atbetaflight/mixer.c

302 lines
12 KiB
C
Executable File

#include "board.h"
#include "mw.h"
static uint8_t numberMotor = 4;
int16_t motor[8];
int16_t servo[8] = { 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500 };
uint8_t mixerConfiguration = MULTITYPE_TRI;
uint16_t wing_left_mid = WING_LEFT_MID;
uint16_t wing_right_mid = WING_RIGHT_MID;
uint16_t tri_yaw_middle = TRI_YAW_MIDDLE;
void mixerInit(void)
{
if (mixerConfiguration == MULTITYPE_BI || mixerConfiguration == MULTITYPE_TRI || mixerConfiguration == MULTITYPE_GIMBAL || mixerConfiguration == MULTITYPE_FLYING_WING)
featureSet(FEATURE_SERVO);
switch (mixerConfiguration) {
case MULTITYPE_GIMBAL:
numberMotor = 0;
break;
case MULTITYPE_FLYING_WING:
numberMotor = 1;
break;
case MULTITYPE_BI:
numberMotor = 2;
break;
case MULTITYPE_TRI:
numberMotor = 3;
break;
case MULTITYPE_QUADP:
case MULTITYPE_QUADX:
case MULTITYPE_Y4:
case MULTITYPE_VTAIL4:
numberMotor = 4;
break;
case MULTITYPE_Y6:
case MULTITYPE_HEX6:
case MULTITYPE_HEX6X:
numberMotor = 6;
break;
case MULTITYPE_OCTOX8:
case MULTITYPE_OCTOFLATP:
case MULTITYPE_OCTOFLATX:
numberMotor = 8;
break;
}
}
void writeServos(void)
{
if (!feature(FEATURE_SERVO))
return;
if (mixerConfiguration == MULTITYPE_TRI || mixerConfiguration == MULTITYPE_BI) {
/* One servo on Motor #4 */
pwmWrite(0, servo[4]);
if (mixerConfiguration == MULTITYPE_BI)
pwmWrite(1, servo[5]);
} else {
/* Two servos for camstab or FLYING_WING */
pwmWrite(0, servo[0]);
pwmWrite(1, servo[1]);
}
}
void writeMotors(void)
{
uint8_t i;
uint8_t offset = 0;
// when servos are enabled, motor outputs 1..2 are for servos only
if (feature(FEATURE_SERVO))
offset = 2;
for (i = 0; i < numberMotor; i++)
pwmWrite(i + offset, motor[i]);
}
void writeAllMotors(int16_t mc)
{
uint8_t i;
// Sends commands to all motors
for (i = 0; i < numberMotor; i++)
motor[i] = mc;
writeMotors();
}
#define PIDMIX(X,Y,Z) rcCommand[THROTTLE] + axisPID[ROLL] * X + axisPID[PITCH] * Y + YAW_DIRECTION * axisPID[YAW] * Z
void mixTable(void)
{
int16_t maxMotor;
uint8_t i, axis;
static uint8_t camCycle = 0;
static uint8_t camState = 0;
static uint32_t camTime = 0;
if (numberMotor > 3) {
//prevent "yaw jump" during yaw correction
axisPID[YAW] = constrain(axisPID[YAW], -100 - abs(rcCommand[YAW]), +100 + abs(rcCommand[YAW]));
}
switch (mixerConfiguration) {
case MULTITYPE_BI:
motor[0] = PIDMIX(+1, 0, 0); //LEFT
motor[1] = PIDMIX(-1, 0, 0); //RIGHT
servo[4] = constrain(1500 + YAW_DIRECTION * (axisPID[YAW] + axisPID[PITCH]), 1020, 2000); //LEFT
servo[5] = constrain(1500 + YAW_DIRECTION * (axisPID[YAW] - axisPID[PITCH]), 1020, 2000); //RIGHT
break;
case MULTITYPE_TRI:
motor[0] = PIDMIX(0, +4 / 3, 0); //REAR
motor[1] = PIDMIX(-1, -2 / 3, 0); //RIGHT
motor[2] = PIDMIX(+1, -2 / 3, 0); //LEFT
servo[4] = constrain(tri_yaw_middle + YAW_DIRECTION * axisPID[YAW], TRI_YAW_CONSTRAINT_MIN, TRI_YAW_CONSTRAINT_MAX); //REAR
break;
case MULTITYPE_QUADP:
motor[0] = PIDMIX(0, +1, -1); //REAR
motor[1] = PIDMIX(-1, 0, +1); //RIGHT
motor[2] = PIDMIX(+1, 0, +1); //LEFT
motor[3] = PIDMIX(0, -1, -1); //FRONT
break;
case MULTITYPE_QUADX:
motor[0] = PIDMIX(-1, +1, -1); //REAR_R
motor[1] = PIDMIX(-1, -1, +1); //FRONT_R
motor[2] = PIDMIX(+1, +1, +1); //REAR_L
motor[3] = PIDMIX(+1, -1, -1); //FRONT_L
break;
case MULTITYPE_Y4:
motor[0] = PIDMIX(+0, +1, -1); //REAR_1 CW
motor[1] = PIDMIX(-1, -1, 0); //FRONT_R CCW
motor[2] = PIDMIX(+0, +1, +1); //REAR_2 CCW
motor[3] = PIDMIX(+1, -1, 0); //FRONT_L CW
break;
case MULTITYPE_Y6:
motor[0] = PIDMIX(+0, +4 / 3, +1); //REAR
motor[1] = PIDMIX(-1, -2 / 3, -1); //RIGHT
motor[2] = PIDMIX(+1, -2 / 3, -1); //LEFT
motor[3] = PIDMIX(+0, +4 / 3, -1); //UNDER_REAR
motor[4] = PIDMIX(-1, -2 / 3, +1); //UNDER_RIGHT
motor[5] = PIDMIX(+1, -2 / 3, +1); //UNDER_LEFT
break;
case MULTITYPE_HEX6:
motor[0] = PIDMIX(-1 / 2, +1 / 2, +1); //REAR_R
motor[1] = PIDMIX(-1 / 2, -1 / 2, -1); //FRONT_R
motor[2] = PIDMIX(+1 / 2, +1 / 2, +1); //REAR_L
motor[3] = PIDMIX(+1 / 2, -1 / 2, -1); //FRONT_L
motor[4] = PIDMIX(+0, -1, +1); //FRONT
motor[5] = PIDMIX(+0, +1, -1); //REAR
break;
case MULTITYPE_HEX6X:
motor[0] = PIDMIX(-1 / 2, +1 / 2, +1); //REAR_R
motor[1] = PIDMIX(-1 / 2, -1 / 2, +1); //FRONT_R
motor[2] = PIDMIX(+1 / 2, +1 / 2, -1); //REAR_L
motor[3] = PIDMIX(+1 / 2, -1 / 2, -1); //FRONT_L
motor[4] = PIDMIX(-1, +0, -1); //RIGHT
motor[5] = PIDMIX(+1, +0, +1); //LEFT
break;
case MULTITYPE_OCTOX8:
motor[0] = PIDMIX(-1, +1, -1); //REAR_R
motor[1] = PIDMIX(-1, -1, +1); //FRONT_R
motor[2] = PIDMIX(+1, +1, +1); //REAR_L
motor[3] = PIDMIX(+1, -1, -1); //FRONT_L
motor[4] = PIDMIX(-1, +1, +1); //UNDER_REAR_R
motor[5] = PIDMIX(-1, -1, -1); //UNDER_FRONT_R
motor[6] = PIDMIX(+1, +1, -1); //UNDER_REAR_L
motor[7] = PIDMIX(+1, -1, +1); //UNDER_FRONT_L
break;
case MULTITYPE_OCTOFLATP:
motor[0] = PIDMIX(+7 / 10, -7 / 10, +1); //FRONT_L
motor[1] = PIDMIX(-7 / 10, -7 / 10, +1); //FRONT_R
motor[2] = PIDMIX(-7 / 10, +7 / 10, +1); //REAR_R
motor[3] = PIDMIX(+7 / 10, +7 / 10, +1); //REAR_L
motor[4] = PIDMIX(+0, -1, -1); //FRONT
motor[5] = PIDMIX(-1, +0, -1); //RIGHT
motor[6] = PIDMIX(+0, +1, -1); //REAR
motor[7] = PIDMIX(+1, +0, -1); //LEFT
break;
case MULTITYPE_OCTOFLATX:
motor[0] = PIDMIX(+1, -1 / 2, +1); //MIDFRONT_L
motor[1] = PIDMIX(-1 / 2, -1, +1); //FRONT_R
motor[2] = PIDMIX(-1, +1 / 2, +1); //MIDREAR_R
motor[3] = PIDMIX(+1 / 2, +1, +1); //REAR_L
motor[4] = PIDMIX(+1 / 2, -1, -1); //FRONT_L
motor[5] = PIDMIX(-1, -1 / 2, -1); //MIDFRONT_R
motor[6] = PIDMIX(-1 / 2, +1, -1); //REAR_R
motor[7] = PIDMIX(+1, +1 / 2, -1); //MIDREAR_L
break;
case MULTITYPE_VTAIL4:
motor[0] = PIDMIX(+0, +1, -1 / 2); //REAR_R
motor[1] = PIDMIX(-1, -1, +2 / 10); //FRONT_R
motor[2] = PIDMIX(+0, +1, +1 / 2); //REAR_L
motor[3] = PIDMIX(+1, -1, -2 / 10); //FRONT_L
break;
case MULTITYPE_GIMBAL:
servo[0] = constrain(TILT_PITCH_MIDDLE + TILT_PITCH_PROP * angle[PITCH] / 16 + rcCommand[PITCH], TILT_PITCH_MIN, TILT_PITCH_MAX);
servo[1] = constrain(TILT_ROLL_MIDDLE + TILT_ROLL_PROP * angle[ROLL] / 16 + rcCommand[ROLL], TILT_ROLL_MIN, TILT_ROLL_MAX);
break;
case MULTITYPE_FLYING_WING:
motor[0] = rcCommand[THROTTLE];
if (passThruMode) { // do not use sensors for correction, simple 2 channel mixing
servo[0] = PITCH_DIRECTION_L * (rcData[PITCH] - MIDRC) + ROLL_DIRECTION_L * (rcData[ROLL] - MIDRC);
servo[1] = PITCH_DIRECTION_R * (rcData[PITCH] - MIDRC) + ROLL_DIRECTION_R * (rcData[ROLL] - MIDRC);
} else { // use sensors to correct (gyro only or gyro+acc according to aux1/aux2 configuration
servo[0] = PITCH_DIRECTION_L * axisPID[PITCH] + ROLL_DIRECTION_L * axisPID[ROLL];
servo[1] = PITCH_DIRECTION_R * axisPID[PITCH] + ROLL_DIRECTION_R * axisPID[ROLL];
}
servo[0] = constrain(servo[0] + wing_left_mid , WING_LEFT_MIN, WING_LEFT_MAX);
servo[1] = constrain(servo[1] + wing_right_mid, WING_RIGHT_MIN, WING_RIGHT_MAX);
break;
}
#ifdef SERVO_TILT
servo[0] = TILT_PITCH_MIDDLE + rcData[AUX3] - 1500;
servo[1] = TILT_ROLL_MIDDLE + rcData[AUX4] - 1500;
if (rcOptions[BOXCAMSTAB]) {
servo[0] += TILT_PITCH_PROP * angle[PITCH] / 16;
servo[1] += TILT_ROLL_PROP * angle[ROLL] / 16;
}
servo[0] = constrain(servo[0], TILT_PITCH_MIN, TILT_PITCH_MAX);
servo[1] = constrain(servo[1], TILT_ROLL_MIN, TILT_ROLL_MAX);
#endif
#if defined(CAMTRIG)
if (camCycle == 1) {
if (camState == 0) {
servo[2] = CAM_SERVO_HIGH;
camState = 1;
camTime = millis();
} else if (camState == 1) {
if ((millis() - camTime) > CAM_TIME_HIGH) {
servo[2] = CAM_SERVO_LOW;
camState = 2;
camTime = millis();
}
} else { //camState ==2
if ((millis() - camTime) > CAM_TIME_LOW) {
camState = 0;
camCycle = 0;
}
}
}
if (rcOptions[BOXCAMTRIG])
camCycle = 1;
#endif
maxMotor = motor[0];
for (i = 1; i < numberMotor; i++)
if (motor[i] > maxMotor)
maxMotor = motor[i];
for (i = 0; i < numberMotor; i++) {
if (maxMotor > MAXTHROTTLE) // this is a way to still have good gyro corrections if at least one motor reaches its max.
motor[i] -= maxMotor - MAXTHROTTLE;
motor[i] = constrain(motor[i], MINTHROTTLE, MAXTHROTTLE);
if ((rcData[THROTTLE]) < MINCHECK)
#ifndef MOTOR_STOP
motor[i] = MINTHROTTLE;
#else
motor[i] = MINCOMMAND;
#endif
if (armed == 0)
motor[i] = MINCOMMAND;
}
#if (LOG_VALUES == 2) || defined(POWERMETER_SOFT)
uint32_t amp;
/* true cubic function; when divided by vbat_max=126 (12.6V) for 3 cell battery this gives maximum value of ~ 500 */
/* Lookup table moved to PROGMEM 11/21/2001 by Danal */
static uint16_t amperes[64] = {
0, 2, 6, 15, 30, 52, 82, 123, 175, 240, 320, 415, 528, 659, 811, 984, 1181, 1402, 1648, 1923, 2226, 2559, 2924, 3322, 3755, 4224, 4730, 5276, 5861, 6489, 7160, 7875, 8637, 9446, 10304, 11213, 12173, 13187, 14256, 15381, 16564, 17805, 19108, 20472, 21900, 23392, 24951, 26578, 28274, 30041, 31879, 33792, 35779, 37843, 39984, 42205, 44507, 46890, 49358, 51910, 54549, 57276, 60093, 63000};
if (vbat) { // by all means - must avoid division by zero
for (i = 0; i < NUMBER_MOTOR; i++) {
amp = amperes[((motor[i] - 1000) >> 4)] / vbat; // range mapped from [1000:2000] => [0:1000]; then break that up into 64 ranges; lookup amp
#if (LOG_VALUES == 2)
pMeter[i] += amp; // sum up over time the mapped ESC input
#endif
#if defined(POWERMETER_SOFT)
pMeter[PMOTOR_SUM] += amp; // total sum over all motors
#endif
}
}
#endif
}