atbetaflight/src/main/drivers/barometer/barometer_dps310.c

407 lines
12 KiB
C

/*
* This file is part of Cleanflight, Betaflight and INAV.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Alternatively, the contents of this file may be used under the terms
* of the GNU General Public License Version 3, as described below:
*
* This file is free software: you may copy, redistribute and/or modify
* it under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*
* Copyright: INAVFLIGHT OU
*/
// See datasheet at https://www.infineon.com/dgdl/Infineon-DPS310-DataSheet-v01_02-EN.pdf?fileId=5546d462576f34750157750826c42242
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "platform.h"
#include "build/build_config.h"
#include "build/debug.h"
#include "common/utils.h"
#include "drivers/io.h"
#include "drivers/bus.h"
#include "drivers/bus_spi.h"
#include "drivers/time.h"
#include "drivers/barometer/barometer.h"
#include "drivers/barometer/barometer_dps310.h"
#include "drivers/resource.h"
// 10 MHz max SPI frequency
#define DPS310_MAX_SPI_CLK_HZ 10000000
#if defined(USE_BARO) && (defined(USE_BARO_DPS310) || defined(USE_BARO_SPI_DPS310))
#define DPS310_I2C_ADDR 0x76
#define DPS310_REG_PSR_B2 0x00
#define DPS310_REG_PSR_B1 0x01
#define DPS310_REG_PSR_B0 0x02
#define DPS310_REG_TMP_B2 0x03
#define DPS310_REG_TMP_B1 0x04
#define DPS310_REG_TMP_B0 0x05
#define DPS310_REG_PRS_CFG 0x06
#define DPS310_REG_TMP_CFG 0x07
#define DPS310_REG_MEAS_CFG 0x08
#define DPS310_REG_CFG_REG 0x09
#define DPS310_REG_RESET 0x0C
#define DPS310_REG_ID 0x0D
#define DPS310_REG_COEF 0x10
#define DPS310_REG_COEF_SRCE 0x28
#define DPS310_ID_REV_AND_PROD_ID (0x10)
#define DPS310_RESET_BIT_SOFT_RST (0x09) // 0b1001
#define DPS310_MEAS_CFG_COEF_RDY (1 << 7)
#define DPS310_MEAS_CFG_SENSOR_RDY (1 << 6)
#define DPS310_MEAS_CFG_TMP_RDY (1 << 5)
#define DPS310_MEAS_CFG_PRS_RDY (1 << 4)
#define DPS310_MEAS_CFG_MEAS_CTRL_CONT (0x7)
#define DPS310_PRS_CFG_BIT_PM_RATE_32HZ (0x50) // 101 - 32 measurements pr. sec.
#define DPS310_PRS_CFG_BIT_PM_PRC_16 (0x04) // 0100 - 16 times (Standard).
#define DPS310_TMP_CFG_BIT_TMP_EXT (0x80) //
#define DPS310_TMP_CFG_BIT_TMP_RATE_32HZ (0x50) // 101 - 32 measurements pr. sec.
#define DPS310_TMP_CFG_BIT_TMP_PRC_16 (0x04) // 0100 - 16 times (Standard).
#define DPS310_CFG_REG_BIT_P_SHIFT (0x04)
#define DPS310_CFG_REG_BIT_T_SHIFT (0x08)
#define DPS310_COEF_SRCE_BIT_TMP_COEF_SRCE (0x80)
typedef struct {
int16_t c0; // 12bit
int16_t c1; // 12bit
int32_t c00; // 20bit
int32_t c10; // 20bit
int16_t c01; // 16bit
int16_t c11; // 16bit
int16_t c20; // 16bit
int16_t c21; // 16bit
int16_t c30; // 16bit
} calibrationCoefficients_t;
typedef struct {
calibrationCoefficients_t calib;
float pressure; // Pa
float temperature; // DegC
} baroState_t;
static baroState_t baroState;
#define busReadBuf busReadRegisterBuffer
#define busWrite busWriteRegister
static uint8_t buf[6];
// Helper functions
static uint8_t registerRead(const extDevice_t *dev, uint8_t reg)
{
return busReadRegister(dev, reg);
}
static void registerWrite(const extDevice_t *dev, uint8_t reg, uint8_t value)
{
busWrite(dev, reg, value);
}
static void registerSetBits(const extDevice_t *dev, uint8_t reg, uint8_t setbits)
{
uint8_t val = registerRead(dev, reg);
if ((val & setbits) != setbits) {
val |= setbits;
registerWrite(dev, reg, val);
}
}
static int32_t getTwosComplement(uint32_t raw, uint8_t length)
{
if (raw & ((int)1 << (length - 1))) {
return ((int32_t)raw) - ((int32_t)1 << length);
}
else {
return raw;
}
}
static bool deviceConfigure(const extDevice_t *dev)
{
// Trigger a chip reset
registerSetBits(dev, DPS310_REG_RESET, DPS310_RESET_BIT_SOFT_RST);
// Sleep 40ms
delay(40);
uint8_t status = registerRead(dev, DPS310_REG_MEAS_CFG);
// Check if coefficients are available
if ((status & DPS310_MEAS_CFG_COEF_RDY) == 0) {
return false;
}
// Check if sensor initialization is complete
if ((status & DPS310_MEAS_CFG_SENSOR_RDY) == 0) {
return false;
}
// 1. Read the pressure calibration coefficients (c00, c10, c20, c30, c01, c11, and c21) from the Calibration Coefficient register.
// Note: The coefficients read from the coefficient register are 2's complement numbers.
// Do the read of the coefficients in multiple parts, as the chip will return a read failure when trying to read all at once over I2C.
#define COEFFICIENT_LENGTH 18
#define READ_LENGTH (COEFFICIENT_LENGTH / 2)
uint8_t coef[COEFFICIENT_LENGTH];
if (!busReadBuf(dev, DPS310_REG_COEF, coef, READ_LENGTH)) {
return false;
}
if (!busReadBuf(dev, DPS310_REG_COEF + READ_LENGTH, coef + READ_LENGTH, COEFFICIENT_LENGTH - READ_LENGTH)) {
return false;
}
// See section 8.11, Calibration Coefficients (COEF), of datasheet
// 0x11 c0 [3:0] + 0x10 c0 [11:4]
baroState.calib.c0 = getTwosComplement(((uint32_t)coef[0] << 4) | (((uint32_t)coef[1] >> 4) & 0x0F), 12);
// 0x11 c1 [11:8] + 0x12 c1 [7:0]
baroState.calib.c1 = getTwosComplement((((uint32_t)coef[1] & 0x0F) << 8) | (uint32_t)coef[2], 12);
// 0x13 c00 [19:12] + 0x14 c00 [11:4] + 0x15 c00 [3:0]
baroState.calib.c00 = getTwosComplement(((uint32_t)coef[3] << 12) | ((uint32_t)coef[4] << 4) | (((uint32_t)coef[5] >> 4) & 0x0F), 20);
// 0x15 c10 [19:16] + 0x16 c10 [15:8] + 0x17 c10 [7:0]
baroState.calib.c10 = getTwosComplement((((uint32_t)coef[5] & 0x0F) << 16) | ((uint32_t)coef[6] << 8) | (uint32_t)coef[7], 20);
// 0x18 c01 [15:8] + 0x19 c01 [7:0]
baroState.calib.c01 = getTwosComplement(((uint32_t)coef[8] << 8) | (uint32_t)coef[9], 16);
// 0x1A c11 [15:8] + 0x1B c11 [7:0]
baroState.calib.c11 = getTwosComplement(((uint32_t)coef[10] << 8) | (uint32_t)coef[11], 16);
// 0x1C c20 [15:8] + 0x1D c20 [7:0]
baroState.calib.c20 = getTwosComplement(((uint32_t)coef[12] << 8) | (uint32_t)coef[13], 16);
// 0x1E c21 [15:8] + 0x1F c21 [7:0]
baroState.calib.c21 = getTwosComplement(((uint32_t)coef[14] << 8) | (uint32_t)coef[15], 16);
// 0x20 c30 [15:8] + 0x21 c30 [7:0]
baroState.calib.c30 = getTwosComplement(((uint32_t)coef[16] << 8) | (uint32_t)coef[17], 16);
// PRS_CFG: pressure measurement rate (32 Hz) and oversampling (16 time standard)
registerSetBits(dev, DPS310_REG_PRS_CFG, DPS310_PRS_CFG_BIT_PM_RATE_32HZ | DPS310_PRS_CFG_BIT_PM_PRC_16);
// TMP_CFG: temperature measurement rate (32 Hz) and oversampling (16 times)
const uint8_t TMP_COEF_SRCE = registerRead(dev, DPS310_REG_COEF_SRCE) & DPS310_COEF_SRCE_BIT_TMP_COEF_SRCE;
registerSetBits(dev, DPS310_REG_TMP_CFG, DPS310_TMP_CFG_BIT_TMP_RATE_32HZ | DPS310_TMP_CFG_BIT_TMP_PRC_16 | TMP_COEF_SRCE);
// CFG_REG: set pressure and temperature result bit-shift (required when the oversampling rate is >8 times)
registerSetBits(dev, DPS310_REG_CFG_REG, DPS310_CFG_REG_BIT_T_SHIFT | DPS310_CFG_REG_BIT_P_SHIFT);
// MEAS_CFG: Continuous pressure and temperature measurement
registerSetBits(dev, DPS310_REG_MEAS_CFG, DPS310_MEAS_CFG_MEAS_CTRL_CONT);
return true;
}
static bool dps310ReadUP(baroDev_t *baro)
{
if (busBusy(&baro->dev, NULL)) {
return false;
}
// 1. Kick off read
// No need to poll for data ready as the conversion rate is 32Hz and this is sampling at 20Hz
// Read PSR_B2, PSR_B1, PSR_B0, TMP_B2, TMP_B1, TMP_B0
busReadRegisterBufferStart(&baro->dev, DPS310_REG_PSR_B2, buf, 6);
return true;
}
static bool dps310GetUP(baroDev_t *baro)
{
UNUSED(baro);
// 2. Choose scaling factors kT (for temperature) and kP (for pressure) based on the chosen precision rate.
// The scaling factors are listed in Table 9.
static float kT = 253952; // 16 times (Standard)
static float kP = 253952; // 16 times (Standard)
// 3. Read the pressure and temperature result from the registers
const int32_t Praw = getTwosComplement((buf[0] << 16) + (buf[1] << 8) + buf[2], 24);
const int32_t Traw = getTwosComplement((buf[3] << 16) + (buf[4] << 8) + buf[5], 24);
// 4. Calculate scaled measurement results.
const float Praw_sc = Praw / kP;
const float Traw_sc = Traw / kT;
// 5. Calculate compensated measurement results.
const float c00 = baroState.calib.c00;
const float c01 = baroState.calib.c01;
const float c10 = baroState.calib.c10;
const float c11 = baroState.calib.c11;
const float c20 = baroState.calib.c20;
const float c21 = baroState.calib.c21;
const float c30 = baroState.calib.c30;
// See section 4.9.1, How to Calculate Compensated Pressure Values, of datasheet
baroState.pressure = c00 + Praw_sc * (c10 + Praw_sc * (c20 + Praw_sc * c30)) + Traw_sc * c01 + Traw_sc * Praw_sc * (c11 + Praw_sc * c21);
const float c0 = baroState.calib.c0;
const float c1 = baroState.calib.c1;
// See section 4.9.2, How to Calculate Compensated Temperature Values, of datasheet
baroState.temperature = c0 * 0.5f + c1 * Traw_sc;
return true;
}
static void deviceCalculate(int32_t *pressure, int32_t *temperature)
{
if (pressure) {
*pressure = baroState.pressure;
}
if (temperature) {
*temperature = (baroState.temperature * 100); // to centidegrees
}
}
#define DETECTION_MAX_RETRY_COUNT 5
static bool deviceDetect(const extDevice_t *dev)
{
for (int retry = 0; retry < DETECTION_MAX_RETRY_COUNT; retry++) {
uint8_t chipId[1];
delay(100);
bool ack = busReadBuf(dev, DPS310_REG_ID, chipId, 1);
if (ack && chipId[0] == DPS310_ID_REV_AND_PROD_ID) {
return true;
}
};
return false;
}
static void dps310StartUT(baroDev_t *baro)
{
UNUSED(baro);
}
static bool dps310ReadUT(baroDev_t *baro)
{
UNUSED(baro);
return true;
}
static bool dps310GetUT(baroDev_t *baro)
{
UNUSED(baro);
return true;
}
static void dps310StartUP(baroDev_t *baro)
{
UNUSED(baro);
}
static void deviceInit(const extDevice_t *dev, resourceOwner_e owner)
{
#ifdef USE_BARO_SPI_DPS310
if (dev->bus->busType == BUS_TYPE_SPI) {
IOHi(dev->busType_u.spi.csnPin); // Disable
IOInit(dev->busType_u.spi.csnPin, owner, 0);
IOConfigGPIO(dev->busType_u.spi.csnPin, IOCFG_OUT_PP);
spiSetClkDivisor(dev, spiCalculateDivider(DPS310_MAX_SPI_CLK_HZ));
}
#else
UNUSED(dev);
UNUSED(owner);
#endif
}
static void deviceDeInit(const extDevice_t *dev)
{
#ifdef USE_BARO_SPI_DPS310
if (dev->bus->busType == BUS_TYPE_SPI) {
spiPreinitByIO(dev->busType_u.spi.csnPin);
}
#else
UNUSED(dev);
#endif
}
bool baroDPS310Detect(baroDev_t *baro)
{
extDevice_t *dev = &baro->dev;
bool defaultAddressApplied = false;
deviceInit(&baro->dev, OWNER_BARO_CS);
if ((dev->bus->busType == BUS_TYPE_I2C) && (dev->busType_u.i2c.address == 0)) {
// Default address for BMP280
dev->busType_u.i2c.address = DPS310_I2C_ADDR;
defaultAddressApplied = true;
}
if (!deviceDetect(dev)) {
deviceDeInit(dev);
if (defaultAddressApplied) {
dev->busType_u.i2c.address = 0;
}
return false;
}
if (!deviceConfigure(dev)) {
deviceDeInit(dev);
return false;
}
busDeviceRegister(dev);
baro->ut_delay = 0;
baro->start_ut = dps310StartUT;
baro->read_ut = dps310ReadUT;
baro->get_ut = dps310GetUT;
baro->up_delay = 45000; // 45ms delay plus 5 1ms cycles 50ms
baro->start_up = dps310StartUP;
baro->read_up = dps310ReadUP;
baro->get_up = dps310GetUP;
baro->calculate = deviceCalculate;
return true;
}
#endif