atbetaflight/src/main/sensors/esc_sensor.c

369 lines
10 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include "platform.h"
#if defined(USE_ESC_SENSOR)
#include "build/debug.h"
#include "common/time.h"
#include "config/feature.h"
#include "pg/pg.h"
#include "pg/pg_ids.h"
#include "pg/motor.h"
#include "common/maths.h"
#include "common/utils.h"
#include "drivers/timer.h"
#include "drivers/motor.h"
#include "drivers/dshot.h"
#include "drivers/dshot_dpwm.h"
#include "drivers/serial.h"
#include "drivers/serial_uart.h"
#include "esc_sensor.h"
#include "config/config.h"
#include "flight/mixer.h"
#include "io/serial.h"
/*
KISS ESC TELEMETRY PROTOCOL
---------------------------
One transmission will have 10 times 8-bit bytes sent with 115200 baud and 3.6V.
Byte 0: Temperature
Byte 1: Voltage high byte
Byte 2: Voltage low byte
Byte 3: Current high byte
Byte 4: Current low byte
Byte 5: Consumption high byte
Byte 6: Consumption low byte
Byte 7: Rpm high byte
Byte 8: Rpm low byte
Byte 9: 8-bit CRC
*/
PG_REGISTER_WITH_RESET_TEMPLATE(escSensorConfig_t, escSensorConfig, PG_ESC_SENSOR_CONFIG, 0);
PG_RESET_TEMPLATE(escSensorConfig_t, escSensorConfig,
.halfDuplex = 0
);
/*
DEBUG INFORMATION
-----------------
set debug_mode = DEBUG_ESC_SENSOR in cli
*/
enum {
DEBUG_ESC_MOTOR_INDEX = 0,
DEBUG_ESC_NUM_TIMEOUTS = 1,
DEBUG_ESC_NUM_CRC_ERRORS = 2,
DEBUG_ESC_DATA_AGE = 3,
};
typedef enum {
ESC_SENSOR_FRAME_PENDING = 0,
ESC_SENSOR_FRAME_COMPLETE = 1,
ESC_SENSOR_FRAME_FAILED = 2
} escTlmFrameState_t;
typedef enum {
ESC_SENSOR_TRIGGER_STARTUP = 0,
ESC_SENSOR_TRIGGER_READY = 1,
ESC_SENSOR_TRIGGER_PENDING = 2
} escSensorTriggerState_t;
#define ESC_SENSOR_BAUDRATE 115200
#define ESC_BOOTTIME 5000 // 5 seconds
#define ESC_REQUEST_TIMEOUT 100 // 100 ms (data transfer takes only 900us)
#define TELEMETRY_FRAME_SIZE 10
static uint8_t telemetryBuffer[TELEMETRY_FRAME_SIZE] = { 0, };
static volatile uint8_t *buffer;
static volatile uint8_t bufferSize = 0;
static volatile uint8_t bufferPosition = 0;
static serialPort_t *escSensorPort = NULL;
static escSensorData_t escSensorData[MAX_SUPPORTED_MOTORS];
static escSensorTriggerState_t escSensorTriggerState = ESC_SENSOR_TRIGGER_STARTUP;
static uint32_t escTriggerTimestamp;
static uint8_t escSensorMotor = 0; // motor index
static escSensorData_t combinedEscSensorData;
static bool combinedDataNeedsUpdate = true;
static uint16_t totalTimeoutCount = 0;
static uint16_t totalCrcErrorCount = 0;
void startEscDataRead(uint8_t *frameBuffer, uint8_t frameLength)
{
buffer = frameBuffer;
bufferPosition = 0;
bufferSize = frameLength;
}
uint8_t getNumberEscBytesRead(void)
{
return bufferPosition;
}
static bool isFrameComplete(void)
{
return bufferPosition == bufferSize;
}
bool isEscSensorActive(void)
{
return escSensorPort != NULL;
}
escSensorData_t *getEscSensorData(uint8_t motorNumber)
{
if (!featureIsEnabled(FEATURE_ESC_SENSOR)) {
return NULL;
}
if (motorNumber < getMotorCount()) {
return &escSensorData[motorNumber];
} else if (motorNumber == ESC_SENSOR_COMBINED) {
if (combinedDataNeedsUpdate) {
combinedEscSensorData.dataAge = 0;
combinedEscSensorData.temperature = 0;
combinedEscSensorData.voltage = 0;
combinedEscSensorData.current = 0;
combinedEscSensorData.consumption = 0;
combinedEscSensorData.rpm = 0;
for (int i = 0; i < getMotorCount(); i = i + 1) {
combinedEscSensorData.dataAge = MAX(combinedEscSensorData.dataAge, escSensorData[i].dataAge);
combinedEscSensorData.temperature = MAX(combinedEscSensorData.temperature, escSensorData[i].temperature);
combinedEscSensorData.voltage += escSensorData[i].voltage;
combinedEscSensorData.current += escSensorData[i].current;
combinedEscSensorData.consumption += escSensorData[i].consumption;
combinedEscSensorData.rpm += escSensorData[i].rpm;
}
combinedEscSensorData.voltage = combinedEscSensorData.voltage / getMotorCount();
combinedEscSensorData.rpm = combinedEscSensorData.rpm / getMotorCount();
combinedDataNeedsUpdate = false;
DEBUG_SET(DEBUG_ESC_SENSOR, DEBUG_ESC_DATA_AGE, combinedEscSensorData.dataAge);
}
return &combinedEscSensorData;
} else {
return NULL;
}
}
// Receive ISR callback
static void escSensorDataReceive(uint16_t c, void *data)
{
UNUSED(data);
// KISS ESC sends some data during startup, ignore this for now (maybe future use)
// startup data could be firmware version and serialnumber
if (isFrameComplete()) {
return;
}
buffer[bufferPosition++] = (uint8_t)c;
}
bool escSensorInit(void)
{
serialPortConfig_t *portConfig = findSerialPortConfig(FUNCTION_ESC_SENSOR);
if (!portConfig) {
return false;
}
portOptions_e options = SERIAL_NOT_INVERTED | (escSensorConfig()->halfDuplex ? SERIAL_BIDIR : 0);
// Initialize serial port
escSensorPort = openSerialPort(portConfig->identifier, FUNCTION_ESC_SENSOR, escSensorDataReceive, NULL, ESC_SENSOR_BAUDRATE, MODE_RX, options);
for (int i = 0; i < MAX_SUPPORTED_MOTORS; i = i + 1) {
escSensorData[i].dataAge = ESC_DATA_INVALID;
}
return escSensorPort != NULL;
}
static uint8_t updateCrc8(uint8_t crc, uint8_t crc_seed)
{
uint8_t crc_u = crc;
crc_u ^= crc_seed;
for (int i=0; i<8; i++) {
crc_u = ( crc_u & 0x80 ) ? 0x7 ^ ( crc_u << 1 ) : ( crc_u << 1 );
}
return (crc_u);
}
uint8_t calculateCrc8(const uint8_t *Buf, const uint8_t BufLen)
{
uint8_t crc = 0;
for (int i = 0; i < BufLen; i++) {
crc = updateCrc8(Buf[i], crc);
}
return crc;
}
static uint8_t decodeEscFrame(void)
{
if (!isFrameComplete()) {
return ESC_SENSOR_FRAME_PENDING;
}
// Get CRC8 checksum
uint16_t chksum = calculateCrc8(telemetryBuffer, TELEMETRY_FRAME_SIZE - 1);
uint16_t tlmsum = telemetryBuffer[TELEMETRY_FRAME_SIZE - 1]; // last byte contains CRC value
uint8_t frameStatus;
if (chksum == tlmsum) {
escSensorData[escSensorMotor].dataAge = 0;
escSensorData[escSensorMotor].temperature = telemetryBuffer[0];
escSensorData[escSensorMotor].voltage = telemetryBuffer[1] << 8 | telemetryBuffer[2];
escSensorData[escSensorMotor].current = telemetryBuffer[3] << 8 | telemetryBuffer[4];
escSensorData[escSensorMotor].consumption = telemetryBuffer[5] << 8 | telemetryBuffer[6];
escSensorData[escSensorMotor].rpm = telemetryBuffer[7] << 8 | telemetryBuffer[8];
combinedDataNeedsUpdate = true;
frameStatus = ESC_SENSOR_FRAME_COMPLETE;
if (escSensorMotor < 4) {
DEBUG_SET(DEBUG_ESC_SENSOR_RPM, escSensorMotor, calcEscRpm(escSensorData[escSensorMotor].rpm) / 10); // output actual rpm/10 to fit in 16bit signed.
DEBUG_SET(DEBUG_ESC_SENSOR_TMP, escSensorMotor, escSensorData[escSensorMotor].temperature);
}
} else {
frameStatus = ESC_SENSOR_FRAME_FAILED;
}
return frameStatus;
}
static void increaseDataAge(void)
{
if (escSensorData[escSensorMotor].dataAge < ESC_DATA_INVALID) {
escSensorData[escSensorMotor].dataAge++;
combinedDataNeedsUpdate = true;
}
}
static void selectNextMotor(void)
{
escSensorMotor++;
if (escSensorMotor == getMotorCount()) {
escSensorMotor = 0;
}
}
// XXX Review ESC sensor under refactored motor handling
void escSensorProcess(timeUs_t currentTimeUs)
{
const timeMs_t currentTimeMs = currentTimeUs / 1000;
if (!escSensorPort || !motorIsEnabled()) {
return;
}
switch (escSensorTriggerState) {
case ESC_SENSOR_TRIGGER_STARTUP:
// Wait period of time before requesting telemetry (let the system boot first)
if (currentTimeMs >= ESC_BOOTTIME) {
escSensorTriggerState = ESC_SENSOR_TRIGGER_READY;
}
break;
case ESC_SENSOR_TRIGGER_READY:
escTriggerTimestamp = currentTimeMs;
startEscDataRead(telemetryBuffer, TELEMETRY_FRAME_SIZE);
motorDmaOutput_t * const motor = getMotorDmaOutput(escSensorMotor);
motor->protocolControl.requestTelemetry = true;
escSensorTriggerState = ESC_SENSOR_TRIGGER_PENDING;
DEBUG_SET(DEBUG_ESC_SENSOR, DEBUG_ESC_MOTOR_INDEX, escSensorMotor + 1);
break;
case ESC_SENSOR_TRIGGER_PENDING:
if (currentTimeMs < escTriggerTimestamp + ESC_REQUEST_TIMEOUT) {
uint8_t state = decodeEscFrame();
switch (state) {
case ESC_SENSOR_FRAME_COMPLETE:
selectNextMotor();
escSensorTriggerState = ESC_SENSOR_TRIGGER_READY;
break;
case ESC_SENSOR_FRAME_FAILED:
increaseDataAge();
selectNextMotor();
escSensorTriggerState = ESC_SENSOR_TRIGGER_READY;
DEBUG_SET(DEBUG_ESC_SENSOR, DEBUG_ESC_NUM_CRC_ERRORS, ++totalCrcErrorCount);
break;
case ESC_SENSOR_FRAME_PENDING:
break;
}
} else {
// Move on to next ESC, we'll come back to this one
increaseDataAge();
selectNextMotor();
escSensorTriggerState = ESC_SENSOR_TRIGGER_READY;
DEBUG_SET(DEBUG_ESC_SENSOR, DEBUG_ESC_NUM_TIMEOUTS, ++totalTimeoutCount);
}
break;
}
}
int calcEscRpm(int erpm)
{
return (erpm * 100) / (motorConfig()->motorPoleCount / 2);
}
#endif