atbetaflight/src/main/drivers/transponder_ir_io_stdperiph.c

257 lines
7.8 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "platform.h"
#ifdef USE_TRANSPONDER
#include "drivers/dma.h"
#include "drivers/dma_reqmap.h"
#include "drivers/io.h"
#include "drivers/nvic.h"
#include "drivers/rcc.h"
#include "drivers/timer.h"
#include "drivers/transponder_ir_arcitimer.h"
#include "drivers/transponder_ir_erlt.h"
#include "drivers/transponder_ir_ilap.h"
#include "transponder_ir.h"
volatile uint8_t transponderIrDataTransferInProgress = 0;
static IO_t transponderIO = IO_NONE;
static TIM_TypeDef *timer = NULL;
uint8_t alternateFunction;
#if defined(STM32F3)
static DMA_Channel_TypeDef *dmaRef = NULL;
#elif defined(STM32F4)
static DMA_Stream_TypeDef *dmaRef = NULL;
#else
#error "Transponder not supported on this MCU."
#endif
transponder_t transponder;
static void TRANSPONDER_DMA_IRQHandler(dmaChannelDescriptor_t* descriptor)
{
if (DMA_GET_FLAG_STATUS(descriptor, DMA_IT_TCIF)) {
transponderIrDataTransferInProgress = 0;
DMA_Cmd(descriptor->ref, DISABLE);
DMA_CLEAR_FLAG(descriptor, DMA_IT_TCIF);
}
}
void transponderIrHardwareInit(ioTag_t ioTag, transponder_t *transponder)
{
if (!ioTag) {
return;
}
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
DMA_InitTypeDef DMA_InitStructure;
const timerHardware_t *timerHardware = timerGetByTag(ioTag);
timer = timerHardware->tim;
alternateFunction = timerHardware->alternateFunction;
#if defined(USE_DMA_SPEC)
const dmaChannelSpec_t *dmaSpec = dmaGetChannelSpecByTimer(timerHardware);
if (dmaSpec == NULL) {
return;
}
dmaRef = dmaSpec->ref;
#if defined(STM32F4)
uint32_t dmaChannel = dmaSpec->channel;
#endif
#else
dmaRef = timerHardware->dmaRef;
#if defined(STM32F4)
uint32_t dmaChannel = timerHardware->dmaChannel;
#endif
#endif
if (dmaRef == NULL) {
return;
}
transponderIO = IOGetByTag(ioTag);
IOInit(transponderIO, OWNER_TRANSPONDER, 0);
IOConfigGPIOAF(transponderIO, IO_CONFIG(GPIO_Mode_AF, GPIO_Speed_50MHz, GPIO_OType_PP, GPIO_PuPd_DOWN), timerHardware->alternateFunction);
dmaInit(dmaGetIdentifier(dmaRef), OWNER_TRANSPONDER, 0);
dmaSetHandler(dmaGetIdentifier(dmaRef), TRANSPONDER_DMA_IRQHandler, NVIC_PRIO_TRANSPONDER_DMA, 0);
RCC_ClockCmd(timerRCC(timer), ENABLE);
uint16_t prescaler = timerGetPrescalerByDesiredMhz(timer, transponder->timer_hz);
uint16_t period = timerGetPeriodByPrescaler(timer, prescaler, transponder->timer_carrier_hz);
transponder->bitToggleOne = period / 2;
/* Time base configuration */
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Period = period;
TIM_TimeBaseStructure.TIM_Prescaler = prescaler;
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(timer, &TIM_TimeBaseStructure);
/* PWM1 Mode configuration: Channel1 */
TIM_OCStructInit(&TIM_OCInitStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
if (timerHardware->output & TIMER_OUTPUT_N_CHANNEL) {
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;
} else {
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
}
TIM_OCInitStructure.TIM_OCPolarity = (timerHardware->output & TIMER_OUTPUT_INVERTED) ? TIM_OCPolarity_Low : TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_Pulse = 0;
timerOCInit(timer, timerHardware->channel, &TIM_OCInitStructure);
timerOCPreloadConfig(timer, timerHardware->channel, TIM_OCPreload_Enable);
TIM_CtrlPWMOutputs(timer, ENABLE);
/* configure DMA */
DMA_Cmd(dmaRef, DISABLE);
DMA_DeInit(dmaRef);
DMA_StructInit(&DMA_InitStructure);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)timerCCR(timer, timerHardware->channel);
#if defined(STM32F3)
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&(transponder->transponderIrDMABuffer);
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
#elif defined(STM32F4)
DMA_InitStructure.DMA_Channel = dmaChannel;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)&(transponder->transponderIrDMABuffer);
DMA_InitStructure.DMA_DIR = DMA_DIR_MemoryToPeripheral;
#endif
DMA_InitStructure.DMA_BufferSize = transponder->dma_buffer_size;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
#if defined(STM32F3)
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
#elif defined(STM32F4)
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word;
#endif
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_Init(dmaRef, &DMA_InitStructure);
TIM_DMACmd(timer, timerDmaSource(timerHardware->channel), ENABLE);
DMA_ITConfig(dmaRef, DMA_IT_TC, ENABLE);
}
bool transponderIrInit(const ioTag_t ioTag, const transponderProvider_e provider)
{
if (!ioTag) {
return false;
}
switch (provider) {
case TRANSPONDER_ARCITIMER:
transponderIrInitArcitimer(&transponder);
break;
case TRANSPONDER_ILAP:
transponderIrInitIlap(&transponder);
break;
case TRANSPONDER_ERLT:
transponderIrInitERLT(&transponder);
break;
default:
return false;
}
transponderIrHardwareInit(ioTag, &transponder);
return true;
}
bool isTransponderIrReady(void)
{
return !transponderIrDataTransferInProgress;
}
void transponderIrWaitForTransmitComplete(void)
{
#ifdef DEBUG
static uint32_t waitCounter = 0;
#endif
while (transponderIrDataTransferInProgress) {
#ifdef DEBUG
waitCounter++;
#endif
}
}
void transponderIrUpdateData(const uint8_t* transponderData)
{
transponderIrWaitForTransmitComplete();
transponder.vTable->updateTransponderDMABuffer(&transponder, transponderData);
}
void transponderIrDMAEnable(transponder_t *transponder)
{
DMA_SetCurrDataCounter(dmaRef, transponder->dma_buffer_size); // load number of bytes to be transferred
TIM_SetCounter(timer, 0);
TIM_Cmd(timer, ENABLE);
DMA_Cmd(dmaRef, ENABLE);
}
void transponderIrDisable(void)
{
DMA_Cmd(dmaRef, DISABLE);
TIM_Cmd(timer, DISABLE);
IOInit(transponderIO, OWNER_TRANSPONDER, 0);
IOConfigGPIOAF(transponderIO, IO_CONFIG(GPIO_Mode_AF, GPIO_Speed_50MHz, GPIO_OType_PP, GPIO_PuPd_DOWN), alternateFunction);
#ifdef TRANSPONDER_INVERTED
IOHi(transponderIO);
#else
IOLo(transponderIO);
#endif
}
void transponderIrTransmit(void)
{
transponderIrWaitForTransmitComplete();
transponderIrDataTransferInProgress = 1;
transponderIrDMAEnable(&transponder);
}
#endif