_t *cac = &masterConfig.vtxChannelActivationConditions[i]; if (defaultConfig) { const vtxChannelActivationCondition_t *cacDefault = &defaultConfig->vtxChannelActivationConditions[i]; equalsDefault = cac->auxChannelIndex == cacDefault->auxChannelIndex && cac->band == cacDefault->band && cac->channel == cacDefault->channel && cac->range.startStep == cacDefault->range.startStep && cac->range.endStep == cacDefault->range.endStep; cliDefaultPrintf(dumpMask, equalsDefault, format, i, cacDefault->auxChannelIndex, cacDefault->band, cacDefault->channel, MODE_STEP_TO_CHANNEL_VALUE(cacDefault->range.startStep), MODE_STEP_TO_CHANNEL_VALUE(cacDefault->range.endStep) ); } cliDumpPrintf(dumpMask, equalsDefault, format, i, cac->auxChannelIndex, cac->band, cac->channel, MODE_STEP_TO_CHANNEL_VALUE(cac->range.startStep), MODE_STEP_TO_CHANNEL_VALUE(cac->range.endStep) ); } } static void cliVtx(char *cmdline) { int i, val = 0; const char *ptr; if (isEmpty(cmdline)) { printVtx(DUMP_MASTER, NULL); } else { ptr = cmdline; i = atoi(ptr++); if (i < MAX_CHANNEL_ACTIVATION_CONDITION_COUNT) { vtxChannelActivationCondition_t *cac = &masterConfig.vtxChannelActivationConditions[i]; uint8_t validArgumentCount = 0; ptr = nextArg(ptr); if (ptr) { val = atoi(ptr); if (val >= 0 && val < MAX_AUX_CHANNEL_COUNT) { cac->auxChannelIndex = val; validArgumentCount++; } } ptr = nextArg(ptr); if (ptr) { val = atoi(ptr); if (val >= VTX_BAND_MIN && val <= VTX_BAND_MAX) { cac->band = val; validArgumentCount++; } } ptr = nextArg(ptr); if (ptr) { val = atoi(ptr); if (val >= VTX_CHANNEL_MIN && val <= VTX_CHANNEL_MAX) { cac->channel = val; validArgumentCount++; } } ptr = processChannelRangeArgs(ptr, &cac->range, &validArgumentCount); if (validArgumentCount != 5) { memset(cac, 0, sizeof(vtxChannelActivationCondition_t)); } } else { cliShowArgumentRangeError("index", 0, MAX_CHANNEL_ACTIVATION_CONDITION_COUNT - 1); } } } #endif static void printName(uint8_t dumpMask) { const bool equalsDefault = strlen(systemConfig()->name) == 0; cliDumpPrintf(dumpMask, equalsDefault, "name %s\r\n", equalsDefault ? emptyName : systemConfig()->name); } static void cliName(char *cmdline) { const uint32_t len = strlen(cmdline); if (len > 0) { memset(systemConfigMutable()->name, 0, ARRAYLEN(systemConfig()->name)); if (strncmp(cmdline, emptyName, len)) { strncpy(systemConfigMutable()->name, cmdline, MIN(len, MAX_NAME_LENGTH)); } } printName(DUMP_MASTER); } static void printFeature(uint8_t dumpMask, const featureConfig_t *featureConfigDefault) { const uint32_t mask = featureMask(); const uint32_t defaultMask = featureConfigDefault->enabledFeatures; for (uint32_t i = 0; ; i++) { // disable all feature first if (featureNames[i] == NULL) break; const char *format = "feature -%s\r\n"; cliDefaultPrintf(dumpMask, (defaultMask | ~mask) & (1 << i), format, featureNames[i]); cliDumpPrintf(dumpMask, (~defaultMask | mask) & (1 << i), format, featureNames[i]); } for (uint32_t i = 0; ; i++) { // reenable what we want. if (featureNames[i] == NULL) break; const char *format = "feature %s\r\n"; if (defaultMask & (1 << i)) { cliDefaultPrintf(dumpMask, (~defaultMask | mask) & (1 << i), format, featureNames[i]); } if (mask & (1 << i)) { cliDumpPrintf(dumpMask, (defaultMask | ~mask) & (1 << i), format, featureNames[i]); } } } static void cliFeature(char *cmdline) { uint32_t len = strlen(cmdline); uint32_t mask = featureMask(); if (len == 0) { cliPrint("Enabled: "); for (uint32_t i = 0; ; i++) { if (featureNames[i] == NULL) break; if (mask & (1 << i)) cliPrintf("%s ", featureNames[i]); } cliPrint("\r\n"); } else if (strncasecmp(cmdline, "list", len) == 0) { cliPrint("Available: "); for (uint32_t i = 0; ; i++) { if (featureNames[i] == NULL) break; cliPrintf("%s ", featureNames[i]); } cliPrint("\r\n"); return; } else { bool remove = false; if (cmdline[0] == '-') { // remove feature remove = true; cmdline++; // skip over - len--; } for (uint32_t i = 0; ; i++) { if (featureNames[i] == NULL) { cliPrint("Invalid name\r\n"); break; } if (strncasecmp(cmdline, featureNames[i], len) == 0) { mask = 1 << i; #ifndef GPS if (mask & FEATURE_GPS) { cliPrint("unavailable\r\n"); break; } #endif #ifndef SONAR if (mask & FEATURE_SONAR) { cliPrint("unavailable\r\n"); break; } #endif if (remove) { featureClear(mask); cliPrint("Disabled"); } else { featureSet(mask); cliPrint("Enabled"); } cliPrintf(" %s\r\n", featureNames[i]); break; } } } } #ifdef BEEPER static void printBeeper(uint8_t dumpMask, const master_t *defaultConfig) { const uint8_t beeperCount = beeperTableEntryCount(); const uint32_t mask = getBeeperOffMask(); const uint32_t defaultMask = defaultConfig->beeper_off_flags; for (int32_t i = 0; i < beeperCount - 2; i++) { const char *formatOff = "beeper -%s\r\n"; const char *formatOn = "beeper %s\r\n"; cliDefaultPrintf(dumpMask, ~(mask ^ defaultMask) & (1 << i), mask & (1 << i) ? formatOn : formatOff, beeperNameForTableIndex(i)); cliDumpPrintf(dumpMask, ~(mask ^ defaultMask) & (1 << i), mask & (1 << i) ? formatOff : formatOn, beeperNameForTableIndex(i)); } } static void cliBeeper(char *cmdline) { uint32_t len = strlen(cmdline); uint8_t beeperCount = beeperTableEntryCount(); uint32_t mask = getBeeperOffMask(); if (len == 0) { cliPrintf("Disabled:"); for (int32_t i = 0; ; i++) { if (i == beeperCount - 2){ if (mask == 0) cliPrint(" none"); break; } if (mask & (1 << i)) cliPrintf(" %s", beeperNameForTableIndex(i)); } cliPrint("\r\n"); } else if (strncasecmp(cmdline, "list", len) == 0) { cliPrint("Available:"); for (uint32_t i = 0; i < beeperCount; i++) cliPrintf(" %s", beeperNameForTableIndex(i)); cliPrint("\r\n"); return; } else { bool remove = false; if (cmdline[0] == '-') { remove = true; // this is for beeper OFF condition cmdline++; len--; } for (uint32_t i = 0; ; i++) { if (i == beeperCount) { cliPrint("Invalid name\r\n"); break; } if (strncasecmp(cmdline, beeperNameForTableIndex(i), len) == 0) { if (remove) { // beeper off if (i == BEEPER_ALL-1) beeperOffSetAll(beeperCount-2); else if (i == BEEPER_PREFERENCE-1) setBeeperOffMask(getPreferredBeeperOffMask()); else { mask = 1 << i; beeperOffSet(mask); } cliPrint("Disabled"); } else { // beeper on if (i == BEEPER_ALL-1) beeperOffClearAll(); else if (i == BEEPER_PREFERENCE-1) setPreferredBeeperOffMask(getBeeperOffMask()); else { mask = 1 << i; beeperOffClear(mask); } cliPrint("Enabled"); } cliPrintf(" %s\r\n", beeperNameForTableIndex(i)); break; } } } } #endif static void printMap(uint8_t dumpMask, const rxConfig_t *rxConfig, const rxConfig_t *defaultRxConfig) { bool equalsDefault = true; char buf[16]; char bufDefault[16]; uint32_t i; for (i = 0; i < MAX_MAPPABLE_RX_INPUTS; i++) { buf[rxConfig->rcmap[i]] = rcChannelLetters[i]; if (defaultRxConfig) { bufDefault[defaultRxConfig->rcmap[i]] = rcChannelLetters[i]; equalsDefault = equalsDefault && (rxConfig->rcmap[i] == defaultRxConfig->rcmap[i]); } } buf[i] = '\0'; const char *formatMap = "map %s\r\n"; cliDefaultPrintf(dumpMask, equalsDefault, formatMap, bufDefault); cliDumpPrintf(dumpMask, equalsDefault, formatMap, buf); } static void cliMap(char *cmdline) { uint32_t len; char out[9]; len = strlen(cmdline); if (len == 8) { // uppercase it for (uint32_t i = 0; i < 8; i++) cmdline[i] = toupper((unsigned char)cmdline[i]); for (uint32_t i = 0; i < 8; i++) { if (strchr(rcChannelLetters, cmdline[i]) && !strchr(cmdline + i + 1, cmdline[i])) continue; cliShowParseError(); return; } parseRcChannels(cmdline, &masterConfig.rxConfig); } cliPrint("Map: "); uint32_t i; for (i = 0; i < 8; i++) out[rxConfig()->rcmap[i]] = rcChannelLetters[i]; out[i] = '\0'; cliPrintf("%s\r\n", out); } static char *checkCommand(char *cmdLine, const char *command) { if(!strncasecmp(cmdLine, command, strlen(command)) // command names match && !isalnum((unsigned)cmdLine[strlen(command)])) { // next characted in bufffer is not alphanumeric (command is correctly terminated) return cmdLine + strlen(command) + 1; } else { return 0; } } static void cliRebootEx(bool bootLoader) { cliPrint("\r\nRebooting"); bufWriterFlush(cliWriter); waitForSerialPortToFinishTransmitting(cliPort); stopPwmAllMotors(); if (bootLoader) { systemResetToBootloader(); return; } systemReset(); } static void cliReboot(void) { cliRebootEx(false); } static void cliDfu(char *cmdLine) { UNUSED(cmdLine); cliPrintHashLine("restarting in DFU mode"); cliRebootEx(true); } static void cliExit(char *cmdline) { UNUSED(cmdline); cliPrintHashLine("leaving CLI mode, unsaved changes lost"); bufWriterFlush(cliWriter); *cliBuffer = '\0'; bufferIndex = 0; cliMode = 0; // incase a motor was left running during motortest, clear it here mixerResetDisarmedMotors(); cliReboot(); cliWriter = NULL; } #ifdef GPS static void cliGpsPassthrough(char *cmdline) { UNUSED(cmdline); gpsEnablePassthrough(cliPort); } #endif #ifdef USE_ESCSERIAL static void cliEscPassthrough(char *cmdline) { uint8_t mode = 0; int index = 0; int i = 0; char *pch = NULL; char *saveptr; if (isEmpty(cmdline)) { cliShowParseError(); return; } pch = strtok_r(cmdline, " ", &saveptr); while (pch != NULL) { switch (i) { case 0: if(strncasecmp(pch, "sk", strlen(pch)) == 0) { mode = 0; } else if(strncasecmp(pch, "bl", strlen(pch)) == 0) { mode = 1; } else if(strncasecmp(pch, "ki", strlen(pch)) == 0) { mode = 2; } else if(strncasecmp(pch, "cc", strlen(pch)) == 0) { mode = 4; } else { cliShowParseError(); return; } break; case 1: index = atoi(pch); if(mode == 2 && index == 255) { printf("passthrough on all outputs enabled\r\n"); } else{ if ((index >= 0) && (index < USABLE_TIMER_CHANNEL_COUNT)) { printf("passthrough on output %d enabled\r\n", index); } else { printf("invalid output, range: 1 to %d\r\n", USABLE_TIMER_CHANNEL_COUNT); return; } } break; } i++; pch = strtok_r(NULL, " ", &saveptr); } escEnablePassthrough(cliPort,index,mode); } #endif #ifndef USE_QUAD_MIXER_ONLY static void cliMixer(char *cmdline) { int len; len = strlen(cmdline); if (len == 0) { cliPrintf("Mixer: %s\r\n", mixerNames[mixerConfig()->mixerMode - 1]); return; } else if (strncasecmp(cmdline, "list", len) == 0) { cliPrint("Available mixers: "); for (uint32_t i = 0; ; i++) { if (mixerNames[i] == NULL) break; cliPrintf("%s ", mixerNames[i]); } cliPrint("\r\n"); return; } for (uint32_t i = 0; ; i++) { if (mixerNames[i] == NULL) { cliPrint("Invalid name\r\n"); return; } if (strncasecmp(cmdline, mixerNames[i], len) == 0) { mixerConfigMutable()->mixerMode = i + 1; break; } } cliMixer(""); } #endif static void cliMotor(char *cmdline) { int motor_index = 0; int motor_value = 0; int index = 0; char *pch = NULL; char *saveptr; if (isEmpty(cmdline)) { cliShowParseError(); return; } pch = strtok_r(cmdline, " ", &saveptr); while (pch != NULL) { switch (index) { case 0: motor_index = atoi(pch); break; case 1: motor_value = atoi(pch); break; } index++; pch = strtok_r(NULL, " ", &saveptr); } if (motor_index < 0 || motor_index >= MAX_SUPPORTED_MOTORS) { cliShowArgumentRangeError("index", 0, MAX_SUPPORTED_MOTORS - 1); return; } if (index == 2) { if (motor_value < PWM_RANGE_MIN || motor_value > PWM_RANGE_MAX) { cliShowArgumentRangeError("value", 1000, 2000); return; } else { motor_disarmed[motor_index] = convertExternalToMotor(motor_value); } } cliPrintf("motor %d: %d\r\n", motor_index, convertMotorToExternal(motor_disarmed[motor_index])); } #ifndef MINIMAL_CLI static void cliPlaySound(char *cmdline) { int i; const char *name; static int lastSoundIdx = -1; if (isEmpty(cmdline)) { i = lastSoundIdx + 1; //next sound index if ((name=beeperNameForTableIndex(i)) == NULL) { while (true) { //no name for index; try next one if (++i >= beeperTableEntryCount()) i = 0; //if end then wrap around to first entry if ((name=beeperNameForTableIndex(i)) != NULL) break; //if name OK then play sound below if (i == lastSoundIdx + 1) { //prevent infinite loop cliPrintf("Error playing sound\r\n"); return; } } } } else { //index value was given i = atoi(cmdline); if ((name=beeperNameForTableIndex(i)) == NULL) { cliPrintf("No sound for index %d\r\n", i); return; } } lastSoundIdx = i; beeperSilence(); cliPrintf("Playing sound %d: %s\r\n", i, name); beeper(beeperModeForTableIndex(i)); } #endif static void cliProfile(char *cmdline) { if (isEmpty(cmdline)) { cliPrintf("profile %d\r\n", getCurrentProfile()); return; } else { const int i = atoi(cmdline); if (i >= 0 && i < MAX_PROFILE_COUNT) { masterConfig.current_profile_index = i; writeEEPROM(); readEEPROM(); cliProfile(""); } } } static void cliRateProfile(char *cmdline) { if (isEmpty(cmdline)) { cliPrintf("rateprofile %d\r\n", getCurrentControlRateProfile()); return; } else { const int i = atoi(cmdline); if (i >= 0 && i < MAX_RATEPROFILES) { changeControlRateProfile(i); cliRateProfile(""); } } } static void cliDumpProfile(uint8_t profileIndex, uint8_t dumpMask, const master_t *defaultConfig) { if (profileIndex >= MAX_PROFILE_COUNT) { // Faulty values return; } changeProfile(profileIndex); cliPrintHashLine("profile"); cliProfile(""); cliPrint("\r\n"); #ifdef USE_PARAMETER_GROUPS (void)(defaultConfig); dumpAllValues(PROFILE_VALUE, dumpMask); dumpAllValues(PROFILE_RATE_VALUE, dumpMask); #else dumpValues(PROFILE_VALUE, dumpMask, defaultConfig); #endif cliRateProfile(""); } static void cliDumpRateProfile(uint8_t rateProfileIndex, uint8_t dumpMask, const master_t *defaultConfig) { if (rateProfileIndex >= MAX_RATEPROFILES) { // Faulty values return; } changeControlRateProfile(rateProfileIndex); cliPrintHashLine("rateprofile"); cliRateProfile(""); cliPrint("\r\n"); dumpValues(PROFILE_RATE_VALUE, dumpMask, defaultConfig); } static void cliSave(char *cmdline) { UNUSED(cmdline); cliPrintHashLine("saving"); writeEEPROM(); cliReboot(); } static void cliDefaults(char *cmdline) { UNUSED(cmdline); cliPrintHashLine("resetting to defaults"); resetEEPROM(); cliReboot(); } static void cliGet(char *cmdline) { const clivalue_t *val; int matchedCommands = 0; for (uint32_t i = 0; i < ARRAYLEN(valueTable); i++) { if (strstr(valueTable[i].name, cmdline)) { val = &valueTable[i]; cliPrintf("%s = ", valueTable[i].name); cliPrintVar(val, 0); cliPrint("\r\n"); cliPrintVarRange(val); cliPrint("\r\n"); matchedCommands++; } } if (matchedCommands) { return; } cliPrint("Invalid name\r\n"); } static void cliSet(char *cmdline) { uint32_t len; const clivalue_t *val; char *eqptr = NULL; len = strlen(cmdline); if (len == 0 || (len == 1 && cmdline[0] == '*')) { cliPrint("Current settings: \r\n"); for (uint32_t i = 0; i < ARRAYLEN(valueTable); i++) { val = &valueTable[i]; cliPrintf("%s = ", valueTable[i].name); cliPrintVar(val, len); // when len is 1 (when * is passed as argument), it will print min/max values as well, for gui cliPrint("\r\n"); } } else if ((eqptr = strstr(cmdline, "=")) != NULL) { // has equals char *lastNonSpaceCharacter = eqptr; while (*(lastNonSpaceCharacter - 1) == ' ') { lastNonSpaceCharacter--; } uint8_t variableNameLength = lastNonSpaceCharacter - cmdline; // skip the '=' and any ' ' characters eqptr++; while (*(eqptr) == ' ') { eqptr++; } for (uint32_t i = 0; i < ARRAYLEN(valueTable); i++) { val = &valueTable[i]; // ensure exact match when setting to prevent setting variables with shorter names if (strncasecmp(cmdline, valueTable[i].name, strlen(valueTable[i].name)) == 0 && variableNameLength == strlen(valueTable[i].name)) { bool changeValue = false; int_float_value_t tmp = { 0 }; switch (valueTable[i].type & VALUE_MODE_MASK) { case MODE_DIRECT: { int32_t value = 0; float valuef = 0; value = atoi(eqptr); valuef = fastA2F(eqptr); if (valuef >= valueTable[i].config.minmax.min && valuef <= valueTable[i].config.minmax.max) { // note: compare float value if ((valueTable[i].type & VALUE_TYPE_MASK) == VAR_FLOAT) tmp.float_value = valuef; else tmp.int_value = value; changeValue = true; } } break; case MODE_LOOKUP: { const lookupTableEntry_t *tableEntry = &lookupTables[valueTable[i].config.lookup.tableIndex]; bool matched = false; for (uint32_t tableValueIndex = 0; tableValueIndex < tableEntry->valueCount && !matched; tableValueIndex++) { matched = strcasecmp(tableEntry->values[tableValueIndex], eqptr) == 0; if (matched) { tmp.int_value = tableValueIndex; changeValue = true; } } } break; } if (changeValue) { cliSetVar(val, tmp); cliPrintf("%s set to ", valueTable[i].name); cliPrintVar(val, 0); } else { cliPrint("Invalid value\r\n"); cliPrintVarRange(val); } return; } } cliPrint("Invalid name\r\n"); } else { // no equals, check for matching variables. cliGet(cmdline); } } static void cliStatus(char *cmdline) { UNUSED(cmdline); cliPrintf("System Uptime: %d seconds\r\n", millis() / 1000); cliPrintf("Voltage: %d * 0.1V (%dS battery - %s)\r\n", getVbat(), batteryCellCount, getBatteryStateString()); cliPrintf("CPU Clock=%dMHz", (SystemCoreClock / 1000000)); #if defined(USE_SENSOR_NAMES) const uint32_t detectedSensorsMask = sensorsMask(); for (uint32_t i = 0; ; i++) { if (sensorTypeNames[i] == NULL) { break; } const uint32_t mask = (1 << i); if ((detectedSensorsMask & mask) && (mask & SENSOR_NAMES_MASK)) { const uint8_t sensorHardwareIndex = detectedSensors[i]; const char *sensorHardware = sensorHardwareNames[i][sensorHardwareIndex]; cliPrintf(", %s=%s", sensorTypeNames[i], sensorHardware); if (mask == SENSOR_ACC && acc.dev.revisionCode) { cliPrintf(".%c", acc.dev.revisionCode); } } } #endif /* USE_SENSOR_NAMES */ cliPrint("\r\n"); #ifdef USE_SDCARD cliSdInfo(NULL); #endif #ifdef USE_I2C const uint16_t i2cErrorCounter = i2cGetErrorCounter(); #else const uint16_t i2cErrorCounter = 0; #endif #ifdef STACK_CHECK cliPrintf("Stack used: %d, ", stackUsedSize()); #endif cliPrintf("Stack size: %d, Stack address: 0x%x\r\n", stackTotalSize(), stackHighMem()); cliPrintf("I2C Errors: %d, config size: %d\r\n", i2cErrorCounter, sizeof(master_t)); const int gyroRate = getTaskDeltaTime(TASK_GYROPID) == 0 ? 0 : (int)(1000000.0f / ((float)getTaskDeltaTime(TASK_GYROPID))); const int rxRate = getTaskDeltaTime(TASK_RX) == 0 ? 0 : (int)(1000000.0f / ((float)getTaskDeltaTime(TASK_RX))); const int systemRate = getTaskDeltaTime(TASK_SYSTEM) == 0 ? 0 : (int)(1000000.0f / ((float)getTaskDeltaTime(TASK_SYSTEM))); cliPrintf("CPU:%d%%, cycle time: %d, GYRO rate: %d, RX rate: %d, System rate: %d\r\n", constrain(averageSystemLoadPercent, 0, 100), getTaskDeltaTime(TASK_GYROPID), gyroRate, rxRate, systemRate); } #ifndef SKIP_TASK_STATISTICS static void cliTasks(char *cmdline) { UNUSED(cmdline); int maxLoadSum = 0; int averageLoadSum = 0; #ifndef MINIMAL_CLI if (masterConfig.task_statistics) { cliPrintf("Task list rate/hz max/us avg/us maxload avgload total/ms\r\n"); } else { cliPrintf("Task list\r\n"); } #endif for (cfTaskId_e taskId = 0; taskId < TASK_COUNT; taskId++) { cfTaskInfo_t taskInfo; getTaskInfo(taskId, &taskInfo); if (taskInfo.isEnabled) { int taskFrequency; int subTaskFrequency; if (taskId == TASK_GYROPID) { subTaskFrequency = taskInfo.latestDeltaTime == 0 ? 0 : (int)(1000000.0f / ((float)taskInfo.latestDeltaTime)); taskFrequency = subTaskFrequency / pidConfig()->pid_process_denom; if (pidConfig()->pid_process_denom > 1) { cliPrintf("%02d - (%13s) ", taskId, taskInfo.taskName); } else { taskFrequency = subTaskFrequency; cliPrintf("%02d - (%9s/%3s) ", taskId, taskInfo.subTaskName, taskInfo.taskName); } } else { taskFrequency = taskInfo.latestDeltaTime == 0 ? 0 : (int)(1000000.0f / ((float)taskInfo.latestDeltaTime)); cliPrintf("%02d - (%13s) ", taskId, taskInfo.taskName); } const int maxLoad = taskInfo.maxExecutionTime == 0 ? 0 :(taskInfo.maxExecutionTime * taskFrequency + 5000) / 1000; const int averageLoad = taskInfo.averageExecutionTime == 0 ? 0 : (taskInfo.averageExecutionTime * taskFrequency + 5000) / 1000; if (taskId != TASK_SERIAL) { maxLoadSum += maxLoad; averageLoadSum += averageLoad; } if (masterConfig.task_statistics) { cliPrintf("%6d %7d %7d %4d.%1d%% %4d.%1d%% %9d\r\n", taskFrequency, taskInfo.maxExecutionTime, taskInfo.averageExecutionTime, maxLoad/10, maxLoad%10, averageLoad/10, averageLoad%10, taskInfo.totalExecutionTime / 1000); } else { cliPrintf("%6d\r\n", taskFrequency); } if (taskId == TASK_GYROPID && pidConfig()->pid_process_denom > 1) { cliPrintf(" - (%13s) %6d\r\n", taskInfo.subTaskName, subTaskFrequency); } } } if (masterConfig.task_statistics) { cfCheckFuncInfo_t checkFuncInfo; getCheckFuncInfo(&checkFuncInfo); cliPrintf("RX Check Function %17d %7d %25d\r\n", checkFuncInfo.maxExecutionTime, checkFuncInfo.averageExecutionTime, checkFuncInfo.totalExecutionTime / 1000); cliPrintf("Total (excluding SERIAL) %23d.%1d%% %4d.%1d%%\r\n", maxLoadSum/10, maxLoadSum%10, averageLoadSum/10, averageLoadSum%10); } } #endif static void cliVersion(char *cmdline) { UNUSED(cmdline); cliPrintf("# %s / %s %s %s / %s (%s)\r\n", FC_FIRMWARE_NAME, targetName, FC_VERSION_STRING, buildDate, buildTime, shortGitRevision ); } #if defined(USE_RESOURCE_MGMT) #define MAX_RESOURCE_INDEX(x) ((x) == 0 ? 1 : (x)) typedef struct { const uint8_t owner; ioTag_t *ptr; const uint8_t maxIndex; } cliResourceValue_t; const cliResourceValue_t resourceTable[] = { #ifdef BEEPER { OWNER_BEEPER, &beeperDevConfig()->ioTag, 0 }, #endif { OWNER_MOTOR, &motorConfig()->dev.ioTags[0], MAX_SUPPORTED_MOTORS }, #ifdef USE_SERVOS { OWNER_SERVO, &servoConfig()->dev.ioTags[0], MAX_SUPPORTED_SERVOS }, #endif #if defined(USE_PWM) || defined(USE_PPM) { OWNER_PPMINPUT, &ppmConfig()->ioTag, 0 }, { OWNER_PWMINPUT, &pwmConfig()->ioTags[0], PWM_INPUT_PORT_COUNT }, #endif #ifdef SONAR { OWNER_SONAR_TRIGGER, &sonarConfig()->triggerTag, 0 }, { OWNER_SONAR_ECHO, &sonarConfig()->echoTag, 0 }, #endif #ifdef LED_STRIP { OWNER_LED_STRIP, &ledStripConfig()->ioTag, 0 }, #endif }; static void printResource(uint8_t dumpMask, const master_t *defaultConfig) { for (unsigned int i = 0; i < ARRAYLEN(resourceTable); i++) { const char* owner; owner = ownerNames[resourceTable[i].owner]; for (int index = 0; index < MAX_RESOURCE_INDEX(resourceTable[i].maxIndex); index++) { ioTag_t ioTag = *(resourceTable[i].ptr + index); ioTag_t ioTagDefault = *(resourceTable[i].ptr + index - (uint32_t)&masterConfig + (uint32_t)defaultConfig); bool equalsDefault = ioTag == ioTagDefault; const char *format = "resource %s %d %c%02d\r\n"; const char *formatUnassigned = "resource %s %d NONE\r\n"; if (!ioTagDefault) { cliDefaultPrintf(dumpMask, equalsDefault, formatUnassigned, owner, RESOURCE_INDEX(index)); } else { cliDefaultPrintf(dumpMask, equalsDefault, format, owner, RESOURCE_INDEX(index), IO_GPIOPortIdxByTag(ioTagDefault) + 'A', IO_GPIOPinIdxByTag(ioTagDefault)); } if (!ioTag) { if (!(dumpMask & HIDE_UNUSED)) { cliDumpPrintf(dumpMask, equalsDefault, formatUnassigned, owner, RESOURCE_INDEX(index)); } } else { cliDumpPrintf(dumpMask, equalsDefault, format, owner, RESOURCE_INDEX(index), IO_GPIOPortIdxByTag(ioTag) + 'A', IO_GPIOPinIdxByTag(ioTag)); } } } } static void printResourceOwner(uint8_t owner, uint8_t index) { cliPrintf("%s", ownerNames[resourceTable[owner].owner]); if (resourceTable[owner].maxIndex > 0) { cliPrintf(" %d", RESOURCE_INDEX(index)); } } static void resourceCheck(uint8_t resourceIndex, uint8_t index, ioTag_t tag) { if (!tag) { return; } const char * format = "\r\nNOTE: %c%02d already assigned to "; for (int r = 0; r < (int)ARRAYLEN(resourceTable); r++) { for (int i = 0; i < MAX_RESOURCE_INDEX(resourceTable[r].maxIndex); i++) { if (*(resourceTable[r].ptr + i) == tag) { bool cleared = false; if (r == resourceIndex) { if (i == index) { continue; } *(resourceTable[r].ptr + i) = IO_TAG_NONE; cleared = true; } cliPrintf(format, DEFIO_TAG_GPIOID(tag) + 'A', DEFIO_TAG_PIN(tag)); printResourceOwner(r, i); if (cleared) { cliPrintf(". "); printResourceOwner(r, i); cliPrintf(" disabled"); } cliPrint(".\r\n"); } } } } static void cliResource(char *cmdline) { int len = strlen(cmdline); if (len == 0) { printResource(DUMP_MASTER | HIDE_UNUSED, NULL); return; } else if (strncasecmp(cmdline, "list", len) == 0) { #ifdef MINIMAL_CLI cliPrintf("IO\r\n"); #else cliPrintf("Currently active IO resource assignments:\r\n(reboot to update)\r\n"); cliRepeat('-', 20); #endif for (int i = 0; i < DEFIO_IO_USED_COUNT; i++) { const char* owner; owner = ownerNames[ioRecs[i].owner]; cliPrintf("%c%02d: %s ", IO_GPIOPortIdx(ioRecs + i) + 'A', IO_GPIOPinIdx(ioRecs + i), owner); if (ioRecs[i].index > 0) { cliPrintf("%d", ioRecs[i].index); } cliPrintf("\r\n"); } cliPrintf("\r\n\r\n"); #ifdef MINIMAL_CLI cliPrintf("DMA:\r\n"); #else cliPrintf("Currently active DMA:\r\n"); cliRepeat('-', 20); #endif for (int i = 0; i < DMA_MAX_DESCRIPTORS; i++) { const char* owner; owner = ownerNames[dmaGetOwner(i)]; cliPrintf(DMA_OUTPUT_STRING, i / DMA_MOD_VALUE + 1, (i % DMA_MOD_VALUE) + DMA_MOD_OFFSET); uint8_t resourceIndex = dmaGetResourceIndex(i); if (resourceIndex > 0) { cliPrintf(" %s %d\r\n", owner, resourceIndex); } else { cliPrintf(" %s\r\n", owner); } } #ifndef MINIMAL_CLI cliPrintf("\r\nUse: 'resource' to see how to change resources.\r\n"); #endif return; } uint8_t resourceIndex = 0; int index = 0; char *pch = NULL; char *saveptr; pch = strtok_r(cmdline, " ", &saveptr); for (resourceIndex = 0; ; resourceIndex++) { if (resourceIndex >= ARRAYLEN(resourceTable)) { cliPrint("Invalid\r\n"); return; } if (strncasecmp(pch, ownerNames[resourceTable[resourceIndex].owner], len) == 0) { break; } } pch = strtok_r(NULL, " ", &saveptr); index = atoi(pch); if (resourceTable[resourceIndex].maxIndex > 0 || index > 0) { if (index <= 0 || index > MAX_RESOURCE_INDEX(resourceTable[resourceIndex].maxIndex)) { cliShowArgumentRangeError("index", 1, MAX_RESOURCE_INDEX(resourceTable[resourceIndex].maxIndex)); return; } index -= 1; pch = strtok_r(NULL, " ", &saveptr); } ioTag_t *tag = (ioTag_t*)(resourceTable[resourceIndex].ptr + index); uint8_t pin = 0; if (strlen(pch) > 0) { if (strcasecmp(pch, "NONE") == 0) { *tag = IO_TAG_NONE; #ifdef MINIMAL_CLI cliPrintf("Freed\r\n"); #else cliPrintf("Resource is freed\r\n"); #endif return; } else { uint8_t port = (*pch) - 'A'; if (port >= 8) { port = (*pch) - 'a'; } if (port < 8) { pch++; pin = atoi(pch); if (pin < 16) { ioRec_t *rec = IO_Rec(IOGetByTag(DEFIO_TAG_MAKE(port, pin))); if (rec) { resourceCheck(resourceIndex, index, DEFIO_TAG_MAKE(port, pin)); #ifdef MINIMAL_CLI cliPrintf(" %c%02d set\r\n", port + 'A', pin); #else cliPrintf("\r\nResource is set to %c%02d!\r\n", port + 'A', pin); #endif *tag = DEFIO_TAG_MAKE(port, pin); } else { cliShowParseError(); } return; } } } } cliShowParseError(); } #endif /* USE_RESOURCE_MGMT */ #ifdef USE_PARAMETER_GROUPS static void backupConfigs(void) { // make copies of configs to do differencing PG_FOREACH(reg) { // currentConfig is the copy const cliCurrentAndDefaultConfig_t *cliCurrentAndDefaultConfig = getCurrentAndDefaultConfigs(pgN(reg)); if (cliCurrentAndDefaultConfig->currentConfig) { if (pgIsProfile(reg)) { //memcpy((uint8_t *)cliCurrentAndDefaultConfig->currentConfig, reg->address, reg->size * MAX_PROFILE_COUNT); } else { memcpy((uint8_t *)cliCurrentAndDefaultConfig->currentConfig, reg->address, reg->size); } #ifdef SERIAL_CLI_DEBUG } else { cliPrintf("BACKUP %d SET UP INCORRECTLY\r\n", pgN(reg)); #endif } } const pgRegistry_t* reg = pgFind(PG_PID_PROFILE); memcpy(&pidProfileCopy[0], reg->address, sizeof(pidProfile_t) * MAX_PROFILE_COUNT); } static void restoreConfigs(void) { PG_FOREACH(reg) { // currentConfig is the copy const cliCurrentAndDefaultConfig_t *cliCurrentAndDefaultConfig = getCurrentAndDefaultConfigs(pgN(reg)); if (cliCurrentAndDefaultConfig->currentConfig) { if (pgIsProfile(reg)) { //memcpy(reg->address, (uint8_t *)cliCurrentAndDefaultConfig->currentConfig, reg->size * MAX_PROFILE_COUNT); } else { memcpy(reg->address, (uint8_t *)cliCurrentAndDefaultConfig->currentConfig, reg->size); } #ifdef SERIAL_CLI_DEBUG } else { cliPrintf("RESTORE %d SET UP INCORRECTLY\r\n", pgN(reg)); #endif } } const pgRegistry_t* reg = pgFind(PG_PID_PROFILE); memcpy(reg->address, &pidProfileCopy[0], sizeof(pidProfile_t) * MAX_PROFILE_COUNT); } #endif static void printConfig(char *cmdline, bool doDiff) { uint8_t dumpMask = DUMP_MASTER; char *options; if ((options = checkCommand(cmdline, "master"))) { dumpMask = DUMP_MASTER; // only } else if ((options = checkCommand(cmdline, "profile"))) { dumpMask = DUMP_PROFILE; // only } else if ((options = checkCommand(cmdline, "rates"))) { dumpMask = DUMP_RATES; // only } else if ((options = checkCommand(cmdline, "all"))) { dumpMask = DUMP_ALL; // all profiles and rates } else { options = cmdline; } if (doDiff) { dumpMask = dumpMask | DO_DIFF; } static master_t defaultConfig; createDefaultConfig(&defaultConfig); #ifdef USE_PARAMETER_GROUPS backupConfigs(); // reset all configs to defaults to do differencing resetConfigs(); #if defined(TARGET_CONFIG) targetConfiguration(&defaultConfig); #endif #endif if (checkCommand(options, "showdefaults")) { dumpMask = dumpMask | SHOW_DEFAULTS; // add default values as comments for changed values } if ((dumpMask & DUMP_MASTER) || (dumpMask & DUMP_ALL)) { cliPrintHashLine("version"); cliVersion(NULL); if ((dumpMask & (DUMP_ALL | DO_DIFF)) == (DUMP_ALL | DO_DIFF)) { cliPrintHashLine("reset configuration to default settings"); cliPrint("defaults\r\n"); } cliPrintHashLine("name"); printName(dumpMask); #ifdef USE_RESOURCE_MGMT cliPrintHashLine("resources"); printResource(dumpMask, &defaultConfig); #endif #ifndef USE_QUAD_MIXER_ONLY cliPrintHashLine("mixer"); const bool equalsDefault = mixerConfig()->mixerMode == defaultConfig.mixerConfig.mixerMode; const char *formatMixer = "mixer %s\r\n"; cliDefaultPrintf(dumpMask, equalsDefault, formatMixer, mixerNames[defaultConfig.mixerConfig.mixerMode - 1]); cliDumpPrintf(dumpMask, equalsDefault, formatMixer, mixerNames[mixerConfig()->mixerMode - 1]); cliDumpPrintf(dumpMask, masterConfig.customMotorMixer[0].throttle == 0.0f, "\r\nmmix reset\r\n\r\n"); printMotorMix(dumpMask, customMotorMixer(0), defaultConfig.customMotorMixer); #ifdef USE_SERVOS cliPrintHashLine("servo"); printServo(dumpMask, servoProfile()->servoConf, defaultConfig.servoProfile.servoConf); cliPrintHashLine("servo mix"); // print custom servo mixer if exists cliDumpPrintf(dumpMask, masterConfig.customServoMixer[0].rate == 0, "smix reset\r\n\r\n"); printServoMix(dumpMask, &defaultConfig); #endif #endif cliPrintHashLine("feature"); printFeature(dumpMask, &defaultConfig.featureConfig); #ifdef BEEPER cliPrintHashLine("beeper"); printBeeper(dumpMask, &defaultConfig); #endif cliPrintHashLine("map"); printMap(dumpMask, rxConfig(), &defaultConfig.rxConfig); cliPrintHashLine("serial"); printSerial(dumpMask, serialConfig(), &defaultConfig.serialConfig); #ifdef LED_STRIP cliPrintHashLine("led"); printLed(dumpMask, ledStripConfig()->ledConfigs, defaultConfig.ledStripConfig.ledConfigs); cliPrintHashLine("color"); printColor(dumpMask, ledStripConfig()->colors, defaultConfig.ledStripConfig.colors); cliPrintHashLine("mode_color"); printModeColor(dumpMask, ledStripConfig(), &defaultConfig.ledStripConfig); #endif cliPrintHashLine("aux"); printAux(dumpMask, modeActivationProfile()->modeActivationConditions, defaultConfig.modeActivationProfile.modeActivationConditions); cliPrintHashLine("adjrange"); printAdjustmentRange(dumpMask, adjustmentProfile()->adjustmentRanges, defaultConfig.adjustmentProfile.adjustmentRanges); cliPrintHashLine("rxrange"); printRxRange(dumpMask, rxConfig()->channelRanges, defaultConfig.rxConfig.channelRanges); #ifdef VTX cliPrintHashLine("vtx"); printVtx(dumpMask, &defaultConfig); #endif cliPrintHashLine("rxfail"); printRxFailsafe(dumpMask, rxConfig()->failsafe_channel_configurations, defaultConfig.rxConfig.failsafe_channel_configurations); cliPrintHashLine("master"); dumpValues(MASTER_VALUE, dumpMask, &defaultConfig); if (dumpMask & DUMP_ALL) { uint8_t activeProfile = masterConfig.current_profile_index; for (uint32_t profileCount=0; profileCountactiveRateProfile; for (uint32_t rateCount = 0; rateCountactiveRateProfile, dumpMask, &defaultConfig); } } if (dumpMask & DUMP_PROFILE) { cliDumpProfile(masterConfig.current_profile_index, dumpMask, &defaultConfig); } if (dumpMask & DUMP_RATES) { cliDumpRateProfile(currentProfile->activeRateProfile, dumpMask, &defaultConfig); } #ifdef USE_PARAMETER_GROUPS // restore configs from copies restoreConfigs(); #endif } static void cliDump(char *cmdline) { printConfig(cmdline, false); } static void cliDiff(char *cmdline) { printConfig(cmdline, true); } typedef struct { const char *name; #ifndef MINIMAL_CLI const char *description; const char *args; #endif void (*func)(char *cmdline); } clicmd_t; #ifndef MINIMAL_CLI #define CLI_COMMAND_DEF(name, description, args, method) \ { \ name , \ description , \ args , \ method \ } #else #define CLI_COMMAND_DEF(name, description, args, method) \ { \ name, \ method \ } #endif static void cliHelp(char *cmdline); // should be sorted a..z for bsearch() const clicmd_t cmdTable[] = { CLI_COMMAND_DEF("adjrange", "configure adjustment ranges", NULL, cliAdjustmentRange), CLI_COMMAND_DEF("aux", "configure modes", NULL, cliAux), #ifdef BEEPER CLI_COMMAND_DEF("beeper", "turn on/off beeper", "list\r\n" "\t<+|->[name]", cliBeeper), #endif #ifdef LED_STRIP CLI_COMMAND_DEF("color", "configure colors", NULL, cliColor), #endif CLI_COMMAND_DEF("defaults", "reset to defaults and reboot", NULL, cliDefaults), CLI_COMMAND_DEF("dfu", "DFU mode on reboot", NULL, cliDfu), CLI_COMMAND_DEF("diff", "list configuration changes from default", "[master|profile|rates|all] {showdefaults}", cliDiff), CLI_COMMAND_DEF("dump", "dump configuration", "[master|profile|rates|all] {showdefaults}", cliDump), #ifdef USE_ESCSERIAL CLI_COMMAND_DEF("escprog", "passthrough esc to serial", " ", cliEscPassthrough), #endif CLI_COMMAND_DEF("exit", NULL, NULL, cliExit), CLI_COMMAND_DEF("feature", "configure features", "list\r\n" "\t<+|->[name]", cliFeature), #ifdef USE_FLASHFS CLI_COMMAND_DEF("flash_erase", "erase flash chip", NULL, cliFlashErase), CLI_COMMAND_DEF("flash_info", "show flash chip info", NULL, cliFlashInfo), #ifdef USE_FLASH_TOOLS CLI_COMMAND_DEF("flash_read", NULL, "
", cliFlashRead), CLI_COMMAND_DEF("flash_write", NULL, "
", cliFlashWrite), #endif #endif CLI_COMMAND_DEF("get", "get variable value", "[name]", cliGet), #ifdef GPS CLI_COMMAND_DEF("gpspassthrough", "passthrough gps to serial", NULL, cliGpsPassthrough), #endif CLI_COMMAND_DEF("help", NULL, NULL, cliHelp), #ifdef LED_STRIP CLI_COMMAND_DEF("led", "configure leds", NULL, cliLed), #endif CLI_COMMAND_DEF("map", "configure rc channel order", "[]", cliMap), #ifndef USE_QUAD_MIXER_ONLY CLI_COMMAND_DEF("mixer", "configure mixer", "list\r\n\t", cliMixer), #endif CLI_COMMAND_DEF("mmix", "custom motor mixer", NULL, cliMotorMix), #ifdef LED_STRIP CLI_COMMAND_DEF("mode_color", "configure mode and special colors", NULL, cliModeColor), #endif CLI_COMMAND_DEF("motor", "get/set motor", " []", cliMotor), CLI_COMMAND_DEF("name", "name of craft", NULL, cliName), #ifndef MINIMAL_CLI CLI_COMMAND_DEF("play_sound", NULL, "[]", cliPlaySound), #endif CLI_COMMAND_DEF("profile", "change profile", "[]", cliProfile), CLI_COMMAND_DEF("rateprofile", "change rate profile", "[]", cliRateProfile), #if defined(USE_RESOURCE_MGMT) CLI_COMMAND_DEF("resource", "show/set resources", NULL, cliResource), #endif CLI_COMMAND_DEF("rxfail", "show/set rx failsafe settings", NULL, cliRxFailsafe), CLI_COMMAND_DEF("rxrange", "configure rx channel ranges", NULL, cliRxRange), CLI_COMMAND_DEF("save", "save and reboot", NULL, cliSave), #ifdef USE_SDCARD CLI_COMMAND_DEF("sd_info", "sdcard info", NULL, cliSdInfo), #endif CLI_COMMAND_DEF("serial", "configure serial ports", NULL, cliSerial), #ifndef SKIP_SERIAL_PASSTHROUGH CLI_COMMAND_DEF("serialpassthrough", "passthrough serial data to port", " [baud] [mode] : passthrough to serial", cliSerialPassthrough), #endif #ifdef USE_SERVOS CLI_COMMAND_DEF("servo", "configure servos", NULL, cliServo), #endif CLI_COMMAND_DEF("set", "change setting", "[=]", cliSet), #ifdef USE_SERVOS CLI_COMMAND_DEF("smix", "servo mixer", " \r\n" "\treset\r\n" "\tload \r\n" "\treverse r|n", cliServoMix), #endif CLI_COMMAND_DEF("status", "show status", NULL, cliStatus), #ifndef SKIP_TASK_STATISTICS CLI_COMMAND_DEF("tasks", "show task stats", NULL, cliTasks), #endif CLI_COMMAND_DEF("version", "show version", NULL, cliVersion), #ifdef VTX CLI_COMMAND_DEF("vtx", "vtx channels on switch", NULL, cliVtx), #endif }; static void cliHelp(char *cmdline) { UNUSED(cmdline); for (uint32_t i = 0; i < ARRAYLEN(cmdTable); i++) { cliPrint(cmdTable[i].name); #ifndef MINIMAL_CLI if (cmdTable[i].description) { cliPrintf(" - %s", cmdTable[i].description); } if (cmdTable[i].args) { cliPrintf("\r\n\t%s", cmdTable[i].args); } #endif cliPrint("\r\n"); } } void cliProcess(void) { if (!cliWriter) { return; } // Be a little bit tricky. Flush the last inputs buffer, if any. bufWriterFlush(cliWriter); while (serialRxBytesWaiting(cliPort)) { uint8_t c = serialRead(cliPort); if (c == '\t' || c == '?') { // do tab completion const clicmd_t *cmd, *pstart = NULL, *pend = NULL; uint32_t i = bufferIndex; for (cmd = cmdTable; cmd < cmdTable + ARRAYLEN(cmdTable); cmd++) { if (bufferIndex && (strncasecmp(cliBuffer, cmd->name, bufferIndex) != 0)) continue; if (!pstart) pstart = cmd; pend = cmd; } if (pstart) { /* Buffer matches one or more commands */ for (; ; bufferIndex++) { if (pstart->name[bufferIndex] != pend->name[bufferIndex]) break; if (!pstart->name[bufferIndex] && bufferIndex < sizeof(cliBuffer) - 2) { /* Unambiguous -- append a space */ cliBuffer[bufferIndex++] = ' '; cliBuffer[bufferIndex] = '\0'; break; } cliBuffer[bufferIndex] = pstart->name[bufferIndex]; } } if (!bufferIndex || pstart != pend) { /* Print list of ambiguous matches */ cliPrint("\r\033[K"); for (cmd = pstart; cmd <= pend; cmd++) { cliPrint(cmd->name); cliWrite('\t'); } cliPrompt(); i = 0; /* Redraw prompt */ } for (; i < bufferIndex; i++) cliWrite(cliBuffer[i]); } else if (!bufferIndex && c == 4) { // CTRL-D cliExit(cliBuffer); return; } else if (c == 12) { // NewPage / CTRL-L // clear screen cliPrint("\033[2J\033[1;1H"); cliPrompt(); } else if (bufferIndex && (c == '\n' || c == '\r')) { // enter pressed cliPrint("\r\n"); // Strip comment starting with # from line char *p = cliBuffer; p = strchr(p, '#'); if (NULL != p) { bufferIndex = (uint32_t)(p - cliBuffer); } // Strip trailing whitespace while (bufferIndex > 0 && cliBuffer[bufferIndex - 1] == ' ') { bufferIndex--; } // Process non-empty lines if (bufferIndex > 0) { cliBuffer[bufferIndex] = 0; // null terminate const clicmd_t *cmd; char *options; for (cmd = cmdTable; cmd < cmdTable + ARRAYLEN(cmdTable); cmd++) { if ((options = checkCommand(cliBuffer, cmd->name))) { break; } } if(cmd < cmdTable + ARRAYLEN(cmdTable)) cmd->func(options); else cliPrint("Unknown command, try 'help'"); bufferIndex = 0; } memset(cliBuffer, 0, sizeof(cliBuffer)); // 'exit' will reset this flag, so we don't need to print prompt again if (!cliMode) return; cliPrompt(); } else if (c == 127) { // backspace if (bufferIndex) { cliBuffer[--bufferIndex] = 0; cliPrint("\010 \010"); } } else if (bufferIndex < sizeof(cliBuffer) && c >= 32 && c <= 126) { if (!bufferIndex && c == ' ') continue; // Ignore leading spaces cliBuffer[bufferIndex++] = c; cliWrite(c); } } } void cliEnter(serialPort_t *serialPort) { cliMode = 1; cliPort = serialPort; setPrintfSerialPort(cliPort); cliWriter = bufWriterInit(cliWriteBuffer, sizeof(cliWriteBuffer), (bufWrite_t)serialWriteBufShim, serialPort); schedulerSetCalulateTaskStatistics(masterConfig.task_statistics); #ifndef MINIMAL_CLI cliPrint("\r\nEntering CLI Mode, type 'exit' to return, or 'help'\r\n"); #else cliPrint("\r\nCLI\r\n"); #endif cliPrompt(); ENABLE_ARMING_FLAG(PREVENT_ARMING); } void cliInit(const serialConfig_t *serialConfig) { UNUSED(serialConfig); BUILD_BUG_ON(LOOKUP_TABLE_COUNT != ARRAYLEN(lookupTables)); } #endif // USE_CLI