atbetaflight/src/main/config/config.c

1078 lines
34 KiB
C
Executable File

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "platform.h"
#include "build_config.h"
#include "common/color.h"
#include "common/axis.h"
#include "common/maths.h"
#include "common/filter.h"
#include "drivers/sensor.h"
#include "drivers/accgyro.h"
#include "drivers/compass.h"
#include "drivers/system.h"
#include "drivers/gpio.h"
#include "drivers/timer.h"
#include "drivers/pwm_rx.h"
#include "drivers/serial.h"
#include "drivers/gyro_sync.h"
#include "sensors/sensors.h"
#include "sensors/gyro.h"
#include "sensors/compass.h"
#include "sensors/acceleration.h"
#include "sensors/barometer.h"
#include "sensors/boardalignment.h"
#include "sensors/battery.h"
#include "io/beeper.h"
#include "io/serial.h"
#include "io/gimbal.h"
#include "io/escservo.h"
#include "io/rc_controls.h"
#include "io/rc_curves.h"
#include "io/ledstrip.h"
#include "io/gps.h"
#include "rx/rx.h"
#include "telemetry/telemetry.h"
#include "flight/mixer.h"
#include "flight/pid.h"
#include "flight/imu.h"
#include "flight/failsafe.h"
#include "flight/altitudehold.h"
#include "flight/navigation.h"
#include "config/runtime_config.h"
#include "config/config.h"
#include "config/config_profile.h"
#include "config/config_master.h"
#define BRUSHED_MOTORS_PWM_RATE 16000
#define BRUSHLESS_MOTORS_PWM_RATE 400
void useRcControlsConfig(modeActivationCondition_t *modeActivationConditions, escAndServoConfig_t *escAndServoConfigToUse, pidProfile_t *pidProfileToUse);
#if !defined(FLASH_SIZE)
#error "Flash size not defined for target. (specify in KB)"
#endif
#ifndef FLASH_PAGE_SIZE
#ifdef STM32F303xC
#define FLASH_PAGE_SIZE ((uint16_t)0x800)
#endif
#ifdef STM32F10X_MD
#define FLASH_PAGE_SIZE ((uint16_t)0x400)
#endif
#ifdef STM32F10X_HD
#define FLASH_PAGE_SIZE ((uint16_t)0x800)
#endif
#endif
#if !defined(FLASH_SIZE) && !defined(FLASH_PAGE_COUNT)
#ifdef STM32F10X_MD
#define FLASH_PAGE_COUNT 128
#endif
#ifdef STM32F10X_HD
#define FLASH_PAGE_COUNT 128
#endif
#endif
#if defined(FLASH_SIZE)
#define FLASH_PAGE_COUNT ((FLASH_SIZE * 0x400) / FLASH_PAGE_SIZE)
#endif
#if !defined(FLASH_PAGE_SIZE)
#error "Flash page size not defined for target."
#endif
#if !defined(FLASH_PAGE_COUNT)
#error "Flash page count not defined for target."
#endif
#if FLASH_SIZE <= 128
#define FLASH_TO_RESERVE_FOR_CONFIG 0x800
#else
#define FLASH_TO_RESERVE_FOR_CONFIG 0x1000
#endif
// use the last flash pages for storage
#define CONFIG_START_FLASH_ADDRESS (0x08000000 + (uint32_t)((FLASH_PAGE_SIZE * FLASH_PAGE_COUNT) - FLASH_TO_RESERVE_FOR_CONFIG))
master_t masterConfig; // master config struct with data independent from profiles
profile_t *currentProfile;
static uint32_t activeFeaturesLatch = 0;
static uint8_t currentControlRateProfileIndex = 0;
controlRateConfig_t *currentControlRateProfile;
static const uint8_t EEPROM_CONF_VERSION = 127;
static void resetAccelerometerTrims(flightDynamicsTrims_t *accelerometerTrims)
{
accelerometerTrims->values.pitch = 0;
accelerometerTrims->values.roll = 0;
accelerometerTrims->values.yaw = 0;
}
static void resetPidProfile(pidProfile_t *pidProfile)
{
pidProfile->pidController = 1;
pidProfile->P8[ROLL] = 42;
pidProfile->I8[ROLL] = 40;
pidProfile->D8[ROLL] = 13;
pidProfile->P8[PITCH] = 54;
pidProfile->I8[PITCH] = 40;
pidProfile->D8[PITCH] = 18;
pidProfile->P8[YAW] = 90;
pidProfile->I8[YAW] = 50;
pidProfile->D8[YAW] = 0;
pidProfile->P8[PIDALT] = 50;
pidProfile->I8[PIDALT] = 0;
pidProfile->D8[PIDALT] = 0;
pidProfile->P8[PIDPOS] = 15; // POSHOLD_P * 100;
pidProfile->I8[PIDPOS] = 0; // POSHOLD_I * 100;
pidProfile->D8[PIDPOS] = 0;
pidProfile->P8[PIDPOSR] = 34; // POSHOLD_RATE_P * 10;
pidProfile->I8[PIDPOSR] = 14; // POSHOLD_RATE_I * 100;
pidProfile->D8[PIDPOSR] = 53; // POSHOLD_RATE_D * 1000;
pidProfile->P8[PIDNAVR] = 25; // NAV_P * 10;
pidProfile->I8[PIDNAVR] = 33; // NAV_I * 100;
pidProfile->D8[PIDNAVR] = 83; // NAV_D * 1000;
pidProfile->P8[PIDLEVEL] = 30;
pidProfile->I8[PIDLEVEL] = 30;
pidProfile->D8[PIDLEVEL] = 100;
pidProfile->P8[PIDMAG] = 40;
pidProfile->P8[PIDVEL] = 120;
pidProfile->I8[PIDVEL] = 45;
pidProfile->D8[PIDVEL] = 1;
pidProfile->yaw_p_limit = YAW_P_LIMIT_MAX;
pidProfile->dterm_average_count = 4;
pidProfile->dterm_lpf_hz = 0; // filtering ON by default
pidProfile->deltaMethod = DELTA_FROM_MEASUREMENT;
pidProfile->P_f[ROLL] = 1.1f;
pidProfile->I_f[ROLL] = 0.4f;
pidProfile->D_f[ROLL] = 0.01f;
pidProfile->P_f[PITCH] = 1.4f;
pidProfile->I_f[PITCH] = 0.4f;
pidProfile->D_f[PITCH] = 0.01f;
pidProfile->P_f[YAW] = 4.0f;
pidProfile->I_f[YAW] = 0.4f;
pidProfile->D_f[YAW] = 0.00f;
pidProfile->A_level = 4.0f;
pidProfile->H_level = 4.0f;
pidProfile->H_sensitivity = 75;
#ifdef GTUNE
pidProfile->gtune_lolimP[ROLL] = 10; // [0..200] Lower limit of ROLL P during G tune.
pidProfile->gtune_lolimP[PITCH] = 10; // [0..200] Lower limit of PITCH P during G tune.
pidProfile->gtune_lolimP[YAW] = 10; // [0..200] Lower limit of YAW P during G tune.
pidProfile->gtune_hilimP[ROLL] = 100; // [0..200] Higher limit of ROLL P during G tune. 0 Disables tuning for that axis.
pidProfile->gtune_hilimP[PITCH] = 100; // [0..200] Higher limit of PITCH P during G tune. 0 Disables tuning for that axis.
pidProfile->gtune_hilimP[YAW] = 100; // [0..200] Higher limit of YAW P during G tune. 0 Disables tuning for that axis.
pidProfile->gtune_pwr = 0; // [0..10] Strength of adjustment
pidProfile->gtune_settle_time = 450; // [200..1000] Settle time in ms
pidProfile->gtune_average_cycles = 16; // [8..128] Number of looptime cycles used for gyro average calculation
#endif
}
#ifdef GPS
void resetGpsProfile(gpsProfile_t *gpsProfile)
{
gpsProfile->gps_wp_radius = 200;
gpsProfile->gps_lpf = 20;
gpsProfile->nav_slew_rate = 30;
gpsProfile->nav_controls_heading = 1;
gpsProfile->nav_speed_min = 100;
gpsProfile->nav_speed_max = 300;
gpsProfile->ap_mode = 40;
}
#endif
void resetBarometerConfig(barometerConfig_t *barometerConfig)
{
barometerConfig->baro_sample_count = 21;
barometerConfig->baro_noise_lpf = 0.6f;
barometerConfig->baro_cf_vel = 0.985f;
barometerConfig->baro_cf_alt = 0.965f;
}
void resetSensorAlignment(sensorAlignmentConfig_t *sensorAlignmentConfig)
{
sensorAlignmentConfig->gyro_align = ALIGN_DEFAULT;
sensorAlignmentConfig->acc_align = ALIGN_DEFAULT;
sensorAlignmentConfig->mag_align = ALIGN_DEFAULT;
}
void resetEscAndServoConfig(escAndServoConfig_t *escAndServoConfig)
{
escAndServoConfig->minthrottle = 1150;
escAndServoConfig->maxthrottle = 1850;
escAndServoConfig->mincommand = 1000;
escAndServoConfig->servoCenterPulse = 1500;
}
void resetFlight3DConfig(flight3DConfig_t *flight3DConfig)
{
flight3DConfig->deadband3d_low = 1406;
flight3DConfig->deadband3d_high = 1514;
flight3DConfig->neutral3d = 1460;
flight3DConfig->deadband3d_throttle = 50;
}
void resetTelemetryConfig(telemetryConfig_t *telemetryConfig)
{
telemetryConfig->telemetry_inversion = 0;
telemetryConfig->telemetry_switch = 0;
telemetryConfig->gpsNoFixLatitude = 0;
telemetryConfig->gpsNoFixLongitude = 0;
telemetryConfig->frsky_coordinate_format = FRSKY_FORMAT_DMS;
telemetryConfig->frsky_unit = FRSKY_UNIT_METRICS;
telemetryConfig->frsky_vfas_precision = 0;
telemetryConfig->frsky_vfas_cell_voltage = 0;
telemetryConfig->hottAlarmSoundInterval = 5;
}
void resetBatteryConfig(batteryConfig_t *batteryConfig)
{
batteryConfig->vbatscale = VBAT_SCALE_DEFAULT;
batteryConfig->vbatresdivval = VBAT_RESDIVVAL_DEFAULT;
batteryConfig->vbatresdivmultiplier = VBAT_RESDIVMULTIPLIER_DEFAULT;
batteryConfig->vbatmaxcellvoltage = 43;
batteryConfig->vbatmincellvoltage = 33;
batteryConfig->vbatwarningcellvoltage = 35;
batteryConfig->vbatPidCompensation = 0;
batteryConfig->currentMeterOffset = 0;
batteryConfig->currentMeterScale = 400; // for Allegro ACS758LCB-100U (40mV/A)
batteryConfig->batteryCapacity = 0;
batteryConfig->currentMeterType = CURRENT_SENSOR_ADC;
}
#ifdef SWAP_SERIAL_PORT_0_AND_1_DEFAULTS
#define FIRST_PORT_INDEX 1
#define SECOND_PORT_INDEX 0
#else
#define FIRST_PORT_INDEX 0
#define SECOND_PORT_INDEX 1
#endif
void resetSerialConfig(serialConfig_t *serialConfig)
{
uint8_t index;
memset(serialConfig, 0, sizeof(serialConfig_t));
for (index = 0; index < SERIAL_PORT_COUNT; index++) {
serialConfig->portConfigs[index].identifier = serialPortIdentifiers[index];
serialConfig->portConfigs[index].msp_baudrateIndex = BAUD_115200;
serialConfig->portConfigs[index].gps_baudrateIndex = BAUD_57600;
serialConfig->portConfigs[index].telemetry_baudrateIndex = BAUD_AUTO;
serialConfig->portConfigs[index].blackbox_baudrateIndex = BAUD_115200;
}
serialConfig->portConfigs[0].functionMask = FUNCTION_MSP;
#if defined(USE_VCP)
// This allows MSP connection via USART & VCP so the board can be reconfigured.
serialConfig->portConfigs[1].functionMask = FUNCTION_MSP;
#endif
serialConfig->reboot_character = 'R';
}
static void resetControlRateConfig(controlRateConfig_t *controlRateConfig) {
controlRateConfig->rcRate8 = 100;
controlRateConfig->rcExpo8 = 70;
controlRateConfig->thrMid8 = 50;
controlRateConfig->thrExpo8 = 0;
controlRateConfig->dynThrPID = 0;
controlRateConfig->rcYawExpo8 = 20;
controlRateConfig->tpa_breakpoint = 1500;
for (uint8_t axis = 0; axis < FLIGHT_DYNAMICS_INDEX_COUNT; axis++) {
controlRateConfig->rates[axis] = 0;
}
}
void resetRcControlsConfig(rcControlsConfig_t *rcControlsConfig) {
rcControlsConfig->deadband = 0;
rcControlsConfig->yaw_deadband = 0;
rcControlsConfig->alt_hold_deadband = 40;
rcControlsConfig->alt_hold_fast_change = 1;
}
void resetMixerConfig(mixerConfig_t *mixerConfig) {
mixerConfig->yaw_motor_direction = 1;
mixerConfig->yaw_jump_prevention_limit = 200;
#ifdef USE_SERVOS
mixerConfig->tri_unarmed_servo = 1;
mixerConfig->servo_lowpass_freq = 400;
mixerConfig->servo_lowpass_enable = 0;
#endif
}
uint8_t getCurrentProfile(void)
{
return masterConfig.current_profile_index;
}
static void setProfile(uint8_t profileIndex)
{
currentProfile = &masterConfig.profile[profileIndex];
currentControlRateProfileIndex = currentProfile->activeRateProfile;
currentControlRateProfile = &currentProfile->controlRateProfile[currentControlRateProfileIndex];
}
uint8_t getCurrentControlRateProfile(void)
{
return currentControlRateProfileIndex;
}
static void setControlRateProfile(uint8_t profileIndex) {
currentControlRateProfileIndex = profileIndex;
masterConfig.profile[getCurrentProfile()].activeRateProfile = profileIndex;
currentControlRateProfile = &masterConfig.profile[getCurrentProfile()].controlRateProfile[profileIndex];
}
controlRateConfig_t *getControlRateConfig(uint8_t profileIndex) {
return &masterConfig.profile[profileIndex].controlRateProfile[masterConfig.profile[profileIndex].activeRateProfile];
}
uint16_t getCurrentMinthrottle(void)
{
return masterConfig.escAndServoConfig.minthrottle;
}
// Default settings
static void resetConf(void)
{
int i;
// Clear all configuration
memset(&masterConfig, 0, sizeof(master_t));
setProfile(0);
masterConfig.beeper_off.flags = BEEPER_OFF_FLAGS_MIN;
masterConfig.version = EEPROM_CONF_VERSION;
masterConfig.mixerMode = MIXER_QUADX;
featureClearAll();
#if defined(CJMCU) || defined(SPARKY) || defined(COLIBRI_RACE) || defined(MOTOLAB) || defined(SPRACINGF3MINI) || defined(LUX_RACE)
featureSet(FEATURE_RX_PPM);
#endif
//#if defined(SPRACINGF3MINI)
// featureSet(FEATURE_DISPLAY);
//#endif
#ifdef BOARD_HAS_VOLTAGE_DIVIDER
// only enable the VBAT feature by default if the board has a voltage divider otherwise
// the user may see incorrect readings and unexpected issues with pin mappings may occur.
featureSet(FEATURE_VBAT);
#endif
featureSet(FEATURE_FAILSAFE);
featureSet(FEATURE_ONESHOT125);
// global settings
masterConfig.current_profile_index = 0; // default profile
masterConfig.dcm_kp = 2500; // 1.0 * 10000
masterConfig.dcm_ki = 0; // 0.003 * 10000
masterConfig.gyro_lpf = 1; // 188HZ
masterConfig.gyro_sync_denom = 4;
masterConfig.gyro_soft_lpf_hz = 60;
masterConfig.pid_process_denom = 1;
masterConfig.debug_mode = 0;
resetAccelerometerTrims(&masterConfig.accZero);
resetSensorAlignment(&masterConfig.sensorAlignmentConfig);
masterConfig.boardAlignment.rollDegrees = 0;
masterConfig.boardAlignment.pitchDegrees = 0;
masterConfig.boardAlignment.yawDegrees = 0;
masterConfig.acc_hardware = ACC_DEFAULT; // default/autodetect
masterConfig.max_angle_inclination = 700; // 70 degrees
masterConfig.yaw_control_direction = 1;
masterConfig.gyroConfig.gyroMovementCalibrationThreshold = 32;
// xxx_hardware: 0:default/autodetect, 1: disable
masterConfig.mag_hardware = 0;
masterConfig.baro_hardware = 0;
resetBatteryConfig(&masterConfig.batteryConfig);
resetTelemetryConfig(&masterConfig.telemetryConfig);
masterConfig.rxConfig.serialrx_provider = 0;
masterConfig.rxConfig.sbus_inversion = 1;
masterConfig.rxConfig.spektrum_sat_bind = 0;
masterConfig.rxConfig.midrc = 1500;
masterConfig.rxConfig.mincheck = 1100;
masterConfig.rxConfig.maxcheck = 1900;
masterConfig.rxConfig.rx_min_usec = 885; // any of first 4 channels below this value will trigger rx loss detection
masterConfig.rxConfig.rx_max_usec = 2115; // any of first 4 channels above this value will trigger rx loss detection
for (i = 0; i < MAX_SUPPORTED_RC_CHANNEL_COUNT; i++) {
rxFailsafeChannelConfiguration_t *channelFailsafeConfiguration = &masterConfig.rxConfig.failsafe_channel_configurations[i];
channelFailsafeConfiguration->mode = (i < NON_AUX_CHANNEL_COUNT) ? RX_FAILSAFE_MODE_AUTO : RX_FAILSAFE_MODE_HOLD;
channelFailsafeConfiguration->step = (i == THROTTLE) ? CHANNEL_VALUE_TO_RXFAIL_STEP(masterConfig.rxConfig.rx_min_usec) : CHANNEL_VALUE_TO_RXFAIL_STEP(masterConfig.rxConfig.midrc);
}
masterConfig.rxConfig.rssi_channel = 0;
masterConfig.rxConfig.rssi_scale = RSSI_SCALE_DEFAULT;
masterConfig.rxConfig.rssi_ppm_invert = 0;
masterConfig.rxConfig.rcSmoothing = 0;
masterConfig.rxConfig.fpvCamAngleDegrees = 0;
masterConfig.rxConfig.max_aux_channel = 4;
masterConfig.rxConfig.acroPlusFactor = 30;
masterConfig.rxConfig.acroPlusOffset = 40;
resetAllRxChannelRangeConfigurations(masterConfig.rxConfig.channelRanges);
masterConfig.inputFilteringMode = INPUT_FILTERING_DISABLED;
masterConfig.retarded_arm = 0; // TODO - Cleanup retarded arm support
masterConfig.disarm_kill_switch = 1;
masterConfig.auto_disarm_delay = 5;
masterConfig.small_angle = 25;
resetMixerConfig(&masterConfig.mixerConfig);
masterConfig.airplaneConfig.fixedwing_althold_dir = 1;
// Motor/ESC/Servo
resetEscAndServoConfig(&masterConfig.escAndServoConfig);
resetFlight3DConfig(&masterConfig.flight3DConfig);
#ifdef BRUSHED_MOTORS
masterConfig.motor_pwm_rate = BRUSHED_MOTORS_PWM_RATE;
#else
masterConfig.motor_pwm_rate = BRUSHLESS_MOTORS_PWM_RATE;
#endif
masterConfig.servo_pwm_rate = 50;
masterConfig.use_fast_pwm = 0;
masterConfig.use_oneshot42 = 0;
#ifdef CC3D
masterConfig.use_buzzer_p6 = 0;
#endif
#ifdef GPS
// gps/nav stuff
masterConfig.gpsConfig.provider = GPS_NMEA;
masterConfig.gpsConfig.sbasMode = SBAS_AUTO;
masterConfig.gpsConfig.autoConfig = GPS_AUTOCONFIG_ON;
masterConfig.gpsConfig.autoBaud = GPS_AUTOBAUD_OFF;
#endif
resetSerialConfig(&masterConfig.serialConfig);
masterConfig.emf_avoidance = 0;
resetPidProfile(&currentProfile->pidProfile);
uint8_t rI;
for (rI = 0; rI<MAX_RATEPROFILES; rI++) {
resetControlRateConfig(&masterConfig.profile[0].controlRateProfile[rI]);
}
resetRollAndPitchTrims(&masterConfig.accelerometerTrims);
masterConfig.mag_declination = 0;
masterConfig.acc_lpf_hz = 10.0f;
masterConfig.accDeadband.xy = 40;
masterConfig.accDeadband.z = 40;
masterConfig.acc_unarmedcal = 1;
resetBarometerConfig(&masterConfig.barometerConfig);
// Radio
parseRcChannels("AETR1234", &masterConfig.rxConfig);
resetRcControlsConfig(&masterConfig.rcControlsConfig);
masterConfig.throttle_correction_value = 0; // could 10 with althold or 40 for fpv
masterConfig.throttle_correction_angle = 800; // could be 80.0 deg with atlhold or 45.0 for fpv
// Failsafe Variables
masterConfig.failsafeConfig.failsafe_delay = 10; // 1sec
masterConfig.failsafeConfig.failsafe_off_delay = 10; // 1sec
masterConfig.failsafeConfig.failsafe_throttle = 1000; // default throttle off.
masterConfig.failsafeConfig.failsafe_kill_switch = 0; // default failsafe switch action is identical to rc link loss
masterConfig.failsafeConfig.failsafe_throttle_low_delay = 100; // default throttle low delay for "just disarm" on failsafe condition
masterConfig.failsafeConfig.failsafe_procedure = 0; // default full failsafe procedure is 0: auto-landing
#ifdef USE_SERVOS
// servos
for (i = 0; i < MAX_SUPPORTED_SERVOS; i++) {
masterConfig.servoConf[i].min = DEFAULT_SERVO_MIN;
masterConfig.servoConf[i].max = DEFAULT_SERVO_MAX;
masterConfig.servoConf[i].middle = DEFAULT_SERVO_MIDDLE;
masterConfig.servoConf[i].rate = 100;
masterConfig.servoConf[i].angleAtMin = DEFAULT_SERVO_MIN_ANGLE;
masterConfig.servoConf[i].angleAtMax = DEFAULT_SERVO_MAX_ANGLE;
masterConfig.servoConf[i].forwardFromChannel = CHANNEL_FORWARDING_DISABLED;
}
// gimbal
masterConfig.gimbalConfig.mode = GIMBAL_MODE_NORMAL;
#endif
#ifdef GPS
resetGpsProfile(&masterConfig.gpsProfile);
#endif
// custom mixer. clear by defaults.
for (i = 0; i < MAX_SUPPORTED_MOTORS; i++)
masterConfig.customMotorMixer[i].throttle = 0.0f;
#ifdef LED_STRIP
applyDefaultColors(masterConfig.colors, CONFIGURABLE_COLOR_COUNT);
applyDefaultLedStripConfig(masterConfig.ledConfigs);
#endif
#ifdef SPRACINGF3
featureSet(FEATURE_BLACKBOX);
masterConfig.blackbox_device = 1;
#ifdef TRANSPONDER
static const uint8_t defaultTransponderData[6] = { 0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC }; // Note, this is NOT a valid transponder code, it's just for testing production hardware
memcpy(masterConfig.transponderData, &defaultTransponderData, sizeof(defaultTransponderData));
#endif
#if defined(ENABLE_BLACKBOX_LOGGING_ON_SPIFLASH_BY_DEFAULT)
featureSet(FEATURE_BLACKBOX);
masterConfig.blackbox_device = BLACKBOX_DEVICE_FLASH;
#elif defined(ENABLE_BLACKBOX_LOGGING_ON_SDCARD_BY_DEFAULT)
featureSet(FEATURE_BLACKBOX);
masterConfig.blackbox_device = BLACKBOX_DEVICE_SDCARD;
#else
masterConfig.blackbox_device = 0;
#endif
masterConfig.blackbox_rate_num = 1;
masterConfig.blackbox_rate_denom = 1;
#endif
// alternative defaults settings for COLIBRI RACE targets
#if defined(COLIBRI_RACE)
masterConfig.escAndServoConfig.minthrottle = 1025;
masterConfig.escAndServoConfig.maxthrottle = 1980;
masterConfig.batteryConfig.vbatmaxcellvoltage = 45;
masterConfig.batteryConfig.vbatmincellvoltage = 30;
featureSet(FEATURE_VBAT);
featureSet(FEATURE_FAILSAFE);
#endif
// alternative defaults settings for ALIENFLIGHTF1 and ALIENFLIGHTF3 targets
#ifdef ALIENFLIGHT
featureSet(FEATURE_RX_SERIAL);
featureSet(FEATURE_MOTOR_STOP);
featureClear(FEATURE_ONESHOT125);
#ifdef ALIENFLIGHTF3
masterConfig.serialConfig.portConfigs[2].functionMask = FUNCTION_RX_SERIAL;
masterConfig.batteryConfig.vbatscale = 20;
masterConfig.mag_hardware = MAG_NONE; // disabled by default
#else
masterConfig.serialConfig.portConfigs[1].functionMask = FUNCTION_RX_SERIAL;
#endif
masterConfig.rxConfig.serialrx_provider = 1;
masterConfig.rxConfig.spektrum_sat_bind = 5;
masterConfig.escAndServoConfig.minthrottle = 1000;
masterConfig.escAndServoConfig.maxthrottle = 2000;
masterConfig.motor_pwm_rate = 32000;
currentProfile->pidProfile.pidController = 2;
masterConfig.failsafeConfig.failsafe_delay = 2;
masterConfig.failsafeConfig.failsafe_off_delay = 0;
masterConfig.mixerConfig.yaw_jump_prevention_limit = 500;
currentControlRateProfile->rcRate8 = 100;
currentControlRateProfile->rates[FD_PITCH] = 20;
currentControlRateProfile->rates[FD_ROLL] = 20;
currentControlRateProfile->rates[FD_YAW] = 20;
parseRcChannels("TAER1234", &masterConfig.rxConfig);
// { 1.0f, -0.414178f, 1.0f, -1.0f }, // REAR_R
masterConfig.customMotorMixer[0].throttle = 1.0f;
masterConfig.customMotorMixer[0].roll = -0.414178f;
masterConfig.customMotorMixer[0].pitch = 1.0f;
masterConfig.customMotorMixer[0].yaw = -1.0f;
// { 1.0f, -0.414178f, -1.0f, 1.0f }, // FRONT_R
masterConfig.customMotorMixer[1].throttle = 1.0f;
masterConfig.customMotorMixer[1].roll = -0.414178f;
masterConfig.customMotorMixer[1].pitch = -1.0f;
masterConfig.customMotorMixer[1].yaw = 1.0f;
// { 1.0f, 0.414178f, 1.0f, 1.0f }, // REAR_L
masterConfig.customMotorMixer[2].throttle = 1.0f;
masterConfig.customMotorMixer[2].roll = 0.414178f;
masterConfig.customMotorMixer[2].pitch = 1.0f;
masterConfig.customMotorMixer[2].yaw = 1.0f;
// { 1.0f, 0.414178f, -1.0f, -1.0f }, // FRONT_L
masterConfig.customMotorMixer[3].throttle = 1.0f;
masterConfig.customMotorMixer[3].roll = 0.414178f;
masterConfig.customMotorMixer[3].pitch = -1.0f;
masterConfig.customMotorMixer[3].yaw = -1.0f;
// { 1.0f, -1.0f, -0.414178f, -1.0f }, // MIDFRONT_R
masterConfig.customMotorMixer[4].throttle = 1.0f;
masterConfig.customMotorMixer[4].roll = -1.0f;
masterConfig.customMotorMixer[4].pitch = -0.414178f;
masterConfig.customMotorMixer[4].yaw = -1.0f;
// { 1.0f, 1.0f, -0.414178f, 1.0f }, // MIDFRONT_L
masterConfig.customMotorMixer[5].throttle = 1.0f;
masterConfig.customMotorMixer[5].roll = 1.0f;
masterConfig.customMotorMixer[5].pitch = -0.414178f;
masterConfig.customMotorMixer[5].yaw = 1.0f;
// { 1.0f, -1.0f, 0.414178f, 1.0f }, // MIDREAR_R
masterConfig.customMotorMixer[6].throttle = 1.0f;
masterConfig.customMotorMixer[6].roll = -1.0f;
masterConfig.customMotorMixer[6].pitch = 0.414178f;
masterConfig.customMotorMixer[6].yaw = 1.0f;
// { 1.0f, 1.0f, 0.414178f, -1.0f }, // MIDREAR_L
masterConfig.customMotorMixer[7].throttle = 1.0f;
masterConfig.customMotorMixer[7].roll = 1.0f;
masterConfig.customMotorMixer[7].pitch = 0.414178f;
masterConfig.customMotorMixer[7].yaw = -1.0f;
#endif
// copy first profile into remaining profile
for (i = 1; i < MAX_PROFILE_COUNT; i++) {
memcpy(&masterConfig.profile[i], currentProfile, sizeof(profile_t));
}
}
static uint8_t calculateChecksum(const uint8_t *data, uint32_t length)
{
uint8_t checksum = 0;
const uint8_t *byteOffset;
for (byteOffset = data; byteOffset < (data + length); byteOffset++)
checksum ^= *byteOffset;
return checksum;
}
static bool isEEPROMContentValid(void)
{
const master_t *temp = (const master_t *) CONFIG_START_FLASH_ADDRESS;
uint8_t checksum = 0;
// check version number
if (EEPROM_CONF_VERSION != temp->version)
return false;
// check size and magic numbers
if (temp->size != sizeof(master_t) || temp->magic_be != 0xBE || temp->magic_ef != 0xEF)
return false;
// verify integrity of temporary copy
checksum = calculateChecksum((const uint8_t *) temp, sizeof(master_t));
if (checksum != 0)
return false;
// looks good, let's roll!
return true;
}
void activateControlRateConfig(void)
{
generatePitchRollCurve(currentControlRateProfile);
generateYawCurve(currentControlRateProfile);
generateThrottleCurve(currentControlRateProfile, &masterConfig.escAndServoConfig);
}
void activateConfig(void)
{
static imuRuntimeConfig_t imuRuntimeConfig;
activateControlRateConfig();
resetAdjustmentStates();
useRcControlsConfig(
masterConfig.modeActivationConditions,
&masterConfig.escAndServoConfig,
&currentProfile->pidProfile
);
useGyroConfig(&masterConfig.gyroConfig, masterConfig.gyro_soft_lpf_hz);
#ifdef TELEMETRY
telemetryUseConfig(&masterConfig.telemetryConfig);
#endif
pidSetController(currentProfile->pidProfile.pidController);
#ifdef GPS
gpsUseProfile(&masterConfig.gpsProfile);
gpsUsePIDs(&currentProfile->pidProfile);
#endif
useFailsafeConfig(&masterConfig.failsafeConfig);
setAccelerationTrims(&masterConfig.accZero);
setAccelerationFilter(masterConfig.acc_lpf_hz);
mixerUseConfigs(
#ifdef USE_SERVOS
masterConfig.servoConf,
&masterConfig.gimbalConfig,
#endif
&masterConfig.flight3DConfig,
&masterConfig.escAndServoConfig,
&masterConfig.mixerConfig,
&masterConfig.airplaneConfig,
&masterConfig.rxConfig
);
imuRuntimeConfig.dcm_kp = masterConfig.dcm_kp / 10000.0f;
imuRuntimeConfig.dcm_ki = masterConfig.dcm_ki / 10000.0f;
imuRuntimeConfig.acc_unarmedcal = masterConfig.acc_unarmedcal;
imuRuntimeConfig.small_angle = masterConfig.small_angle;
imuConfigure(
&imuRuntimeConfig,
&currentProfile->pidProfile,
&masterConfig.accDeadband,
masterConfig.throttle_correction_angle
);
configureAltitudeHold(
&currentProfile->pidProfile,
&masterConfig.barometerConfig,
&masterConfig.rcControlsConfig,
&masterConfig.escAndServoConfig
);
#ifdef BARO
useBarometerConfig(&masterConfig.barometerConfig);
#endif
}
void validateAndFixConfig(void)
{
if (!(featureConfigured(FEATURE_RX_PARALLEL_PWM) || featureConfigured(FEATURE_RX_PPM) || featureConfigured(FEATURE_RX_SERIAL) || featureConfigured(FEATURE_RX_MSP))) {
featureSet(FEATURE_RX_PARALLEL_PWM); // Consider changing the default to PPM
}
if (featureConfigured(FEATURE_RX_PPM)) {
featureClear(FEATURE_RX_PARALLEL_PWM);
}
if (featureConfigured(FEATURE_RX_MSP)) {
featureClear(FEATURE_RX_SERIAL);
featureClear(FEATURE_RX_PARALLEL_PWM);
featureClear(FEATURE_RX_PPM);
}
if (featureConfigured(FEATURE_RX_SERIAL)) {
featureClear(FEATURE_RX_PARALLEL_PWM);
featureClear(FEATURE_RX_PPM);
}
if (featureConfigured(FEATURE_RX_PARALLEL_PWM)) {
#if defined(STM32F10X)
// rssi adc needs the same ports
featureClear(FEATURE_RSSI_ADC);
// current meter needs the same ports
if (masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC) {
featureClear(FEATURE_CURRENT_METER);
}
#endif
#if defined(STM32F10X) || defined(CHEBUZZ) || defined(STM32F3DISCOVERY)
// led strip needs the same ports
featureClear(FEATURE_LED_STRIP);
#endif
// software serial needs free PWM ports
featureClear(FEATURE_SOFTSERIAL);
}
#if defined(LED_STRIP) && (defined(USE_SOFTSERIAL1) || defined(USE_SOFTSERIAL2))
if (featureConfigured(FEATURE_SOFTSERIAL) && (
0
#ifdef USE_SOFTSERIAL1
|| (LED_STRIP_TIMER == SOFTSERIAL_1_TIMER)
#endif
#ifdef USE_SOFTSERIAL2
|| (LED_STRIP_TIMER == SOFTSERIAL_2_TIMER)
#endif
)) {
// led strip needs the same timer as softserial
featureClear(FEATURE_LED_STRIP);
}
#endif
#if defined(NAZE) && defined(SONAR)
if (featureConfigured(FEATURE_RX_PARALLEL_PWM) && featureConfigured(FEATURE_SONAR) && featureConfigured(FEATURE_CURRENT_METER) && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC) {
featureClear(FEATURE_CURRENT_METER);
}
#endif
#if defined(OLIMEXINO) && defined(SONAR)
if (feature(FEATURE_SONAR) && feature(FEATURE_CURRENT_METER) && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC) {
featureClear(FEATURE_CURRENT_METER);
}
#endif
#if defined(CC3D) && defined(DISPLAY) && defined(USE_USART3)
if (doesConfigurationUsePort(SERIAL_PORT_USART3) && feature(FEATURE_DISPLAY)) {
featureClear(FEATURE_DISPLAY);
}
#endif
#ifdef STM32F303xC
// hardware supports serial port inversion, make users life easier for those that want to connect SBus RX's
masterConfig.telemetryConfig.telemetry_inversion = 1;
#endif
/*#if defined(LED_STRIP) && defined(TRANSPONDER) // TODO - Add transponder feature
if ((WS2811_DMA_TC_FLAG == TRANSPONDER_DMA_TC_FLAG) && featureConfigured(FEATURE_TRANSPONDER) && featureConfigured(FEATURE_LED_STRIP)) {
featureClear(FEATURE_LED_STRIP);
}
#endif
*/
#if defined(CC3D) && defined(SONAR) && defined(USE_SOFTSERIAL1) && defined(RSSI_ADC_GPIO)
// shared pin
if ((featureConfigured(FEATURE_SONAR) + featureConfigured(FEATURE_SOFTSERIAL) + featureConfigured(FEATURE_RSSI_ADC)) > 1) {
featureClear(FEATURE_SONAR);
featureClear(FEATURE_SOFTSERIAL);
featureClear(FEATURE_RSSI_ADC);
}
#endif
#if defined(COLIBRI_RACE)
masterConfig.serialConfig.portConfigs[0].functionMask = FUNCTION_MSP;
if(featureConfigured(FEATURE_RX_PARALLEL_PWM) || featureConfigured(FEATURE_RX_MSP)) {
featureClear(FEATURE_RX_PARALLEL_PWM);
featureClear(FEATURE_RX_MSP);
featureSet(FEATURE_RX_PPM);
}
if(featureConfigured(FEATURE_RX_SERIAL)) {
masterConfig.serialConfig.portConfigs[2].functionMask = FUNCTION_RX_SERIAL;
//masterConfig.rxConfig.serialrx_provider = SERIALRX_SBUS;
}
#endif
useRxConfig(&masterConfig.rxConfig);
serialConfig_t *serialConfig = &masterConfig.serialConfig;
if (!isSerialConfigValid(serialConfig)) {
resetSerialConfig(serialConfig);
}
}
void initEEPROM(void)
{
}
void readEEPROM(void)
{
// Sanity check
if (!isEEPROMContentValid())
failureMode(FAILURE_INVALID_EEPROM_CONTENTS);
suspendRxSignal();
// Read flash
memcpy(&masterConfig, (char *) CONFIG_START_FLASH_ADDRESS, sizeof(master_t));
if (masterConfig.current_profile_index > MAX_PROFILE_COUNT - 1) // sanity check
masterConfig.current_profile_index = 0;
setProfile(masterConfig.current_profile_index);
validateAndFixConfig();
activateConfig();
resumeRxSignal();
}
void readEEPROMAndNotify(void)
{
// re-read written data
readEEPROM();
beeperConfirmationBeeps(1);
}
void writeEEPROM(void)
{
// Generate compile time error if the config does not fit in the reserved area of flash.
BUILD_BUG_ON(sizeof(master_t) > FLASH_TO_RESERVE_FOR_CONFIG);
FLASH_Status status = 0;
uint32_t wordOffset;
int8_t attemptsRemaining = 3;
suspendRxSignal();
// prepare checksum/version constants
masterConfig.version = EEPROM_CONF_VERSION;
masterConfig.size = sizeof(master_t);
masterConfig.magic_be = 0xBE;
masterConfig.magic_ef = 0xEF;
masterConfig.chk = 0; // erase checksum before recalculating
masterConfig.chk = calculateChecksum((const uint8_t *) &masterConfig, sizeof(master_t));
// write it
FLASH_Unlock();
while (attemptsRemaining--) {
#ifdef STM32F303
FLASH_ClearFlag(FLASH_FLAG_EOP | FLASH_FLAG_PGERR | FLASH_FLAG_WRPERR);
#endif
#ifdef STM32F10X
FLASH_ClearFlag(FLASH_FLAG_EOP | FLASH_FLAG_PGERR | FLASH_FLAG_WRPRTERR);
#endif
for (wordOffset = 0; wordOffset < sizeof(master_t); wordOffset += 4) {
if (wordOffset % FLASH_PAGE_SIZE == 0) {
status = FLASH_ErasePage(CONFIG_START_FLASH_ADDRESS + wordOffset);
if (status != FLASH_COMPLETE) {
break;
}
}
status = FLASH_ProgramWord(CONFIG_START_FLASH_ADDRESS + wordOffset,
*(uint32_t *) ((char *) &masterConfig + wordOffset));
if (status != FLASH_COMPLETE) {
break;
}
}
if (status == FLASH_COMPLETE) {
break;
}
}
FLASH_Lock();
// Flash write failed - just die now
if (status != FLASH_COMPLETE || !isEEPROMContentValid()) {
failureMode(FAILURE_FLASH_WRITE_FAILED);
}
resumeRxSignal();
}
void ensureEEPROMContainsValidData(void)
{
if (isEEPROMContentValid()) {
return;
}
resetEEPROM();
}
void resetEEPROM(void)
{
resetConf();
writeEEPROM();
}
void saveConfigAndNotify(void)
{
writeEEPROM();
readEEPROMAndNotify();
}
void changeProfile(uint8_t profileIndex)
{
masterConfig.current_profile_index = profileIndex;
writeEEPROM();
readEEPROM();
beeperConfirmationBeeps(profileIndex + 1);
}
void changeControlRateProfile(uint8_t profileIndex) {
if (profileIndex > MAX_RATEPROFILES) {
profileIndex = MAX_RATEPROFILES - 1;
}
setControlRateProfile(profileIndex);
activateControlRateConfig();
}
void handleOneshotFeatureChangeOnRestart(void)
{
// Shutdown PWM on all motors prior to soft restart
StopPwmAllMotors();
delay(50);
// Apply additional delay when OneShot125 feature changed from on to off state
if (feature(FEATURE_ONESHOT125) && !featureConfigured(FEATURE_ONESHOT125)) {
delay(ONESHOT_FEATURE_CHANGED_DELAY_ON_BOOT_MS);
}
}
void latchActiveFeatures()
{
activeFeaturesLatch = masterConfig.enabledFeatures;
}
bool featureConfigured(uint32_t mask)
{
return masterConfig.enabledFeatures & mask;
}
bool feature(uint32_t mask)
{
return activeFeaturesLatch & mask;
}
void featureSet(uint32_t mask)
{
masterConfig.enabledFeatures |= mask;
}
void featureClear(uint32_t mask)
{
masterConfig.enabledFeatures &= ~(mask);
}
void featureClearAll()
{
masterConfig.enabledFeatures = 0;
}
uint32_t featureMask(void)
{
return masterConfig.enabledFeatures;
}