atbetaflight/src/main/msp/msp.c

3837 lines
134 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <limits.h>
#include <ctype.h>
#include "platform.h"
#include "blackbox/blackbox.h"
#include "build/build_config.h"
#include "build/debug.h"
#include "build/version.h"
#include "cli/cli.h"
#include "common/axis.h"
#include "common/bitarray.h"
#include "common/color.h"
#include "common/huffman.h"
#include "common/maths.h"
#include "common/streambuf.h"
#include "common/utils.h"
#include "config/config.h"
#include "config/config_eeprom.h"
#include "config/feature.h"
#include "config/simplified_tuning.h"
#include "drivers/accgyro/accgyro.h"
#include "drivers/bus_i2c.h"
#include "drivers/bus_spi.h"
#include "drivers/camera_control.h"
#include "drivers/compass/compass.h"
#include "drivers/display.h"
#include "drivers/dshot.h"
#include "drivers/dshot_command.h"
#include "drivers/flash.h"
#include "drivers/io.h"
#include "drivers/motor.h"
#include "drivers/osd.h"
#include "drivers/pwm_output.h"
#include "drivers/sdcard.h"
#include "drivers/serial.h"
#include "drivers/serial_escserial.h"
#include "drivers/system.h"
#include "drivers/transponder_ir.h"
#include "drivers/usb_msc.h"
#include "drivers/vtx_common.h"
#include "drivers/vtx_table.h"
#include "fc/board_info.h"
#include "fc/controlrate_profile.h"
#include "fc/core.h"
#include "fc/rc.h"
#include "fc/rc_adjustments.h"
#include "fc/rc_controls.h"
#include "fc/rc_modes.h"
#include "fc/runtime_config.h"
#include "flight/failsafe.h"
#include "flight/gps_rescue.h"
#include "flight/imu.h"
#include "flight/mixer.h"
#include "flight/pid.h"
#include "flight/pid_init.h"
#include "flight/position.h"
#include "flight/rpm_filter.h"
#include "flight/servos.h"
#include "io/asyncfatfs/asyncfatfs.h"
#include "io/beeper.h"
#include "io/flashfs.h"
#include "io/gimbal.h"
#include "io/gps.h"
#include "io/ledstrip.h"
#include "io/serial.h"
#include "io/serial_4way.h"
#include "io/servos.h"
#include "io/transponder_ir.h"
#include "io/usb_msc.h"
#include "io/vtx_control.h"
#include "io/vtx.h"
#include "msp/msp_box.h"
#include "msp/msp_protocol.h"
#include "msp/msp_protocol_v2_betaflight.h"
#include "msp/msp_protocol_v2_common.h"
#include "msp/msp_serial.h"
#include "osd/osd.h"
#include "osd/osd_elements.h"
#include "osd/osd_warnings.h"
#include "pg/beeper.h"
#include "pg/board.h"
#include "pg/gyrodev.h"
#include "pg/motor.h"
#include "pg/rx.h"
#include "pg/rx_spi.h"
#include "pg/usb.h"
#include "pg/vcd.h"
#include "pg/vtx_table.h"
#include "rx/rx.h"
#include "rx/rx_bind.h"
#include "rx/msp.h"
#include "scheduler/scheduler.h"
#include "sensors/acceleration.h"
#include "sensors/barometer.h"
#include "sensors/battery.h"
#include "sensors/boardalignment.h"
#include "sensors/compass.h"
#include "sensors/esc_sensor.h"
#include "sensors/gyro.h"
#include "sensors/gyro_init.h"
#include "sensors/rangefinder.h"
#include "telemetry/telemetry.h"
#ifdef USE_HARDWARE_REVISION_DETECTION
#include "hardware_revision.h"
#endif
#include "msp.h"
static const char * const flightControllerIdentifier = FC_FIRMWARE_IDENTIFIER; // 4 UPPER CASE alpha numeric characters that identify the flight controller.
enum {
MSP_REBOOT_FIRMWARE = 0,
MSP_REBOOT_BOOTLOADER_ROM,
MSP_REBOOT_MSC,
MSP_REBOOT_MSC_UTC,
MSP_REBOOT_BOOTLOADER_FLASH,
MSP_REBOOT_COUNT,
};
static uint8_t rebootMode;
typedef enum {
MSP_SDCARD_STATE_NOT_PRESENT = 0,
MSP_SDCARD_STATE_FATAL = 1,
MSP_SDCARD_STATE_CARD_INIT = 2,
MSP_SDCARD_STATE_FS_INIT = 3,
MSP_SDCARD_STATE_READY = 4
} mspSDCardState_e;
typedef enum {
MSP_SDCARD_FLAG_SUPPORTED = 1
} mspSDCardFlags_e;
typedef enum {
MSP_FLASHFS_FLAG_READY = 1,
MSP_FLASHFS_FLAG_SUPPORTED = 2
} mspFlashFsFlags_e;
typedef enum {
MSP_PASSTHROUGH_ESC_SIMONK = PROTOCOL_SIMONK,
MSP_PASSTHROUGH_ESC_BLHELI = PROTOCOL_BLHELI,
MSP_PASSTHROUGH_ESC_KISS = PROTOCOL_KISS,
MSP_PASSTHROUGH_ESC_KISSALL = PROTOCOL_KISSALL,
MSP_PASSTHROUGH_ESC_CASTLE = PROTOCOL_CASTLE,
MSP_PASSTHROUGH_SERIAL_ID = 0xFD,
MSP_PASSTHROUGH_SERIAL_FUNCTION_ID = 0xFE,
MSP_PASSTHROUGH_ESC_4WAY = 0xFF,
} mspPassthroughType_e;
#define RATEPROFILE_MASK (1 << 7)
#define RTC_NOT_SUPPORTED 0xff
typedef enum {
DEFAULTS_TYPE_BASE = 0,
DEFAULTS_TYPE_CUSTOM,
} defaultsType_e;
#ifdef USE_VTX_TABLE
static bool vtxTableNeedsInit = false;
#endif
static int mspDescriptor = 0;
mspDescriptor_t mspDescriptorAlloc(void)
{
return (mspDescriptor_t)mspDescriptor++;
}
static uint32_t mspArmingDisableFlags = 0;
static void mspArmingDisableByDescriptor(mspDescriptor_t desc)
{
mspArmingDisableFlags |= (1 << desc);
}
static void mspArmingEnableByDescriptor(mspDescriptor_t desc)
{
mspArmingDisableFlags &= ~(1 << desc);
}
static bool mspIsMspArmingEnabled(void)
{
return mspArmingDisableFlags == 0;
}
#define MSP_PASSTHROUGH_ESC_4WAY 0xff
static uint8_t mspPassthroughMode;
static uint8_t mspPassthroughArgument;
#ifdef USE_ESCSERIAL
static void mspEscPassthroughFn(serialPort_t *serialPort)
{
escEnablePassthrough(serialPort, &motorConfig()->dev, mspPassthroughArgument, mspPassthroughMode);
}
#endif
static serialPort_t *mspFindPassthroughSerialPort(void)
{
serialPortUsage_t *portUsage = NULL;
switch (mspPassthroughMode) {
case MSP_PASSTHROUGH_SERIAL_ID:
{
portUsage = findSerialPortUsageByIdentifier(mspPassthroughArgument);
break;
}
case MSP_PASSTHROUGH_SERIAL_FUNCTION_ID:
{
const serialPortConfig_t *portConfig = findSerialPortConfig(1 << mspPassthroughArgument);
if (portConfig) {
portUsage = findSerialPortUsageByIdentifier(portConfig->identifier);
}
break;
}
}
return portUsage ? portUsage->serialPort : NULL;
}
static void mspSerialPassthroughFn(serialPort_t *serialPort)
{
serialPort_t *passthroughPort = mspFindPassthroughSerialPort();
if (passthroughPort && serialPort) {
serialPassthrough(passthroughPort, serialPort, NULL, NULL);
}
}
static void mspFcSetPassthroughCommand(sbuf_t *dst, sbuf_t *src, mspPostProcessFnPtr *mspPostProcessFn)
{
const unsigned int dataSize = sbufBytesRemaining(src);
if (dataSize == 0) {
// Legacy format
mspPassthroughMode = MSP_PASSTHROUGH_ESC_4WAY;
} else {
mspPassthroughMode = sbufReadU8(src);
mspPassthroughArgument = sbufReadU8(src);
}
switch (mspPassthroughMode) {
case MSP_PASSTHROUGH_SERIAL_ID:
case MSP_PASSTHROUGH_SERIAL_FUNCTION_ID:
if (mspFindPassthroughSerialPort()) {
if (mspPostProcessFn) {
*mspPostProcessFn = mspSerialPassthroughFn;
}
sbufWriteU8(dst, 1);
} else {
sbufWriteU8(dst, 0);
}
break;
#ifdef USE_SERIAL_4WAY_BLHELI_INTERFACE
case MSP_PASSTHROUGH_ESC_4WAY:
// get channel number
// switch all motor lines HI
// reply with the count of ESC found
sbufWriteU8(dst, esc4wayInit());
if (mspPostProcessFn) {
*mspPostProcessFn = esc4wayProcess;
}
break;
#ifdef USE_ESCSERIAL
case MSP_PASSTHROUGH_ESC_SIMONK:
case MSP_PASSTHROUGH_ESC_BLHELI:
case MSP_PASSTHROUGH_ESC_KISS:
case MSP_PASSTHROUGH_ESC_KISSALL:
case MSP_PASSTHROUGH_ESC_CASTLE:
if (mspPassthroughArgument < getMotorCount() || (mspPassthroughMode == MSP_PASSTHROUGH_ESC_KISS && mspPassthroughArgument == ALL_MOTORS)) {
sbufWriteU8(dst, 1);
if (mspPostProcessFn) {
*mspPostProcessFn = mspEscPassthroughFn;
}
break;
}
FALLTHROUGH;
#endif // USE_ESCSERIAL
#endif //USE_SERIAL_4WAY_BLHELI_INTERFACE
default:
sbufWriteU8(dst, 0);
}
}
// TODO: Remove the pragma once this is called from unconditional code
#pragma GCC diagnostic ignored "-Wunused-function"
static void configRebootUpdateCheckU8(uint8_t *parm, uint8_t value)
{
if (*parm != value) {
setRebootRequired();
}
*parm = value;
}
#pragma GCC diagnostic pop
static void mspRebootFn(serialPort_t *serialPort)
{
UNUSED(serialPort);
motorShutdown();
switch (rebootMode) {
case MSP_REBOOT_FIRMWARE:
systemReset();
break;
case MSP_REBOOT_BOOTLOADER_ROM:
systemResetToBootloader(BOOTLOADER_REQUEST_ROM);
break;
#if defined(USE_USB_MSC)
case MSP_REBOOT_MSC:
case MSP_REBOOT_MSC_UTC: {
#ifdef USE_RTC_TIME
const int16_t timezoneOffsetMinutes = (rebootMode == MSP_REBOOT_MSC) ? timeConfig()->tz_offsetMinutes : 0;
systemResetToMsc(timezoneOffsetMinutes);
#else
systemResetToMsc(0);
#endif
}
break;
#endif
#if defined(USE_FLASH_BOOT_LOADER)
case MSP_REBOOT_BOOTLOADER_FLASH:
systemResetToBootloader(BOOTLOADER_REQUEST_FLASH);
break;
#endif
default:
return;
}
// control should never return here.
while (true) ;
}
static void serializeSDCardSummaryReply(sbuf_t *dst)
{
uint8_t flags = 0;
uint8_t state = 0;
uint8_t lastError = 0;
uint32_t freeSpace = 0;
uint32_t totalSpace = 0;
#if defined(USE_SDCARD)
if (sdcardConfig()->mode != SDCARD_MODE_NONE) {
flags = MSP_SDCARD_FLAG_SUPPORTED;
// Merge the card and filesystem states together
if (!sdcard_isInserted()) {
state = MSP_SDCARD_STATE_NOT_PRESENT;
} else if (!sdcard_isFunctional()) {
state = MSP_SDCARD_STATE_FATAL;
} else {
switch (afatfs_getFilesystemState()) {
case AFATFS_FILESYSTEM_STATE_READY:
state = MSP_SDCARD_STATE_READY;
break;
case AFATFS_FILESYSTEM_STATE_INITIALIZATION:
if (sdcard_isInitialized()) {
state = MSP_SDCARD_STATE_FS_INIT;
} else {
state = MSP_SDCARD_STATE_CARD_INIT;
}
break;
case AFATFS_FILESYSTEM_STATE_FATAL:
case AFATFS_FILESYSTEM_STATE_UNKNOWN:
default:
state = MSP_SDCARD_STATE_FATAL;
break;
}
}
lastError = afatfs_getLastError();
// Write free space and total space in kilobytes
if (state == MSP_SDCARD_STATE_READY) {
freeSpace = afatfs_getContiguousFreeSpace() / 1024;
totalSpace = sdcard_getMetadata()->numBlocks / 2;
}
}
#endif
sbufWriteU8(dst, flags);
sbufWriteU8(dst, state);
sbufWriteU8(dst, lastError);
sbufWriteU32(dst, freeSpace);
sbufWriteU32(dst, totalSpace);
}
static void serializeDataflashSummaryReply(sbuf_t *dst)
{
#ifdef USE_FLASHFS
if (flashfsIsSupported()) {
uint8_t flags = MSP_FLASHFS_FLAG_SUPPORTED;
flags |= (flashfsIsReady() ? MSP_FLASHFS_FLAG_READY : 0);
const flashPartition_t *flashPartition = flashPartitionFindByType(FLASH_PARTITION_TYPE_FLASHFS);
sbufWriteU8(dst, flags);
sbufWriteU32(dst, FLASH_PARTITION_SECTOR_COUNT(flashPartition));
sbufWriteU32(dst, flashfsGetSize());
sbufWriteU32(dst, flashfsGetOffset()); // Effectively the current number of bytes stored on the volume
} else
#endif
// FlashFS is not configured or valid device is not detected
{
sbufWriteU8(dst, 0);
sbufWriteU32(dst, 0);
sbufWriteU32(dst, 0);
sbufWriteU32(dst, 0);
}
}
#ifdef USE_FLASHFS
enum compressionType_e {
NO_COMPRESSION,
HUFFMAN
};
static void serializeDataflashReadReply(sbuf_t *dst, uint32_t address, const uint16_t size, bool useLegacyFormat, bool allowCompression)
{
STATIC_ASSERT(MSP_PORT_DATAFLASH_INFO_SIZE >= 16, MSP_PORT_DATAFLASH_INFO_SIZE_invalid);
uint16_t readLen = size;
const int bytesRemainingInBuf = sbufBytesRemaining(dst) - MSP_PORT_DATAFLASH_INFO_SIZE;
if (readLen > bytesRemainingInBuf) {
readLen = bytesRemainingInBuf;
}
// size will be lower than that requested if we reach end of volume
const uint32_t flashfsSize = flashfsGetSize();
if (readLen > flashfsSize - address) {
// truncate the request
readLen = flashfsSize - address;
}
sbufWriteU32(dst, address);
// legacy format does not support compression
#ifdef USE_HUFFMAN
const uint8_t compressionMethod = (!allowCompression || useLegacyFormat) ? NO_COMPRESSION : HUFFMAN;
#else
const uint8_t compressionMethod = NO_COMPRESSION;
UNUSED(allowCompression);
#endif
if (compressionMethod == NO_COMPRESSION) {
uint16_t *readLenPtr = (uint16_t *)sbufPtr(dst);
if (!useLegacyFormat) {
// new format supports variable read lengths
sbufWriteU16(dst, readLen);
sbufWriteU8(dst, 0); // placeholder for compression format
}
const int bytesRead = flashfsReadAbs(address, sbufPtr(dst), readLen);
if (!useLegacyFormat) {
// update the 'read length' with the actual amount read from flash.
*readLenPtr = bytesRead;
}
sbufAdvance(dst, bytesRead);
if (useLegacyFormat) {
// pad the buffer with zeros
for (int i = bytesRead; i < size; i++) {
sbufWriteU8(dst, 0);
}
}
} else {
#ifdef USE_HUFFMAN
// compress in 256-byte chunks
const uint16_t READ_BUFFER_SIZE = 256;
// This may be DMAable, so make it cache aligned
__attribute__ ((aligned(32))) uint8_t readBuffer[READ_BUFFER_SIZE];
huffmanState_t state = {
.bytesWritten = 0,
.outByte = sbufPtr(dst) + sizeof(uint16_t) + sizeof(uint8_t) + HUFFMAN_INFO_SIZE,
.outBufLen = readLen,
.outBit = 0x80,
};
*state.outByte = 0;
uint16_t bytesReadTotal = 0;
// read until output buffer overflows or flash is exhausted
while (state.bytesWritten < state.outBufLen && address + bytesReadTotal < flashfsSize) {
const int bytesRead = flashfsReadAbs(address + bytesReadTotal, readBuffer,
MIN(sizeof(readBuffer), flashfsSize - address - bytesReadTotal));
const int status = huffmanEncodeBufStreaming(&state, readBuffer, bytesRead, huffmanTable);
if (status == -1) {
// overflow
break;
}
bytesReadTotal += bytesRead;
}
if (state.outBit != 0x80) {
++state.bytesWritten;
}
// header
sbufWriteU16(dst, HUFFMAN_INFO_SIZE + state.bytesWritten);
sbufWriteU8(dst, compressionMethod);
// payload
sbufWriteU16(dst, bytesReadTotal);
sbufAdvance(dst, state.bytesWritten);
#endif
}
}
#endif // USE_FLASHFS
/*
* Returns true if the command was processd, false otherwise.
* May set mspPostProcessFunc to a function to be called once the command has been processed
*/
static bool mspCommonProcessOutCommand(int16_t cmdMSP, sbuf_t *dst, mspPostProcessFnPtr *mspPostProcessFn)
{
UNUSED(mspPostProcessFn);
switch (cmdMSP) {
case MSP_API_VERSION:
sbufWriteU8(dst, MSP_PROTOCOL_VERSION);
sbufWriteU8(dst, API_VERSION_MAJOR);
sbufWriteU8(dst, API_VERSION_MINOR);
break;
case MSP_FC_VARIANT:
sbufWriteData(dst, flightControllerIdentifier, FLIGHT_CONTROLLER_IDENTIFIER_LENGTH);
break;
case MSP_FC_VERSION:
sbufWriteU8(dst, FC_VERSION_MAJOR);
sbufWriteU8(dst, FC_VERSION_MINOR);
sbufWriteU8(dst, FC_VERSION_PATCH_LEVEL);
break;
case MSP_BOARD_INFO:
{
sbufWriteData(dst, systemConfig()->boardIdentifier, BOARD_IDENTIFIER_LENGTH);
#ifdef USE_HARDWARE_REVISION_DETECTION
sbufWriteU16(dst, hardwareRevision);
#else
sbufWriteU16(dst, 0); // No other build targets currently have hardware revision detection.
#endif
#if defined(USE_MAX7456)
sbufWriteU8(dst, 2); // 2 == FC with MAX7456
#else
sbufWriteU8(dst, 0); // 0 == FC
#endif
// Target capabilities (uint8)
#define TARGET_HAS_VCP 0
#define TARGET_HAS_SOFTSERIAL 1
#define TARGET_IS_UNIFIED 2
#define TARGET_HAS_FLASH_BOOTLOADER 3
#define TARGET_SUPPORTS_CUSTOM_DEFAULTS 4
#define TARGET_HAS_CUSTOM_DEFAULTS 5
#define TARGET_SUPPORTS_RX_BIND 6
uint8_t targetCapabilities = 0;
#ifdef USE_VCP
targetCapabilities |= BIT(TARGET_HAS_VCP);
#endif
#if defined(USE_SOFTSERIAL1) || defined(USE_SOFTSERIAL2)
targetCapabilities |= BIT(TARGET_HAS_SOFTSERIAL);
#endif
#if defined(USE_UNIFIED_TARGET)
targetCapabilities |= BIT(TARGET_IS_UNIFIED);
#endif
#if defined(USE_FLASH_BOOT_LOADER)
targetCapabilities |= BIT(TARGET_HAS_FLASH_BOOTLOADER);
#endif
#if defined(USE_CUSTOM_DEFAULTS)
targetCapabilities |= BIT(TARGET_SUPPORTS_CUSTOM_DEFAULTS);
if (hasCustomDefaults()) {
targetCapabilities |= BIT(TARGET_HAS_CUSTOM_DEFAULTS);
}
#endif
#if defined(USE_RX_BIND)
if (getRxBindSupported()) {
targetCapabilities |= BIT(TARGET_SUPPORTS_RX_BIND);
}
#endif
sbufWriteU8(dst, targetCapabilities);
// Target name with explicit length
sbufWriteU8(dst, strlen(targetName));
sbufWriteData(dst, targetName, strlen(targetName));
#if defined(USE_BOARD_INFO)
// Board name with explicit length
char *value = getBoardName();
sbufWriteU8(dst, strlen(value));
sbufWriteString(dst, value);
// Manufacturer id with explicit length
value = getManufacturerId();
sbufWriteU8(dst, strlen(value));
sbufWriteString(dst, value);
#else
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
#endif
#if defined(USE_SIGNATURE)
// Signature
sbufWriteData(dst, getSignature(), SIGNATURE_LENGTH);
#else
uint8_t emptySignature[SIGNATURE_LENGTH];
memset(emptySignature, 0, sizeof(emptySignature));
sbufWriteData(dst, &emptySignature, sizeof(emptySignature));
#endif
sbufWriteU8(dst, getMcuTypeId());
// Added in API version 1.42
sbufWriteU8(dst, systemConfig()->configurationState);
// Added in API version 1.43
sbufWriteU16(dst, gyro.sampleRateHz); // informational so the configurator can display the correct gyro/pid frequencies in the drop-down
// Configuration warnings / problems (uint32_t)
#define PROBLEM_ACC_NEEDS_CALIBRATION 0
#define PROBLEM_MOTOR_PROTOCOL_DISABLED 1
uint32_t configurationProblems = 0;
#if defined(USE_ACC)
if (!accHasBeenCalibrated()) {
configurationProblems |= BIT(PROBLEM_ACC_NEEDS_CALIBRATION);
}
#endif
if (!checkMotorProtocolEnabled(&motorConfig()->dev, NULL)) {
configurationProblems |= BIT(PROBLEM_MOTOR_PROTOCOL_DISABLED);
}
sbufWriteU32(dst, configurationProblems);
// Added in MSP API 1.44
#if defined(USE_SPI)
sbufWriteU8(dst, spiGetRegisteredDeviceCount());
#else
sbufWriteU8(dst, 0);
#endif
#if defined(USE_I2C)
sbufWriteU8(dst, i2cGetRegisteredDeviceCount());
#else
sbufWriteU8(dst, 0);
#endif
break;
}
case MSP_BUILD_INFO:
sbufWriteData(dst, buildDate, BUILD_DATE_LENGTH);
sbufWriteData(dst, buildTime, BUILD_TIME_LENGTH);
sbufWriteData(dst, shortGitRevision, GIT_SHORT_REVISION_LENGTH);
break;
case MSP_ANALOG:
sbufWriteU8(dst, (uint8_t)constrain(getLegacyBatteryVoltage(), 0, 255));
sbufWriteU16(dst, (uint16_t)constrain(getMAhDrawn(), 0, 0xFFFF)); // milliamp hours drawn from battery
sbufWriteU16(dst, getRssi());
sbufWriteU16(dst, (int16_t)constrain(getAmperage(), -0x8000, 0x7FFF)); // send current in 0.01 A steps, range is -320A to 320A
sbufWriteU16(dst, getBatteryVoltage());
break;
case MSP_DEBUG:
for (int i = 0; i < DEBUG16_VALUE_COUNT; i++) {
sbufWriteU16(dst, debug[i]); // 4 variables are here for general monitoring purpose
}
break;
case MSP_UID:
sbufWriteU32(dst, U_ID_0);
sbufWriteU32(dst, U_ID_1);
sbufWriteU32(dst, U_ID_2);
break;
case MSP_FEATURE_CONFIG:
sbufWriteU32(dst, featureConfig()->enabledFeatures);
break;
#ifdef USE_BEEPER
case MSP_BEEPER_CONFIG:
sbufWriteU32(dst, beeperConfig()->beeper_off_flags);
sbufWriteU8(dst, beeperConfig()->dshotBeaconTone);
sbufWriteU32(dst, beeperConfig()->dshotBeaconOffFlags);
break;
#endif
case MSP_BATTERY_STATE: {
// battery characteristics
sbufWriteU8(dst, (uint8_t)constrain(getBatteryCellCount(), 0, 255)); // 0 indicates battery not detected.
sbufWriteU16(dst, batteryConfig()->batteryCapacity); // in mAh
// battery state
sbufWriteU8(dst, (uint8_t)constrain(getLegacyBatteryVoltage(), 0, 255)); // in 0.1V steps
sbufWriteU16(dst, (uint16_t)constrain(getMAhDrawn(), 0, 0xFFFF)); // milliamp hours drawn from battery
sbufWriteU16(dst, (int16_t)constrain(getAmperage(), -0x8000, 0x7FFF)); // send current in 0.01 A steps, range is -320A to 320A
// battery alerts
sbufWriteU8(dst, (uint8_t)getBatteryState());
sbufWriteU16(dst, getBatteryVoltage()); // in 0.01V steps
break;
}
case MSP_VOLTAGE_METERS: {
// write out id and voltage meter values, once for each meter we support
uint8_t count = supportedVoltageMeterCount;
#ifdef USE_ESC_SENSOR
count -= VOLTAGE_METER_ID_ESC_COUNT - getMotorCount();
#endif
for (int i = 0; i < count; i++) {
voltageMeter_t meter;
uint8_t id = (uint8_t)voltageMeterIds[i];
voltageMeterRead(id, &meter);
sbufWriteU8(dst, id);
sbufWriteU8(dst, (uint8_t)constrain((meter.displayFiltered + 5) / 10, 0, 255));
}
break;
}
case MSP_CURRENT_METERS: {
// write out id and current meter values, once for each meter we support
uint8_t count = supportedCurrentMeterCount;
#ifdef USE_ESC_SENSOR
count -= VOLTAGE_METER_ID_ESC_COUNT - getMotorCount();
#endif
for (int i = 0; i < count; i++) {
currentMeter_t meter;
uint8_t id = (uint8_t)currentMeterIds[i];
currentMeterRead(id, &meter);
sbufWriteU8(dst, id);
sbufWriteU16(dst, (uint16_t)constrain(meter.mAhDrawn, 0, 0xFFFF)); // milliamp hours drawn from battery
sbufWriteU16(dst, (uint16_t)constrain(meter.amperage * 10, 0, 0xFFFF)); // send amperage in 0.001 A steps (mA). Negative range is truncated to zero
}
break;
}
case MSP_VOLTAGE_METER_CONFIG:
{
// by using a sensor type and a sub-frame length it's possible to configure any type of voltage meter,
// e.g. an i2c/spi/can sensor or any sensor not built directly into the FC such as ESC/RX/SPort/SBus that has
// different configuration requirements.
STATIC_ASSERT(VOLTAGE_SENSOR_ADC_VBAT == 0, VOLTAGE_SENSOR_ADC_VBAT_incorrect); // VOLTAGE_SENSOR_ADC_VBAT should be the first index
sbufWriteU8(dst, MAX_VOLTAGE_SENSOR_ADC); // voltage meters in payload
for (int i = VOLTAGE_SENSOR_ADC_VBAT; i < MAX_VOLTAGE_SENSOR_ADC; i++) {
const uint8_t adcSensorSubframeLength = 1 + 1 + 1 + 1 + 1; // length of id, type, vbatscale, vbatresdivval, vbatresdivmultipler, in bytes
sbufWriteU8(dst, adcSensorSubframeLength); // ADC sensor sub-frame length
sbufWriteU8(dst, voltageMeterADCtoIDMap[i]); // id of the sensor
sbufWriteU8(dst, VOLTAGE_SENSOR_TYPE_ADC_RESISTOR_DIVIDER); // indicate the type of sensor that the next part of the payload is for
sbufWriteU8(dst, voltageSensorADCConfig(i)->vbatscale);
sbufWriteU8(dst, voltageSensorADCConfig(i)->vbatresdivval);
sbufWriteU8(dst, voltageSensorADCConfig(i)->vbatresdivmultiplier);
}
// if we had any other voltage sensors, this is where we would output any needed configuration
}
break;
case MSP_CURRENT_METER_CONFIG: {
// the ADC and VIRTUAL sensors have the same configuration requirements, however this API reflects
// that this situation may change and allows us to support configuration of any current sensor with
// specialist configuration requirements.
int currentMeterCount = 1;
#ifdef USE_VIRTUAL_CURRENT_METER
currentMeterCount++;
#endif
sbufWriteU8(dst, currentMeterCount);
const uint8_t adcSensorSubframeLength = 1 + 1 + 2 + 2; // length of id, type, scale, offset, in bytes
sbufWriteU8(dst, adcSensorSubframeLength);
sbufWriteU8(dst, CURRENT_METER_ID_BATTERY_1); // the id of the meter
sbufWriteU8(dst, CURRENT_SENSOR_ADC); // indicate the type of sensor that the next part of the payload is for
sbufWriteU16(dst, currentSensorADCConfig()->scale);
sbufWriteU16(dst, currentSensorADCConfig()->offset);
#ifdef USE_VIRTUAL_CURRENT_METER
const int8_t virtualSensorSubframeLength = 1 + 1 + 2 + 2; // length of id, type, scale, offset, in bytes
sbufWriteU8(dst, virtualSensorSubframeLength);
sbufWriteU8(dst, CURRENT_METER_ID_VIRTUAL_1); // the id of the meter
sbufWriteU8(dst, CURRENT_SENSOR_VIRTUAL); // indicate the type of sensor that the next part of the payload is for
sbufWriteU16(dst, currentSensorVirtualConfig()->scale);
sbufWriteU16(dst, currentSensorVirtualConfig()->offset);
#endif
// if we had any other current sensors, this is where we would output any needed configuration
break;
}
case MSP_BATTERY_CONFIG:
sbufWriteU8(dst, (batteryConfig()->vbatmincellvoltage + 5) / 10);
sbufWriteU8(dst, (batteryConfig()->vbatmaxcellvoltage + 5) / 10);
sbufWriteU8(dst, (batteryConfig()->vbatwarningcellvoltage + 5) / 10);
sbufWriteU16(dst, batteryConfig()->batteryCapacity);
sbufWriteU8(dst, batteryConfig()->voltageMeterSource);
sbufWriteU8(dst, batteryConfig()->currentMeterSource);
sbufWriteU16(dst, batteryConfig()->vbatmincellvoltage);
sbufWriteU16(dst, batteryConfig()->vbatmaxcellvoltage);
sbufWriteU16(dst, batteryConfig()->vbatwarningcellvoltage);
break;
case MSP_TRANSPONDER_CONFIG: {
#ifdef USE_TRANSPONDER
// Backward compatibility to BFC 3.1.1 is lost for this message type
sbufWriteU8(dst, TRANSPONDER_PROVIDER_COUNT);
for (unsigned int i = 0; i < TRANSPONDER_PROVIDER_COUNT; i++) {
sbufWriteU8(dst, transponderRequirements[i].provider);
sbufWriteU8(dst, transponderRequirements[i].dataLength);
}
uint8_t provider = transponderConfig()->provider;
sbufWriteU8(dst, provider);
if (provider) {
uint8_t requirementIndex = provider - 1;
uint8_t providerDataLength = transponderRequirements[requirementIndex].dataLength;
for (unsigned int i = 0; i < providerDataLength; i++) {
sbufWriteU8(dst, transponderConfig()->data[i]);
}
}
#else
sbufWriteU8(dst, 0); // no providers
#endif
break;
}
case MSP_OSD_CONFIG: {
#define OSD_FLAGS_OSD_FEATURE (1 << 0)
//#define OSD_FLAGS_OSD_SLAVE (1 << 1)
#define OSD_FLAGS_RESERVED_1 (1 << 2)
#define OSD_FLAGS_OSD_HARDWARE_FRSKYOSD (1 << 3)
#define OSD_FLAGS_OSD_HARDWARE_MAX_7456 (1 << 4)
#define OSD_FLAGS_OSD_DEVICE_DETECTED (1 << 5)
uint8_t osdFlags = 0;
#if defined(USE_OSD)
osdFlags |= OSD_FLAGS_OSD_FEATURE;
osdDisplayPortDevice_e deviceType;
displayPort_t *osdDisplayPort = osdGetDisplayPort(&deviceType);
bool displayIsReady = osdDisplayPort && displayCheckReady(osdDisplayPort, true);
switch (deviceType) {
case OSD_DISPLAYPORT_DEVICE_MAX7456:
osdFlags |= OSD_FLAGS_OSD_HARDWARE_MAX_7456;
if (displayIsReady) {
osdFlags |= OSD_FLAGS_OSD_DEVICE_DETECTED;
}
break;
case OSD_DISPLAYPORT_DEVICE_FRSKYOSD:
osdFlags |= OSD_FLAGS_OSD_HARDWARE_FRSKYOSD;
if (displayIsReady) {
osdFlags |= OSD_FLAGS_OSD_DEVICE_DETECTED;
}
break;
default:
break;
}
#endif
sbufWriteU8(dst, osdFlags);
#ifdef USE_MAX7456
// send video system (AUTO/PAL/NTSC)
sbufWriteU8(dst, vcdProfile()->video_system);
#else
sbufWriteU8(dst, 0);
#endif
#ifdef USE_OSD
// OSD specific, not applicable to OSD slaves.
// Configuration
sbufWriteU8(dst, osdConfig()->units);
// Alarms
sbufWriteU8(dst, osdConfig()->rssi_alarm);
sbufWriteU16(dst, osdConfig()->cap_alarm);
// Reuse old timer alarm (U16) as OSD_ITEM_COUNT
sbufWriteU8(dst, 0);
sbufWriteU8(dst, OSD_ITEM_COUNT);
sbufWriteU16(dst, osdConfig()->alt_alarm);
// Element position and visibility
for (int i = 0; i < OSD_ITEM_COUNT; i++) {
sbufWriteU16(dst, osdElementConfig()->item_pos[i]);
}
// Post flight statistics
sbufWriteU8(dst, OSD_STAT_COUNT);
for (int i = 0; i < OSD_STAT_COUNT; i++ ) {
sbufWriteU8(dst, osdStatGetState(i));
}
// Timers
sbufWriteU8(dst, OSD_TIMER_COUNT);
for (int i = 0; i < OSD_TIMER_COUNT; i++) {
sbufWriteU16(dst, osdConfig()->timers[i]);
}
// Enabled warnings
// Send low word first for backwards compatibility (API < 1.41)
sbufWriteU16(dst, (uint16_t)(osdConfig()->enabledWarnings & 0xFFFF));
// API >= 1.41
// Send the warnings count and 32bit enabled warnings flags.
// Add currently active OSD profile (0 indicates OSD profiles not available).
// Add OSD stick overlay mode (0 indicates OSD stick overlay not available).
sbufWriteU8(dst, OSD_WARNING_COUNT);
sbufWriteU32(dst, osdConfig()->enabledWarnings);
#ifdef USE_OSD_PROFILES
sbufWriteU8(dst, OSD_PROFILE_COUNT); // available profiles
sbufWriteU8(dst, osdConfig()->osdProfileIndex); // selected profile
#else
// If the feature is not available there is only 1 profile and it's always selected
sbufWriteU8(dst, 1);
sbufWriteU8(dst, 1);
#endif // USE_OSD_PROFILES
#ifdef USE_OSD_STICK_OVERLAY
sbufWriteU8(dst, osdConfig()->overlay_radio_mode);
#else
sbufWriteU8(dst, 0);
#endif // USE_OSD_STICK_OVERLAY
// API >= 1.43
// Add the camera frame element width/height
sbufWriteU8(dst, osdConfig()->camera_frame_width);
sbufWriteU8(dst, osdConfig()->camera_frame_height);
#endif // USE_OSD
break;
}
default:
return false;
}
return true;
}
static bool mspProcessOutCommand(int16_t cmdMSP, sbuf_t *dst)
{
bool unsupportedCommand = false;
switch (cmdMSP) {
case MSP_STATUS_EX:
case MSP_STATUS:
{
boxBitmask_t flightModeFlags;
const int flagBits = packFlightModeFlags(&flightModeFlags);
sbufWriteU16(dst, getTaskDeltaTimeUs(TASK_PID));
#ifdef USE_I2C
sbufWriteU16(dst, i2cGetErrorCounter());
#else
sbufWriteU16(dst, 0);
#endif
sbufWriteU16(dst, sensors(SENSOR_ACC) | sensors(SENSOR_BARO) << 1 | sensors(SENSOR_MAG) << 2 | sensors(SENSOR_GPS) << 3 | sensors(SENSOR_RANGEFINDER) << 4 | sensors(SENSOR_GYRO) << 5);
sbufWriteData(dst, &flightModeFlags, 4); // unconditional part of flags, first 32 bits
sbufWriteU8(dst, getCurrentPidProfileIndex());
sbufWriteU16(dst, constrain(getAverageSystemLoadPercent(), 0, LOAD_PERCENTAGE_ONE));
if (cmdMSP == MSP_STATUS_EX) {
sbufWriteU8(dst, PID_PROFILE_COUNT);
sbufWriteU8(dst, getCurrentControlRateProfileIndex());
} else { // MSP_STATUS
sbufWriteU16(dst, 0); // gyro cycle time
}
// write flightModeFlags header. Lowest 4 bits contain number of bytes that follow
// header is emited even when all bits fit into 32 bits to allow future extension
int byteCount = (flagBits - 32 + 7) / 8; // 32 already stored, round up
byteCount = constrain(byteCount, 0, 15); // limit to 16 bytes (128 bits)
sbufWriteU8(dst, byteCount);
sbufWriteData(dst, ((uint8_t*)&flightModeFlags) + 4, byteCount);
// Write arming disable flags
// 1 byte, flag count
sbufWriteU8(dst, ARMING_DISABLE_FLAGS_COUNT);
// 4 bytes, flags
const uint32_t armingDisableFlags = getArmingDisableFlags();
sbufWriteU32(dst, armingDisableFlags);
// config state flags - bits to indicate the state of the configuration, reboot required, etc.
// other flags can be added as needed
sbufWriteU8(dst, (getRebootRequired() << 0));
}
break;
case MSP_RAW_IMU:
{
#if defined(USE_ACC)
// Hack scale due to choice of units for sensor data in multiwii
uint8_t scale;
if (acc.dev.acc_1G > 512 * 4) {
scale = 8;
} else if (acc.dev.acc_1G > 512 * 2) {
scale = 4;
} else if (acc.dev.acc_1G >= 512) {
scale = 2;
} else {
scale = 1;
}
#endif
for (int i = 0; i < 3; i++) {
#if defined(USE_ACC)
sbufWriteU16(dst, lrintf(acc.accADC[i] / scale));
#else
sbufWriteU16(dst, 0);
#endif
}
for (int i = 0; i < 3; i++) {
sbufWriteU16(dst, gyroRateDps(i));
}
for (int i = 0; i < 3; i++) {
#if defined(USE_MAG)
sbufWriteU16(dst, lrintf(mag.magADC[i]));
#else
sbufWriteU16(dst, 0);
#endif
}
}
break;
case MSP_NAME:
{
const int nameLen = strlen(pilotConfig()->name);
for (int i = 0; i < nameLen; i++) {
sbufWriteU8(dst, pilotConfig()->name[i]);
}
}
break;
#ifdef USE_SERVOS
case MSP_SERVO:
sbufWriteData(dst, &servo, MAX_SUPPORTED_SERVOS * 2);
break;
case MSP_SERVO_CONFIGURATIONS:
for (int i = 0; i < MAX_SUPPORTED_SERVOS; i++) {
sbufWriteU16(dst, servoParams(i)->min);
sbufWriteU16(dst, servoParams(i)->max);
sbufWriteU16(dst, servoParams(i)->middle);
sbufWriteU8(dst, servoParams(i)->rate);
sbufWriteU8(dst, servoParams(i)->forwardFromChannel);
sbufWriteU32(dst, servoParams(i)->reversedSources);
}
break;
case MSP_SERVO_MIX_RULES:
for (int i = 0; i < MAX_SERVO_RULES; i++) {
sbufWriteU8(dst, customServoMixers(i)->targetChannel);
sbufWriteU8(dst, customServoMixers(i)->inputSource);
sbufWriteU8(dst, customServoMixers(i)->rate);
sbufWriteU8(dst, customServoMixers(i)->speed);
sbufWriteU8(dst, customServoMixers(i)->min);
sbufWriteU8(dst, customServoMixers(i)->max);
sbufWriteU8(dst, customServoMixers(i)->box);
}
break;
#endif
case MSP_MOTOR:
for (unsigned i = 0; i < 8; i++) {
#ifdef USE_MOTOR
if (!motorIsEnabled() || i >= MAX_SUPPORTED_MOTORS || !motorIsMotorEnabled(i)) {
sbufWriteU16(dst, 0);
continue;
}
sbufWriteU16(dst, motorConvertToExternal(motor[i]));
#else
sbufWriteU16(dst, 0);
#endif
}
break;
// Added in API version 1.42
case MSP_MOTOR_TELEMETRY:
sbufWriteU8(dst, getMotorCount());
for (unsigned i = 0; i < getMotorCount(); i++) {
int rpm = 0;
uint16_t invalidPct = 0;
uint8_t escTemperature = 0; // degrees celcius
uint16_t escVoltage = 0; // 0.01V per unit
uint16_t escCurrent = 0; // 0.01A per unit
uint16_t escConsumption = 0; // mAh
bool rpmDataAvailable = false;
#ifdef USE_DSHOT_TELEMETRY
if (motorConfig()->dev.useDshotTelemetry) {
rpm = (int)getDshotTelemetry(i) * 100 * 2 / motorConfig()->motorPoleCount;
rpmDataAvailable = true;
invalidPct = 10000; // 100.00%
#ifdef USE_DSHOT_TELEMETRY_STATS
if (isDshotMotorTelemetryActive(i)) {
invalidPct = getDshotTelemetryMotorInvalidPercent(i);
}
#endif
}
#endif
#ifdef USE_ESC_SENSOR
if (featureIsEnabled(FEATURE_ESC_SENSOR)) {
escSensorData_t *escData = getEscSensorData(i);
if (!rpmDataAvailable) { // We want DSHOT telemetry RPM data (if available) to have precedence
rpm = calcEscRpm(escData->rpm);
rpmDataAvailable = true;
}
escTemperature = escData->temperature;
escVoltage = escData->voltage;
escCurrent = escData->current;
escConsumption = escData->consumption;
}
#endif
sbufWriteU32(dst, (rpmDataAvailable ? rpm : 0));
sbufWriteU16(dst, invalidPct);
sbufWriteU8(dst, escTemperature);
sbufWriteU16(dst, escVoltage);
sbufWriteU16(dst, escCurrent);
sbufWriteU16(dst, escConsumption);
}
break;
case MSP2_MOTOR_OUTPUT_REORDERING:
{
sbufWriteU8(dst, MAX_SUPPORTED_MOTORS);
for (unsigned i = 0; i < MAX_SUPPORTED_MOTORS; i++) {
sbufWriteU8(dst, motorConfig()->dev.motorOutputReordering[i]);
}
}
break;
#ifdef USE_VTX_COMMON
case MSP2_GET_VTX_DEVICE_STATUS:
{
const vtxDevice_t *vtxDevice = vtxCommonDevice();
vtxCommonSerializeDeviceStatus(vtxDevice, dst);
}
break;
#endif
#ifdef USE_OSD
case MSP2_GET_OSD_WARNINGS:
{
bool isBlinking;
uint8_t displayAttr;
char warningsBuffer[OSD_FORMAT_MESSAGE_BUFFER_SIZE];
renderOsdWarning(warningsBuffer, &isBlinking, &displayAttr);
const uint8_t warningsLen = strlen(warningsBuffer);
if (isBlinking) {
displayAttr |= DISPLAYPORT_ATTR_BLINK;
}
sbufWriteU8(dst, displayAttr); // see displayPortAttr_e
sbufWriteU8(dst, warningsLen); // length byte followed by the actual characters
for (unsigned i = 0; i < warningsLen; i++) {
sbufWriteU8(dst, warningsBuffer[i]);
}
break;
}
#endif
case MSP_RC:
for (int i = 0; i < rxRuntimeState.channelCount; i++) {
sbufWriteU16(dst, rcData[i]);
}
break;
case MSP_ATTITUDE:
sbufWriteU16(dst, attitude.values.roll);
sbufWriteU16(dst, attitude.values.pitch);
sbufWriteU16(dst, DECIDEGREES_TO_DEGREES(attitude.values.yaw));
break;
case MSP_ALTITUDE:
sbufWriteU32(dst, getEstimatedAltitudeCm());
#ifdef USE_VARIO
sbufWriteU16(dst, getEstimatedVario());
#else
sbufWriteU16(dst, 0);
#endif
break;
case MSP_SONAR_ALTITUDE:
#if defined(USE_RANGEFINDER)
sbufWriteU32(dst, rangefinderGetLatestAltitude());
#else
sbufWriteU32(dst, 0);
#endif
break;
case MSP_BOARD_ALIGNMENT_CONFIG:
sbufWriteU16(dst, boardAlignment()->rollDegrees);
sbufWriteU16(dst, boardAlignment()->pitchDegrees);
sbufWriteU16(dst, boardAlignment()->yawDegrees);
break;
case MSP_ARMING_CONFIG:
sbufWriteU8(dst, armingConfig()->auto_disarm_delay);
sbufWriteU8(dst, 0);
sbufWriteU8(dst, imuConfig()->small_angle);
break;
case MSP_RC_TUNING:
sbufWriteU8(dst, currentControlRateProfile->rcRates[FD_ROLL]);
sbufWriteU8(dst, currentControlRateProfile->rcExpo[FD_ROLL]);
for (int i = 0 ; i < 3; i++) {
sbufWriteU8(dst, currentControlRateProfile->rates[i]); // R,P,Y see flight_dynamics_index_t
}
sbufWriteU8(dst, currentControlRateProfile->dynThrPID);
sbufWriteU8(dst, currentControlRateProfile->thrMid8);
sbufWriteU8(dst, currentControlRateProfile->thrExpo8);
sbufWriteU16(dst, currentControlRateProfile->tpa_breakpoint);
sbufWriteU8(dst, currentControlRateProfile->rcExpo[FD_YAW]);
sbufWriteU8(dst, currentControlRateProfile->rcRates[FD_YAW]);
sbufWriteU8(dst, currentControlRateProfile->rcRates[FD_PITCH]);
sbufWriteU8(dst, currentControlRateProfile->rcExpo[FD_PITCH]);
// added in 1.41
sbufWriteU8(dst, currentControlRateProfile->throttle_limit_type);
sbufWriteU8(dst, currentControlRateProfile->throttle_limit_percent);
// added in 1.42
sbufWriteU16(dst, currentControlRateProfile->rate_limit[FD_ROLL]);
sbufWriteU16(dst, currentControlRateProfile->rate_limit[FD_PITCH]);
sbufWriteU16(dst, currentControlRateProfile->rate_limit[FD_YAW]);
// added in 1.43
sbufWriteU8(dst, currentControlRateProfile->rates_type);
break;
case MSP_PID:
for (int i = 0; i < PID_ITEM_COUNT; i++) {
sbufWriteU8(dst, currentPidProfile->pid[i].P);
sbufWriteU8(dst, currentPidProfile->pid[i].I);
sbufWriteU8(dst, currentPidProfile->pid[i].D);
}
break;
case MSP_PIDNAMES:
for (const char *c = pidNames; *c; c++) {
sbufWriteU8(dst, *c);
}
break;
case MSP_PID_CONTROLLER:
sbufWriteU8(dst, PID_CONTROLLER_BETAFLIGHT);
break;
case MSP_MODE_RANGES:
for (int i = 0; i < MAX_MODE_ACTIVATION_CONDITION_COUNT; i++) {
const modeActivationCondition_t *mac = modeActivationConditions(i);
const box_t *box = findBoxByBoxId(mac->modeId);
sbufWriteU8(dst, box->permanentId);
sbufWriteU8(dst, mac->auxChannelIndex);
sbufWriteU8(dst, mac->range.startStep);
sbufWriteU8(dst, mac->range.endStep);
}
break;
case MSP_MODE_RANGES_EXTRA:
sbufWriteU8(dst, MAX_MODE_ACTIVATION_CONDITION_COUNT); // prepend number of EXTRAs array elements
for (int i = 0; i < MAX_MODE_ACTIVATION_CONDITION_COUNT; i++) {
const modeActivationCondition_t *mac = modeActivationConditions(i);
const box_t *box = findBoxByBoxId(mac->modeId);
const box_t *linkedBox = findBoxByBoxId(mac->linkedTo);
sbufWriteU8(dst, box->permanentId); // each element is aligned with MODE_RANGES by the permanentId
sbufWriteU8(dst, mac->modeLogic);
sbufWriteU8(dst, linkedBox->permanentId);
}
break;
case MSP_ADJUSTMENT_RANGES:
for (int i = 0; i < MAX_ADJUSTMENT_RANGE_COUNT; i++) {
const adjustmentRange_t *adjRange = adjustmentRanges(i);
sbufWriteU8(dst, 0); // was adjRange->adjustmentIndex
sbufWriteU8(dst, adjRange->auxChannelIndex);
sbufWriteU8(dst, adjRange->range.startStep);
sbufWriteU8(dst, adjRange->range.endStep);
sbufWriteU8(dst, adjRange->adjustmentConfig);
sbufWriteU8(dst, adjRange->auxSwitchChannelIndex);
}
break;
case MSP_MOTOR_CONFIG:
sbufWriteU16(dst, motorConfig()->minthrottle);
sbufWriteU16(dst, motorConfig()->maxthrottle);
sbufWriteU16(dst, motorConfig()->mincommand);
// API 1.42
sbufWriteU8(dst, getMotorCount());
sbufWriteU8(dst, motorConfig()->motorPoleCount);
#ifdef USE_DSHOT_TELEMETRY
sbufWriteU8(dst, motorConfig()->dev.useDshotTelemetry);
#else
sbufWriteU8(dst, 0);
#endif
#ifdef USE_ESC_SENSOR
sbufWriteU8(dst, featureIsEnabled(FEATURE_ESC_SENSOR)); // ESC sensor available
#else
sbufWriteU8(dst, 0);
#endif
break;
#if defined(USE_ESC_SENSOR)
// Deprecated in favor of MSP_MOTOR_TELEMETY as of API version 1.42
case MSP_ESC_SENSOR_DATA:
if (featureIsEnabled(FEATURE_ESC_SENSOR)) {
sbufWriteU8(dst, getMotorCount());
for (int i = 0; i < getMotorCount(); i++) {
const escSensorData_t *escData = getEscSensorData(i);
sbufWriteU8(dst, escData->temperature);
sbufWriteU16(dst, escData->rpm);
}
} else {
unsupportedCommand = true;
}
break;
#endif
#ifdef USE_GPS
case MSP_GPS_CONFIG:
sbufWriteU8(dst, gpsConfig()->provider);
sbufWriteU8(dst, gpsConfig()->sbasMode);
sbufWriteU8(dst, gpsConfig()->autoConfig);
sbufWriteU8(dst, gpsConfig()->autoBaud);
// Added in API version 1.43
sbufWriteU8(dst, gpsConfig()->gps_set_home_point_once);
sbufWriteU8(dst, gpsConfig()->gps_ublox_use_galileo);
break;
case MSP_RAW_GPS:
sbufWriteU8(dst, STATE(GPS_FIX));
sbufWriteU8(dst, gpsSol.numSat);
sbufWriteU32(dst, gpsSol.llh.lat);
sbufWriteU32(dst, gpsSol.llh.lon);
sbufWriteU16(dst, (uint16_t)constrain(gpsSol.llh.altCm / 100, 0, UINT16_MAX)); // alt changed from 1m to 0.01m per lsb since MSP API 1.39 by RTH. To maintain backwards compatibility compensate to 1m per lsb in MSP again.
sbufWriteU16(dst, gpsSol.groundSpeed);
sbufWriteU16(dst, gpsSol.groundCourse);
// Added in API version 1.44
sbufWriteU16(dst, gpsSol.hdop);
break;
case MSP_COMP_GPS:
sbufWriteU16(dst, GPS_distanceToHome);
sbufWriteU16(dst, GPS_directionToHome);
sbufWriteU8(dst, GPS_update & 1);
break;
case MSP_GPSSVINFO:
sbufWriteU8(dst, GPS_numCh);
for (int i = 0; i < GPS_numCh; i++) {
sbufWriteU8(dst, GPS_svinfo_chn[i]);
sbufWriteU8(dst, GPS_svinfo_svid[i]);
sbufWriteU8(dst, GPS_svinfo_quality[i]);
sbufWriteU8(dst, GPS_svinfo_cno[i]);
}
break;
#ifdef USE_GPS_RESCUE
case MSP_GPS_RESCUE:
sbufWriteU16(dst, gpsRescueConfig()->angle);
sbufWriteU16(dst, gpsRescueConfig()->initialAltitudeM);
sbufWriteU16(dst, gpsRescueConfig()->descentDistanceM);
sbufWriteU16(dst, gpsRescueConfig()->rescueGroundspeed);
sbufWriteU16(dst, gpsRescueConfig()->throttleMin);
sbufWriteU16(dst, gpsRescueConfig()->throttleMax);
sbufWriteU16(dst, gpsRescueConfig()->throttleHover);
sbufWriteU8(dst, gpsRescueConfig()->sanityChecks);
sbufWriteU8(dst, gpsRescueConfig()->minSats);
// Added in API version 1.43
sbufWriteU16(dst, gpsRescueConfig()->ascendRate);
sbufWriteU16(dst, gpsRescueConfig()->descendRate);
sbufWriteU8(dst, gpsRescueConfig()->allowArmingWithoutFix);
sbufWriteU8(dst, gpsRescueConfig()->altitudeMode);
// Added in API version 1.44
sbufWriteU16(dst, gpsRescueConfig()->minRescueDth);
break;
case MSP_GPS_RESCUE_PIDS:
sbufWriteU16(dst, gpsRescueConfig()->throttleP);
sbufWriteU16(dst, gpsRescueConfig()->throttleI);
sbufWriteU16(dst, gpsRescueConfig()->throttleD);
sbufWriteU16(dst, gpsRescueConfig()->velP);
sbufWriteU16(dst, gpsRescueConfig()->velI);
sbufWriteU16(dst, gpsRescueConfig()->velD);
sbufWriteU16(dst, gpsRescueConfig()->yawP);
break;
#endif
#endif
#if defined(USE_ACC)
case MSP_ACC_TRIM:
sbufWriteU16(dst, accelerometerConfig()->accelerometerTrims.values.pitch);
sbufWriteU16(dst, accelerometerConfig()->accelerometerTrims.values.roll);
break;
#endif
case MSP_MIXER_CONFIG:
sbufWriteU8(dst, mixerConfig()->mixerMode);
sbufWriteU8(dst, mixerConfig()->yaw_motors_reversed);
break;
case MSP_RX_CONFIG:
sbufWriteU8(dst, rxConfig()->serialrx_provider);
sbufWriteU16(dst, rxConfig()->maxcheck);
sbufWriteU16(dst, rxConfig()->midrc);
sbufWriteU16(dst, rxConfig()->mincheck);
sbufWriteU8(dst, rxConfig()->spektrum_sat_bind);
sbufWriteU16(dst, rxConfig()->rx_min_usec);
sbufWriteU16(dst, rxConfig()->rx_max_usec);
sbufWriteU8(dst, 0); // not required in API 1.44, was rxConfig()->rcInterpolation
sbufWriteU8(dst, 0); // not required in API 1.44, was rxConfig()->rcInterpolationInterval
sbufWriteU16(dst, rxConfig()->airModeActivateThreshold * 10 + 1000);
#ifdef USE_RX_SPI
sbufWriteU8(dst, rxSpiConfig()->rx_spi_protocol);
sbufWriteU32(dst, rxSpiConfig()->rx_spi_id);
sbufWriteU8(dst, rxSpiConfig()->rx_spi_rf_channel_count);
#else
sbufWriteU8(dst, 0);
sbufWriteU32(dst, 0);
sbufWriteU8(dst, 0);
#endif
sbufWriteU8(dst, rxConfig()->fpvCamAngleDegrees);
sbufWriteU8(dst, 0); // not required in API 1.44, was rxConfig()->rcSmoothingChannels
#if defined(USE_RC_SMOOTHING_FILTER)
sbufWriteU8(dst, 0); // not required in API 1.44, was rxConfig()->rc_smoothing_type
sbufWriteU8(dst, rxConfig()->rc_smoothing_setpoint_cutoff);
sbufWriteU8(dst, rxConfig()->rc_smoothing_feedforward_cutoff);
sbufWriteU8(dst, 0); // not required in API 1.44, was rxConfig()->rc_smoothing_input_type
sbufWriteU8(dst, 0); // not required in API 1.44, was rxConfig()->rc_smoothing_derivative_type
#else
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
#endif
#if defined(USE_USB_CDC_HID)
sbufWriteU8(dst, usbDevConfig()->type);
#else
sbufWriteU8(dst, 0);
#endif
// Added in MSP API 1.42
#if defined(USE_RC_SMOOTHING_FILTER)
sbufWriteU8(dst, rxConfig()->rc_smoothing_auto_factor_rpy);
#else
sbufWriteU8(dst, 0);
#endif
// Added in MSP API 1.44
#if defined(USE_RC_SMOOTHING_FILTER)
sbufWriteU8(dst, rxConfig()->rc_smoothing_mode);
#else
sbufWriteU8(dst, 0);
#endif
break;
case MSP_FAILSAFE_CONFIG:
sbufWriteU8(dst, failsafeConfig()->failsafe_delay);
sbufWriteU8(dst, failsafeConfig()->failsafe_off_delay);
sbufWriteU16(dst, failsafeConfig()->failsafe_throttle);
sbufWriteU8(dst, failsafeConfig()->failsafe_switch_mode);
sbufWriteU16(dst, failsafeConfig()->failsafe_throttle_low_delay);
sbufWriteU8(dst, failsafeConfig()->failsafe_procedure);
break;
case MSP_RXFAIL_CONFIG:
for (int i = 0; i < rxRuntimeState.channelCount; i++) {
sbufWriteU8(dst, rxFailsafeChannelConfigs(i)->mode);
sbufWriteU16(dst, RXFAIL_STEP_TO_CHANNEL_VALUE(rxFailsafeChannelConfigs(i)->step));
}
break;
case MSP_RSSI_CONFIG:
sbufWriteU8(dst, rxConfig()->rssi_channel);
break;
case MSP_RX_MAP:
sbufWriteData(dst, rxConfig()->rcmap, RX_MAPPABLE_CHANNEL_COUNT);
break;
case MSP_CF_SERIAL_CONFIG:
for (int i = 0; i < SERIAL_PORT_COUNT; i++) {
if (!serialIsPortAvailable(serialConfig()->portConfigs[i].identifier)) {
continue;
};
sbufWriteU8(dst, serialConfig()->portConfigs[i].identifier);
sbufWriteU16(dst, serialConfig()->portConfigs[i].functionMask);
sbufWriteU8(dst, serialConfig()->portConfigs[i].msp_baudrateIndex);
sbufWriteU8(dst, serialConfig()->portConfigs[i].gps_baudrateIndex);
sbufWriteU8(dst, serialConfig()->portConfigs[i].telemetry_baudrateIndex);
sbufWriteU8(dst, serialConfig()->portConfigs[i].blackbox_baudrateIndex);
}
break;
case MSP2_COMMON_SERIAL_CONFIG: {
uint8_t count = 0;
for (int i = 0; i < SERIAL_PORT_COUNT; i++) {
if (serialIsPortAvailable(serialConfig()->portConfigs[i].identifier)) {
count++;
}
}
sbufWriteU8(dst, count);
for (int i = 0; i < SERIAL_PORT_COUNT; i++) {
if (!serialIsPortAvailable(serialConfig()->portConfigs[i].identifier)) {
continue;
};
sbufWriteU8(dst, serialConfig()->portConfigs[i].identifier);
sbufWriteU32(dst, serialConfig()->portConfigs[i].functionMask);
sbufWriteU8(dst, serialConfig()->portConfigs[i].msp_baudrateIndex);
sbufWriteU8(dst, serialConfig()->portConfigs[i].gps_baudrateIndex);
sbufWriteU8(dst, serialConfig()->portConfigs[i].telemetry_baudrateIndex);
sbufWriteU8(dst, serialConfig()->portConfigs[i].blackbox_baudrateIndex);
}
break;
}
#ifdef USE_LED_STRIP_STATUS_MODE
case MSP_LED_COLORS:
for (int i = 0; i < LED_CONFIGURABLE_COLOR_COUNT; i++) {
const hsvColor_t *color = &ledStripStatusModeConfig()->colors[i];
sbufWriteU16(dst, color->h);
sbufWriteU8(dst, color->s);
sbufWriteU8(dst, color->v);
}
break;
#endif
#ifdef USE_LED_STRIP
case MSP_LED_STRIP_CONFIG:
for (int i = 0; i < LED_MAX_STRIP_LENGTH; i++) {
#ifdef USE_LED_STRIP_STATUS_MODE
const ledConfig_t *ledConfig = &ledStripStatusModeConfig()->ledConfigs[i];
sbufWriteU32(dst, *ledConfig);
#else
sbufWriteU32(dst, 0);
#endif
}
// API 1.41 - add indicator for advanced profile support and the current profile selection
// 0 = basic ledstrip available
// 1 = advanced ledstrip available
#ifdef USE_LED_STRIP_STATUS_MODE
sbufWriteU8(dst, 1); // advanced ledstrip available
#else
sbufWriteU8(dst, 0); // only simple ledstrip available
#endif
sbufWriteU8(dst, ledStripConfig()->ledstrip_profile);
break;
#endif
#ifdef USE_LED_STRIP_STATUS_MODE
case MSP_LED_STRIP_MODECOLOR:
for (int i = 0; i < LED_MODE_COUNT; i++) {
for (int j = 0; j < LED_DIRECTION_COUNT; j++) {
sbufWriteU8(dst, i);
sbufWriteU8(dst, j);
sbufWriteU8(dst, ledStripStatusModeConfig()->modeColors[i].color[j]);
}
}
for (int j = 0; j < LED_SPECIAL_COLOR_COUNT; j++) {
sbufWriteU8(dst, LED_MODE_COUNT);
sbufWriteU8(dst, j);
sbufWriteU8(dst, ledStripStatusModeConfig()->specialColors.color[j]);
}
sbufWriteU8(dst, LED_AUX_CHANNEL);
sbufWriteU8(dst, 0);
sbufWriteU8(dst, ledStripStatusModeConfig()->ledstrip_aux_channel);
break;
#endif
case MSP_DATAFLASH_SUMMARY:
serializeDataflashSummaryReply(dst);
break;
case MSP_BLACKBOX_CONFIG:
#ifdef USE_BLACKBOX
sbufWriteU8(dst, 1); //Blackbox supported
sbufWriteU8(dst, blackboxConfig()->device);
sbufWriteU8(dst, 1); // Rate numerator, not used anymore
sbufWriteU8(dst, blackboxGetRateDenom());
sbufWriteU16(dst, blackboxGetPRatio());
sbufWriteU8(dst, blackboxConfig()->sample_rate);
#else
sbufWriteU8(dst, 0); // Blackbox not supported
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
sbufWriteU16(dst, 0);
sbufWriteU8(dst, 0);
#endif
break;
case MSP_SDCARD_SUMMARY:
serializeSDCardSummaryReply(dst);
break;
case MSP_MOTOR_3D_CONFIG:
sbufWriteU16(dst, flight3DConfig()->deadband3d_low);
sbufWriteU16(dst, flight3DConfig()->deadband3d_high);
sbufWriteU16(dst, flight3DConfig()->neutral3d);
break;
case MSP_RC_DEADBAND:
sbufWriteU8(dst, rcControlsConfig()->deadband);
sbufWriteU8(dst, rcControlsConfig()->yaw_deadband);
sbufWriteU8(dst, rcControlsConfig()->alt_hold_deadband);
sbufWriteU16(dst, flight3DConfig()->deadband3d_throttle);
break;
case MSP_SENSOR_ALIGNMENT: {
uint8_t gyroAlignment;
#ifdef USE_MULTI_GYRO
switch (gyroConfig()->gyro_to_use) {
case GYRO_CONFIG_USE_GYRO_2:
gyroAlignment = gyroDeviceConfig(1)->alignment;
break;
case GYRO_CONFIG_USE_GYRO_BOTH:
// for dual-gyro in "BOTH" mode we only read/write gyro 0
default:
gyroAlignment = gyroDeviceConfig(0)->alignment;
break;
}
#else
gyroAlignment = gyroDeviceConfig(0)->alignment;
#endif
sbufWriteU8(dst, gyroAlignment);
sbufWriteU8(dst, gyroAlignment); // Starting with 4.0 gyro and acc alignment are the same
#if defined(USE_MAG)
sbufWriteU8(dst, compassConfig()->mag_alignment);
#else
sbufWriteU8(dst, 0);
#endif
// API 1.41 - Add multi-gyro indicator, selected gyro, and support for separate gyro 1 & 2 alignment
sbufWriteU8(dst, getGyroDetectionFlags());
#ifdef USE_MULTI_GYRO
sbufWriteU8(dst, gyroConfig()->gyro_to_use);
sbufWriteU8(dst, gyroDeviceConfig(0)->alignment);
sbufWriteU8(dst, gyroDeviceConfig(1)->alignment);
#else
sbufWriteU8(dst, GYRO_CONFIG_USE_GYRO_1);
sbufWriteU8(dst, gyroDeviceConfig(0)->alignment);
sbufWriteU8(dst, ALIGN_DEFAULT);
#endif
break;
}
case MSP_ADVANCED_CONFIG:
sbufWriteU8(dst, 1); // was gyroConfig()->gyro_sync_denom - removed in API 1.43
sbufWriteU8(dst, pidConfig()->pid_process_denom);
sbufWriteU8(dst, motorConfig()->dev.useUnsyncedPwm);
sbufWriteU8(dst, motorConfig()->dev.motorPwmProtocol);
sbufWriteU16(dst, motorConfig()->dev.motorPwmRate);
sbufWriteU16(dst, motorConfig()->digitalIdleOffsetValue);
sbufWriteU8(dst, 0); // DEPRECATED: gyro_use_32kHz
sbufWriteU8(dst, motorConfig()->dev.motorPwmInversion);
sbufWriteU8(dst, gyroConfig()->gyro_to_use);
sbufWriteU8(dst, gyroConfig()->gyro_high_fsr);
sbufWriteU8(dst, gyroConfig()->gyroMovementCalibrationThreshold);
sbufWriteU16(dst, gyroConfig()->gyroCalibrationDuration);
sbufWriteU16(dst, gyroConfig()->gyro_offset_yaw);
sbufWriteU8(dst, gyroConfig()->checkOverflow);
//Added in MSP API 1.42
sbufWriteU8(dst, systemConfig()->debug_mode);
sbufWriteU8(dst, DEBUG_COUNT);
break;
case MSP_FILTER_CONFIG :
sbufWriteU8(dst, gyroConfig()->gyro_lowpass_hz);
sbufWriteU16(dst, currentPidProfile->dterm_lowpass_hz);
sbufWriteU16(dst, currentPidProfile->yaw_lowpass_hz);
sbufWriteU16(dst, gyroConfig()->gyro_soft_notch_hz_1);
sbufWriteU16(dst, gyroConfig()->gyro_soft_notch_cutoff_1);
sbufWriteU16(dst, currentPidProfile->dterm_notch_hz);
sbufWriteU16(dst, currentPidProfile->dterm_notch_cutoff);
sbufWriteU16(dst, gyroConfig()->gyro_soft_notch_hz_2);
sbufWriteU16(dst, gyroConfig()->gyro_soft_notch_cutoff_2);
sbufWriteU8(dst, currentPidProfile->dterm_filter_type);
sbufWriteU8(dst, gyroConfig()->gyro_hardware_lpf);
sbufWriteU8(dst, 0); // DEPRECATED: gyro_32khz_hardware_lpf
sbufWriteU16(dst, gyroConfig()->gyro_lowpass_hz);
sbufWriteU16(dst, gyroConfig()->gyro_lowpass2_hz);
sbufWriteU8(dst, gyroConfig()->gyro_lowpass_type);
sbufWriteU8(dst, gyroConfig()->gyro_lowpass2_type);
sbufWriteU16(dst, currentPidProfile->dterm_lowpass2_hz);
// Added in MSP API 1.41
sbufWriteU8(dst, currentPidProfile->dterm_filter2_type);
#if defined(USE_DYN_LPF)
sbufWriteU16(dst, gyroConfig()->dyn_lpf_gyro_min_hz);
sbufWriteU16(dst, gyroConfig()->dyn_lpf_gyro_max_hz);
sbufWriteU16(dst, currentPidProfile->dyn_lpf_dterm_min_hz);
sbufWriteU16(dst, currentPidProfile->dyn_lpf_dterm_max_hz);
#else
sbufWriteU16(dst, 0);
sbufWriteU16(dst, 0);
sbufWriteU16(dst, 0);
sbufWriteU16(dst, 0);
#endif
// Added in MSP API 1.42
#if defined(USE_GYRO_DATA_ANALYSE)
sbufWriteU8(dst, 0); // DEPRECATED 1.43: dyn_notch_range
sbufWriteU8(dst, 0); // DEPRECATED 1.44: dyn_notch_width_percent
sbufWriteU16(dst, gyroConfig()->dyn_notch_q);
sbufWriteU16(dst, gyroConfig()->dyn_notch_min_hz);
#else
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
sbufWriteU16(dst, 0);
sbufWriteU16(dst, 0);
#endif
#if defined(USE_RPM_FILTER)
sbufWriteU8(dst, rpmFilterConfig()->gyro_rpm_notch_harmonics);
sbufWriteU8(dst, rpmFilterConfig()->gyro_rpm_notch_min);
#else
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
#endif
#if defined(USE_GYRO_DATA_ANALYSE)
// Added in MSP API 1.43
sbufWriteU16(dst, gyroConfig()->dyn_notch_max_hz);
#else
sbufWriteU16(dst, 0);
#endif
#if defined(USE_DYN_LPF)
// Added in MSP API 1.44
sbufWriteU8(dst, currentPidProfile->dyn_lpf_curve_expo);
#else
sbufWriteU8(dst, 0);
#endif
#if defined(USE_GYRO_DATA_ANALYSE)
sbufWriteU8(dst, gyroConfig()->dyn_notch_count);
#else
sbufWriteU8(dst, 0);
#endif
break;
case MSP_PID_ADVANCED:
sbufWriteU16(dst, 0);
sbufWriteU16(dst, 0);
sbufWriteU16(dst, 0); // was pidProfile.yaw_p_limit
sbufWriteU8(dst, 0); // reserved
sbufWriteU8(dst, 0); // was vbatPidCompensation
sbufWriteU8(dst, currentPidProfile->feedforwardTransition);
sbufWriteU8(dst, 0); // was low byte of currentPidProfile->dtermSetpointWeight
sbufWriteU8(dst, 0); // reserved
sbufWriteU8(dst, 0); // reserved
sbufWriteU8(dst, 0); // reserved
sbufWriteU16(dst, currentPidProfile->rateAccelLimit);
sbufWriteU16(dst, currentPidProfile->yawRateAccelLimit);
sbufWriteU8(dst, currentPidProfile->levelAngleLimit);
sbufWriteU8(dst, 0); // was pidProfile.levelSensitivity
sbufWriteU16(dst, currentPidProfile->itermThrottleThreshold);
sbufWriteU16(dst, currentPidProfile->itermAcceleratorGain);
sbufWriteU16(dst, 0); // was currentPidProfile->dtermSetpointWeight
sbufWriteU8(dst, currentPidProfile->iterm_rotation);
sbufWriteU8(dst, 0); // was currentPidProfile->smart_feedforward
#if defined(USE_ITERM_RELAX)
sbufWriteU8(dst, currentPidProfile->iterm_relax);
sbufWriteU8(dst, currentPidProfile->iterm_relax_type);
#else
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
#endif
#if defined(USE_ABSOLUTE_CONTROL)
sbufWriteU8(dst, currentPidProfile->abs_control_gain);
#else
sbufWriteU8(dst, 0);
#endif
#if defined(USE_THROTTLE_BOOST)
sbufWriteU8(dst, currentPidProfile->throttle_boost);
#else
sbufWriteU8(dst, 0);
#endif
#if defined(USE_ACRO_TRAINER)
sbufWriteU8(dst, currentPidProfile->acro_trainer_angle_limit);
#else
sbufWriteU8(dst, 0);
#endif
sbufWriteU16(dst, currentPidProfile->pid[PID_ROLL].F);
sbufWriteU16(dst, currentPidProfile->pid[PID_PITCH].F);
sbufWriteU16(dst, currentPidProfile->pid[PID_YAW].F);
sbufWriteU8(dst, currentPidProfile->antiGravityMode);
#if defined(USE_D_MIN)
sbufWriteU8(dst, currentPidProfile->d_min[PID_ROLL]);
sbufWriteU8(dst, currentPidProfile->d_min[PID_PITCH]);
sbufWriteU8(dst, currentPidProfile->d_min[PID_YAW]);
sbufWriteU8(dst, currentPidProfile->d_min_gain);
sbufWriteU8(dst, currentPidProfile->d_min_advance);
#else
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
#endif
#if defined(USE_INTEGRATED_YAW_CONTROL)
sbufWriteU8(dst, currentPidProfile->use_integrated_yaw);
sbufWriteU8(dst, currentPidProfile->integrated_yaw_relax);
#else
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
#endif
#if defined(USE_ITERM_RELAX)
// Added in MSP API 1.42
sbufWriteU8(dst, currentPidProfile->iterm_relax_cutoff);
#else
sbufWriteU8(dst, 0);
#endif
// Added in MSP API 1.43
sbufWriteU8(dst, currentPidProfile->motor_output_limit);
sbufWriteU8(dst, currentPidProfile->auto_profile_cell_count);
#if defined(USE_DYN_IDLE)
sbufWriteU8(dst, currentPidProfile->dyn_idle_min_rpm);
#else
sbufWriteU8(dst, 0);
#endif
// Added in MSP API 1.44
#if defined(USE_FEEDFORWARD)
sbufWriteU8(dst, currentPidProfile->feedforward_averaging);
sbufWriteU8(dst, currentPidProfile->feedforward_smooth_factor);
#else
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
#endif
sbufWriteU8(dst, currentPidProfile->feedforward_boost);
#if defined(USE_BATTERY_VOLTAGE_SAG_COMPENSATION)
sbufWriteU8(dst, currentPidProfile->vbat_sag_compensation);
#else
sbufWriteU8(dst, 0);
#endif
#if defined(USE_THRUST_LINEARIZATION)
sbufWriteU8(dst, currentPidProfile->thrustLinearization);
#else
sbufWriteU8(dst, 0);
#endif
break;
case MSP_SENSOR_CONFIG:
#if defined(USE_ACC)
sbufWriteU8(dst, accelerometerConfig()->acc_hardware);
#else
sbufWriteU8(dst, 0);
#endif
#ifdef USE_BARO
sbufWriteU8(dst, barometerConfig()->baro_hardware);
#else
sbufWriteU8(dst, BARO_NONE);
#endif
#ifdef USE_MAG
sbufWriteU8(dst, compassConfig()->mag_hardware);
#else
sbufWriteU8(dst, MAG_NONE);
#endif
break;
#if defined(USE_VTX_COMMON)
case MSP_VTX_CONFIG:
{
const vtxDevice_t *vtxDevice = vtxCommonDevice();
unsigned vtxStatus = 0;
vtxDevType_e vtxType = VTXDEV_UNKNOWN;
uint8_t deviceIsReady = 0;
if (vtxDevice) {
vtxCommonGetStatus(vtxDevice, &vtxStatus);
vtxType = vtxCommonGetDeviceType(vtxDevice);
deviceIsReady = vtxCommonDeviceIsReady(vtxDevice) ? 1 : 0;
}
sbufWriteU8(dst, vtxType);
sbufWriteU8(dst, vtxSettingsConfig()->band);
sbufWriteU8(dst, vtxSettingsConfig()->channel);
sbufWriteU8(dst, vtxSettingsConfig()->power);
sbufWriteU8(dst, (vtxStatus & VTX_STATUS_PIT_MODE) ? 1 : 0);
sbufWriteU16(dst, vtxSettingsConfig()->freq);
sbufWriteU8(dst, deviceIsReady);
sbufWriteU8(dst, vtxSettingsConfig()->lowPowerDisarm);
// API version 1.42
sbufWriteU16(dst, vtxSettingsConfig()->pitModeFreq);
#ifdef USE_VTX_TABLE
sbufWriteU8(dst, 1); // vtxtable is available
sbufWriteU8(dst, vtxTableConfig()->bands);
sbufWriteU8(dst, vtxTableConfig()->channels);
sbufWriteU8(dst, vtxTableConfig()->powerLevels);
#else
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
sbufWriteU8(dst, 0);
#endif
}
break;
#endif
case MSP_TX_INFO:
sbufWriteU8(dst, rssiSource);
uint8_t rtcDateTimeIsSet = 0;
#ifdef USE_RTC_TIME
dateTime_t dt;
if (rtcGetDateTime(&dt)) {
rtcDateTimeIsSet = 1;
}
#else
rtcDateTimeIsSet = RTC_NOT_SUPPORTED;
#endif
sbufWriteU8(dst, rtcDateTimeIsSet);
break;
#ifdef USE_RTC_TIME
case MSP_RTC:
{
dateTime_t dt;
if (rtcGetDateTime(&dt)) {
sbufWriteU16(dst, dt.year);
sbufWriteU8(dst, dt.month);
sbufWriteU8(dst, dt.day);
sbufWriteU8(dst, dt.hours);
sbufWriteU8(dst, dt.minutes);
sbufWriteU8(dst, dt.seconds);
sbufWriteU16(dst, dt.millis);
}
}
break;
#endif
default:
unsupportedCommand = true;
}
return !unsupportedCommand;
}
static mspResult_e mspFcProcessOutCommandWithArg(mspDescriptor_t srcDesc, int16_t cmdMSP, sbuf_t *src, sbuf_t *dst, mspPostProcessFnPtr *mspPostProcessFn)
{
switch (cmdMSP) {
case MSP_BOXNAMES:
{
const int page = sbufBytesRemaining(src) ? sbufReadU8(src) : 0;
serializeBoxReply(dst, page, &serializeBoxNameFn);
}
break;
case MSP_BOXIDS:
{
const int page = sbufBytesRemaining(src) ? sbufReadU8(src) : 0;
serializeBoxReply(dst, page, &serializeBoxPermanentIdFn);
}
break;
case MSP_REBOOT:
if (sbufBytesRemaining(src)) {
rebootMode = sbufReadU8(src);
if (rebootMode >= MSP_REBOOT_COUNT
#if !defined(USE_USB_MSC)
|| rebootMode == MSP_REBOOT_MSC || rebootMode == MSP_REBOOT_MSC_UTC
#endif
) {
return MSP_RESULT_ERROR;
}
} else {
rebootMode = MSP_REBOOT_FIRMWARE;
}
sbufWriteU8(dst, rebootMode);
#if defined(USE_USB_MSC)
if (rebootMode == MSP_REBOOT_MSC) {
if (mscCheckFilesystemReady()) {
sbufWriteU8(dst, 1);
} else {
sbufWriteU8(dst, 0);
return MSP_RESULT_ACK;
}
}
#endif
if (mspPostProcessFn) {
*mspPostProcessFn = mspRebootFn;
}
break;
case MSP_MULTIPLE_MSP:
{
uint8_t maxMSPs = 0;
if (sbufBytesRemaining(src) == 0) {
return MSP_RESULT_ERROR;
}
int bytesRemaining = sbufBytesRemaining(dst) - 1; // need to keep one byte for checksum
mspPacket_t packetIn, packetOut;
sbufInit(&packetIn.buf, src->end, src->end);
uint8_t* resetInputPtr = src->ptr;
while (sbufBytesRemaining(src) && bytesRemaining > 0) {
uint8_t newMSP = sbufReadU8(src);
sbufInit(&packetOut.buf, dst->ptr, dst->end);
packetIn.cmd = newMSP;
mspFcProcessCommand(srcDesc, &packetIn, &packetOut, NULL);
uint8_t mspSize = sbufPtr(&packetOut.buf) - dst->ptr;
mspSize++; // need to add length information for each MSP
bytesRemaining -= mspSize;
if (bytesRemaining >= 0) {
maxMSPs++;
}
}
src->ptr = resetInputPtr;
sbufInit(&packetOut.buf, dst->ptr, dst->end);
for (int i = 0; i < maxMSPs; i++) {
uint8_t* sizePtr = sbufPtr(&packetOut.buf);
sbufWriteU8(&packetOut.buf, 0); // dummy
packetIn.cmd = sbufReadU8(src);
mspFcProcessCommand(srcDesc, &packetIn, &packetOut, NULL);
(*sizePtr) = sbufPtr(&packetOut.buf) - (sizePtr + 1);
}
dst->ptr = packetOut.buf.ptr;
}
break;
#ifdef USE_VTX_TABLE
case MSP_VTXTABLE_BAND:
{
const uint8_t band = sbufBytesRemaining(src) ? sbufReadU8(src) : 0;
if (band > 0 && band <= VTX_TABLE_MAX_BANDS) {
sbufWriteU8(dst, band); // band number (same as request)
sbufWriteU8(dst, VTX_TABLE_BAND_NAME_LENGTH); // band name length
for (int i = 0; i < VTX_TABLE_BAND_NAME_LENGTH; i++) { // band name bytes
sbufWriteU8(dst, vtxTableConfig()->bandNames[band - 1][i]);
}
sbufWriteU8(dst, vtxTableConfig()->bandLetters[band - 1]); // band letter
sbufWriteU8(dst, vtxTableConfig()->isFactoryBand[band - 1]); // CUSTOM = 0; FACTORY = 1
sbufWriteU8(dst, vtxTableConfig()->channels); // number of channel frequencies to follow
for (int i = 0; i < vtxTableConfig()->channels; i++) { // the frequency for each channel
sbufWriteU16(dst, vtxTableConfig()->frequency[band - 1][i]);
}
} else {
return MSP_RESULT_ERROR;
}
}
break;
case MSP_VTXTABLE_POWERLEVEL:
{
const uint8_t powerLevel = sbufBytesRemaining(src) ? sbufReadU8(src) : 0;
if (powerLevel > 0 && powerLevel <= VTX_TABLE_MAX_POWER_LEVELS) {
sbufWriteU8(dst, powerLevel); // powerLevel number (same as request)
sbufWriteU16(dst, vtxTableConfig()->powerValues[powerLevel - 1]);
sbufWriteU8(dst, VTX_TABLE_POWER_LABEL_LENGTH); // powerLevel label length
for (int i = 0; i < VTX_TABLE_POWER_LABEL_LENGTH; i++) { // powerlevel label bytes
sbufWriteU8(dst, vtxTableConfig()->powerLabels[powerLevel - 1][i]);
}
} else {
return MSP_RESULT_ERROR;
}
}
break;
#endif // USE_VTX_TABLE
#ifdef USE_SIMPLIFIED_TUNING
// Added in MSP API 1.44
case MSP_SIMPLIFIED_TUNING:
{
sbufWriteU8(dst, currentPidProfile->simplified_pids_mode);
sbufWriteU8(dst, currentPidProfile->simplified_master_multiplier);
sbufWriteU8(dst, currentPidProfile->simplified_roll_pitch_ratio);
sbufWriteU8(dst, currentPidProfile->simplified_i_gain);
sbufWriteU8(dst, currentPidProfile->simplified_pd_ratio);
sbufWriteU8(dst, currentPidProfile->simplified_pd_gain);
sbufWriteU8(dst, currentPidProfile->simplified_dmin_ratio);
sbufWriteU8(dst, currentPidProfile->simplified_feedforward_gain);
sbufWriteU8(dst, currentPidProfile->simplified_dterm_filter);
sbufWriteU8(dst, currentPidProfile->simplified_dterm_filter_multiplier);
sbufWriteU8(dst, gyroConfig()->simplified_gyro_filter);
sbufWriteU8(dst, gyroConfig()->simplified_gyro_filter_multiplier);
}
break;
#endif
case MSP_RESET_CONF:
{
#if defined(USE_CUSTOM_DEFAULTS)
defaultsType_e defaultsType = DEFAULTS_TYPE_CUSTOM;
#endif
if (sbufBytesRemaining(src) >= 1) {
// Added in MSP API 1.42
#if defined(USE_CUSTOM_DEFAULTS)
defaultsType = sbufReadU8(src);
#else
sbufReadU8(src);
#endif
}
bool success = false;
if (!ARMING_FLAG(ARMED)) {
#if defined(USE_CUSTOM_DEFAULTS)
success = resetEEPROM(defaultsType == DEFAULTS_TYPE_CUSTOM);
#else
success = resetEEPROM(false);
#endif
if (success && mspPostProcessFn) {
rebootMode = MSP_REBOOT_FIRMWARE;
*mspPostProcessFn = mspRebootFn;
}
}
// Added in API version 1.42
sbufWriteU8(dst, success);
}
break;
default:
return MSP_RESULT_CMD_UNKNOWN;
}
return MSP_RESULT_ACK;
}
#ifdef USE_FLASHFS
static void mspFcDataFlashReadCommand(sbuf_t *dst, sbuf_t *src)
{
const unsigned int dataSize = sbufBytesRemaining(src);
const uint32_t readAddress = sbufReadU32(src);
uint16_t readLength;
bool allowCompression = false;
bool useLegacyFormat;
if (dataSize >= sizeof(uint32_t) + sizeof(uint16_t)) {
readLength = sbufReadU16(src);
if (sbufBytesRemaining(src)) {
allowCompression = sbufReadU8(src);
}
useLegacyFormat = false;
} else {
readLength = 128;
useLegacyFormat = true;
}
serializeDataflashReadReply(dst, readAddress, readLength, useLegacyFormat, allowCompression);
}
#endif
static mspResult_e mspProcessInCommand(mspDescriptor_t srcDesc, int16_t cmdMSP, sbuf_t *src)
{
uint32_t i;
uint8_t value;
const unsigned int dataSize = sbufBytesRemaining(src);
switch (cmdMSP) {
case MSP_SELECT_SETTING:
value = sbufReadU8(src);
if ((value & RATEPROFILE_MASK) == 0) {
if (!ARMING_FLAG(ARMED)) {
if (value >= PID_PROFILE_COUNT) {
value = 0;
}
changePidProfile(value);
}
} else {
value = value & ~RATEPROFILE_MASK;
if (value >= CONTROL_RATE_PROFILE_COUNT) {
value = 0;
}
changeControlRateProfile(value);
}
break;
case MSP_COPY_PROFILE:
value = sbufReadU8(src); // 0 = pid profile, 1 = control rate profile
uint8_t dstProfileIndex = sbufReadU8(src);
uint8_t srcProfileIndex = sbufReadU8(src);
if (value == 0) {
pidCopyProfile(dstProfileIndex, srcProfileIndex);
}
else if (value == 1) {
copyControlRateProfile(dstProfileIndex, srcProfileIndex);
}
break;
#if defined(USE_GPS) || defined(USE_MAG)
case MSP_SET_HEADING:
magHold = sbufReadU16(src);
break;
#endif
case MSP_SET_RAW_RC:
#ifdef USE_RX_MSP
{
uint8_t channelCount = dataSize / sizeof(uint16_t);
if (channelCount > MAX_SUPPORTED_RC_CHANNEL_COUNT) {
return MSP_RESULT_ERROR;
} else {
uint16_t frame[MAX_SUPPORTED_RC_CHANNEL_COUNT];
for (int i = 0; i < channelCount; i++) {
frame[i] = sbufReadU16(src);
}
rxMspFrameReceive(frame, channelCount);
}
}
#endif
break;
#if defined(USE_ACC)
case MSP_SET_ACC_TRIM:
accelerometerConfigMutable()->accelerometerTrims.values.pitch = sbufReadU16(src);
accelerometerConfigMutable()->accelerometerTrims.values.roll = sbufReadU16(src);
break;
#endif
case MSP_SET_ARMING_CONFIG:
armingConfigMutable()->auto_disarm_delay = sbufReadU8(src);
sbufReadU8(src); // reserved
if (sbufBytesRemaining(src)) {
imuConfigMutable()->small_angle = sbufReadU8(src);
}
break;
case MSP_SET_PID_CONTROLLER:
break;
case MSP_SET_PID:
for (int i = 0; i < PID_ITEM_COUNT; i++) {
currentPidProfile->pid[i].P = sbufReadU8(src);
currentPidProfile->pid[i].I = sbufReadU8(src);
currentPidProfile->pid[i].D = sbufReadU8(src);
}
pidInitConfig(currentPidProfile);
break;
case MSP_SET_MODE_RANGE:
i = sbufReadU8(src);
if (i < MAX_MODE_ACTIVATION_CONDITION_COUNT) {
modeActivationCondition_t *mac = modeActivationConditionsMutable(i);
i = sbufReadU8(src);
const box_t *box = findBoxByPermanentId(i);
if (box) {
mac->modeId = box->boxId;
mac->auxChannelIndex = sbufReadU8(src);
mac->range.startStep = sbufReadU8(src);
mac->range.endStep = sbufReadU8(src);
if (sbufBytesRemaining(src) != 0) {
mac->modeLogic = sbufReadU8(src);
i = sbufReadU8(src);
mac->linkedTo = findBoxByPermanentId(i)->boxId;
}
rcControlsInit();
} else {
return MSP_RESULT_ERROR;
}
} else {
return MSP_RESULT_ERROR;
}
break;
case MSP_SET_ADJUSTMENT_RANGE:
i = sbufReadU8(src);
if (i < MAX_ADJUSTMENT_RANGE_COUNT) {
adjustmentRange_t *adjRange = adjustmentRangesMutable(i);
sbufReadU8(src); // was adjRange->adjustmentIndex
adjRange->auxChannelIndex = sbufReadU8(src);
adjRange->range.startStep = sbufReadU8(src);
adjRange->range.endStep = sbufReadU8(src);
adjRange->adjustmentConfig = sbufReadU8(src);
adjRange->auxSwitchChannelIndex = sbufReadU8(src);
activeAdjustmentRangeReset();
} else {
return MSP_RESULT_ERROR;
}
break;
case MSP_SET_RC_TUNING:
if (sbufBytesRemaining(src) >= 10) {
value = sbufReadU8(src);
if (currentControlRateProfile->rcRates[FD_PITCH] == currentControlRateProfile->rcRates[FD_ROLL]) {
currentControlRateProfile->rcRates[FD_PITCH] = value;
}
currentControlRateProfile->rcRates[FD_ROLL] = value;
value = sbufReadU8(src);
if (currentControlRateProfile->rcExpo[FD_PITCH] == currentControlRateProfile->rcExpo[FD_ROLL]) {
currentControlRateProfile->rcExpo[FD_PITCH] = value;
}
currentControlRateProfile->rcExpo[FD_ROLL] = value;
for (int i = 0; i < 3; i++) {
currentControlRateProfile->rates[i] = sbufReadU8(src);
}
value = sbufReadU8(src);
currentControlRateProfile->dynThrPID = MIN(value, CONTROL_RATE_CONFIG_TPA_MAX);
currentControlRateProfile->thrMid8 = sbufReadU8(src);
currentControlRateProfile->thrExpo8 = sbufReadU8(src);
currentControlRateProfile->tpa_breakpoint = sbufReadU16(src);
if (sbufBytesRemaining(src) >= 1) {
currentControlRateProfile->rcExpo[FD_YAW] = sbufReadU8(src);
}
if (sbufBytesRemaining(src) >= 1) {
currentControlRateProfile->rcRates[FD_YAW] = sbufReadU8(src);
}
if (sbufBytesRemaining(src) >= 1) {
currentControlRateProfile->rcRates[FD_PITCH] = sbufReadU8(src);
}
if (sbufBytesRemaining(src) >= 1) {
currentControlRateProfile->rcExpo[FD_PITCH] = sbufReadU8(src);
}
// version 1.41
if (sbufBytesRemaining(src) >= 2) {
currentControlRateProfile->throttle_limit_type = sbufReadU8(src);
currentControlRateProfile->throttle_limit_percent = sbufReadU8(src);
}
// version 1.42
if (sbufBytesRemaining(src) >= 6) {
currentControlRateProfile->rate_limit[FD_ROLL] = sbufReadU16(src);
currentControlRateProfile->rate_limit[FD_PITCH] = sbufReadU16(src);
currentControlRateProfile->rate_limit[FD_YAW] = sbufReadU16(src);
}
// version 1.43
if (sbufBytesRemaining(src) >= 1) {
currentControlRateProfile->rates_type = sbufReadU8(src);
}
initRcProcessing();
} else {
return MSP_RESULT_ERROR;
}
break;
case MSP_SET_MOTOR_CONFIG:
motorConfigMutable()->minthrottle = sbufReadU16(src);
motorConfigMutable()->maxthrottle = sbufReadU16(src);
motorConfigMutable()->mincommand = sbufReadU16(src);
// version 1.42
if (sbufBytesRemaining(src) >= 2) {
motorConfigMutable()->motorPoleCount = sbufReadU8(src);
#if defined(USE_DSHOT_TELEMETRY)
motorConfigMutable()->dev.useDshotTelemetry = sbufReadU8(src);
#else
sbufReadU8(src);
#endif
}
break;
#ifdef USE_GPS
case MSP_SET_GPS_CONFIG:
gpsConfigMutable()->provider = sbufReadU8(src);
gpsConfigMutable()->sbasMode = sbufReadU8(src);
gpsConfigMutable()->autoConfig = sbufReadU8(src);
gpsConfigMutable()->autoBaud = sbufReadU8(src);
if (sbufBytesRemaining(src) >= 2) {
// Added in API version 1.43
gpsConfigMutable()->gps_set_home_point_once = sbufReadU8(src);
gpsConfigMutable()->gps_ublox_use_galileo = sbufReadU8(src);
}
break;
#ifdef USE_GPS_RESCUE
case MSP_SET_GPS_RESCUE:
gpsRescueConfigMutable()->angle = sbufReadU16(src);
gpsRescueConfigMutable()->initialAltitudeM = sbufReadU16(src);
gpsRescueConfigMutable()->descentDistanceM = sbufReadU16(src);
gpsRescueConfigMutable()->rescueGroundspeed = sbufReadU16(src);
gpsRescueConfigMutable()->throttleMin = sbufReadU16(src);
gpsRescueConfigMutable()->throttleMax = sbufReadU16(src);
gpsRescueConfigMutable()->throttleHover = sbufReadU16(src);
gpsRescueConfigMutable()->sanityChecks = sbufReadU8(src);
gpsRescueConfigMutable()->minSats = sbufReadU8(src);
if (sbufBytesRemaining(src) >= 6) {
// Added in API version 1.43
gpsRescueConfigMutable()->ascendRate = sbufReadU16(src);
gpsRescueConfigMutable()->descendRate = sbufReadU16(src);
gpsRescueConfigMutable()->allowArmingWithoutFix = sbufReadU8(src);
gpsRescueConfigMutable()->altitudeMode = sbufReadU8(src);
}
if (sbufBytesRemaining(src) >= 2) {
// Added in API version 1.44
gpsRescueConfigMutable()->minRescueDth = sbufReadU16(src);
}
break;
case MSP_SET_GPS_RESCUE_PIDS:
gpsRescueConfigMutable()->throttleP = sbufReadU16(src);
gpsRescueConfigMutable()->throttleI = sbufReadU16(src);
gpsRescueConfigMutable()->throttleD = sbufReadU16(src);
gpsRescueConfigMutable()->velP = sbufReadU16(src);
gpsRescueConfigMutable()->velI = sbufReadU16(src);
gpsRescueConfigMutable()->velD = sbufReadU16(src);
gpsRescueConfigMutable()->yawP = sbufReadU16(src);
break;
#endif
#endif
case MSP_SET_MOTOR:
for (int i = 0; i < getMotorCount(); i++) {
motor_disarmed[i] = motorConvertFromExternal(sbufReadU16(src));
}
break;
case MSP_SET_SERVO_CONFIGURATION:
#ifdef USE_SERVOS
if (dataSize != 1 + 12) {
return MSP_RESULT_ERROR;
}
i = sbufReadU8(src);
if (i >= MAX_SUPPORTED_SERVOS) {
return MSP_RESULT_ERROR;
} else {
servoParamsMutable(i)->min = sbufReadU16(src);
servoParamsMutable(i)->max = sbufReadU16(src);
servoParamsMutable(i)->middle = sbufReadU16(src);
servoParamsMutable(i)->rate = sbufReadU8(src);
servoParamsMutable(i)->forwardFromChannel = sbufReadU8(src);
servoParamsMutable(i)->reversedSources = sbufReadU32(src);
}
#endif
break;
case MSP_SET_SERVO_MIX_RULE:
#ifdef USE_SERVOS
i = sbufReadU8(src);
if (i >= MAX_SERVO_RULES) {
return MSP_RESULT_ERROR;
} else {
customServoMixersMutable(i)->targetChannel = sbufReadU8(src);
customServoMixersMutable(i)->inputSource = sbufReadU8(src);
customServoMixersMutable(i)->rate = sbufReadU8(src);
customServoMixersMutable(i)->speed = sbufReadU8(src);
customServoMixersMutable(i)->min = sbufReadU8(src);
customServoMixersMutable(i)->max = sbufReadU8(src);
customServoMixersMutable(i)->box = sbufReadU8(src);
loadCustomServoMixer();
}
#endif
break;
case MSP_SET_MOTOR_3D_CONFIG:
flight3DConfigMutable()->deadband3d_low = sbufReadU16(src);
flight3DConfigMutable()->deadband3d_high = sbufReadU16(src);
flight3DConfigMutable()->neutral3d = sbufReadU16(src);
break;
case MSP_SET_RC_DEADBAND:
rcControlsConfigMutable()->deadband = sbufReadU8(src);
rcControlsConfigMutable()->yaw_deadband = sbufReadU8(src);
rcControlsConfigMutable()->alt_hold_deadband = sbufReadU8(src);
flight3DConfigMutable()->deadband3d_throttle = sbufReadU16(src);
break;
case MSP_SET_RESET_CURR_PID:
resetPidProfile(currentPidProfile);
break;
case MSP_SET_SENSOR_ALIGNMENT: {
// maintain backwards compatibility for API < 1.41
const uint8_t gyroAlignment = sbufReadU8(src);
sbufReadU8(src); // discard deprecated acc_align
#if defined(USE_MAG)
compassConfigMutable()->mag_alignment = sbufReadU8(src);
#else
sbufReadU8(src);
#endif
if (sbufBytesRemaining(src) >= 3) {
// API >= 1.41 - support the gyro_to_use and alignment for gyros 1 & 2
#ifdef USE_MULTI_GYRO
gyroConfigMutable()->gyro_to_use = sbufReadU8(src);
gyroDeviceConfigMutable(0)->alignment = sbufReadU8(src);
gyroDeviceConfigMutable(1)->alignment = sbufReadU8(src);
#else
sbufReadU8(src); // unused gyro_to_use
gyroDeviceConfigMutable(0)->alignment = sbufReadU8(src);
sbufReadU8(src); // unused gyro_2_sensor_align
#endif
} else {
// maintain backwards compatibility for API < 1.41
#ifdef USE_MULTI_GYRO
switch (gyroConfig()->gyro_to_use) {
case GYRO_CONFIG_USE_GYRO_2:
gyroDeviceConfigMutable(1)->alignment = gyroAlignment;
break;
case GYRO_CONFIG_USE_GYRO_BOTH:
// For dual-gyro in "BOTH" mode we'll only update gyro 0
default:
gyroDeviceConfigMutable(0)->alignment = gyroAlignment;
break;
}
#else
gyroDeviceConfigMutable(0)->alignment = gyroAlignment;
#endif
}
break;
}
case MSP_SET_ADVANCED_CONFIG:
sbufReadU8(src); // was gyroConfigMutable()->gyro_sync_denom - removed in API 1.43
pidConfigMutable()->pid_process_denom = sbufReadU8(src);
motorConfigMutable()->dev.useUnsyncedPwm = sbufReadU8(src);
motorConfigMutable()->dev.motorPwmProtocol = sbufReadU8(src);
motorConfigMutable()->dev.motorPwmRate = sbufReadU16(src);
if (sbufBytesRemaining(src) >= 2) {
motorConfigMutable()->digitalIdleOffsetValue = sbufReadU16(src);
}
if (sbufBytesRemaining(src)) {
sbufReadU8(src); // DEPRECATED: gyro_use_32khz
}
if (sbufBytesRemaining(src)) {
motorConfigMutable()->dev.motorPwmInversion = sbufReadU8(src);
}
if (sbufBytesRemaining(src) >= 8) {
gyroConfigMutable()->gyro_to_use = sbufReadU8(src);
gyroConfigMutable()->gyro_high_fsr = sbufReadU8(src);
gyroConfigMutable()->gyroMovementCalibrationThreshold = sbufReadU8(src);
gyroConfigMutable()->gyroCalibrationDuration = sbufReadU16(src);
gyroConfigMutable()->gyro_offset_yaw = sbufReadU16(src);
gyroConfigMutable()->checkOverflow = sbufReadU8(src);
}
if (sbufBytesRemaining(src) >= 1) {
//Added in MSP API 1.42
systemConfigMutable()->debug_mode = sbufReadU8(src);
}
validateAndFixGyroConfig();
break;
case MSP_SET_FILTER_CONFIG:
gyroConfigMutable()->gyro_lowpass_hz = sbufReadU8(src);
currentPidProfile->dterm_lowpass_hz = sbufReadU16(src);
currentPidProfile->yaw_lowpass_hz = sbufReadU16(src);
if (sbufBytesRemaining(src) >= 8) {
gyroConfigMutable()->gyro_soft_notch_hz_1 = sbufReadU16(src);
gyroConfigMutable()->gyro_soft_notch_cutoff_1 = sbufReadU16(src);
currentPidProfile->dterm_notch_hz = sbufReadU16(src);
currentPidProfile->dterm_notch_cutoff = sbufReadU16(src);
}
if (sbufBytesRemaining(src) >= 4) {
gyroConfigMutable()->gyro_soft_notch_hz_2 = sbufReadU16(src);
gyroConfigMutable()->gyro_soft_notch_cutoff_2 = sbufReadU16(src);
}
if (sbufBytesRemaining(src) >= 1) {
currentPidProfile->dterm_filter_type = sbufReadU8(src);
}
if (sbufBytesRemaining(src) >= 10) {
gyroConfigMutable()->gyro_hardware_lpf = sbufReadU8(src);
sbufReadU8(src); // DEPRECATED: gyro_32khz_hardware_lpf
gyroConfigMutable()->gyro_lowpass_hz = sbufReadU16(src);
gyroConfigMutable()->gyro_lowpass2_hz = sbufReadU16(src);
gyroConfigMutable()->gyro_lowpass_type = sbufReadU8(src);
gyroConfigMutable()->gyro_lowpass2_type = sbufReadU8(src);
currentPidProfile->dterm_lowpass2_hz = sbufReadU16(src);
}
if (sbufBytesRemaining(src) >= 9) {
// Added in MSP API 1.41
currentPidProfile->dterm_filter2_type = sbufReadU8(src);
#if defined(USE_DYN_LPF)
gyroConfigMutable()->dyn_lpf_gyro_min_hz = sbufReadU16(src);
gyroConfigMutable()->dyn_lpf_gyro_max_hz = sbufReadU16(src);
currentPidProfile->dyn_lpf_dterm_min_hz = sbufReadU16(src);
currentPidProfile->dyn_lpf_dterm_max_hz = sbufReadU16(src);
#else
sbufReadU16(src);
sbufReadU16(src);
sbufReadU16(src);
sbufReadU16(src);
#endif
}
if (sbufBytesRemaining(src) >= 8) {
// Added in MSP API 1.42
#if defined(USE_GYRO_DATA_ANALYSE)
sbufReadU8(src); // DEPRECATED 1.43: dyn_notch_range
sbufReadU8(src); // DEPRECATED 1.44: dyn_notch_width_percent
gyroConfigMutable()->dyn_notch_q = sbufReadU16(src);
gyroConfigMutable()->dyn_notch_min_hz = sbufReadU16(src);
#else
sbufReadU8(src);
sbufReadU8(src);
sbufReadU16(src);
sbufReadU16(src);
#endif
#if defined(USE_RPM_FILTER)
rpmFilterConfigMutable()->gyro_rpm_notch_harmonics = sbufReadU8(src);
rpmFilterConfigMutable()->gyro_rpm_notch_min = sbufReadU8(src);
#else
sbufReadU8(src);
sbufReadU8(src);
#endif
}
if (sbufBytesRemaining(src) >= 2) {
#if defined(USE_GYRO_DATA_ANALYSE)
// Added in MSP API 1.43
gyroConfigMutable()->dyn_notch_max_hz = sbufReadU16(src);
#else
sbufReadU16(src);
#endif
}
if (sbufBytesRemaining(src) >= 2) {
// Added in MSP API 1.44
#if defined(USE_DYN_LPF)
currentPidProfile->dyn_lpf_curve_expo = sbufReadU8(src);
#else
sbufReadU8(src);
#endif
#if defined(USE_GYRO_DATA_ANALYSE)
gyroConfigMutable()->dyn_notch_count = sbufReadU8(src);
#else
sbufReadU8(src);
#endif
}
// reinitialize the gyro filters with the new values
validateAndFixGyroConfig();
gyroInitFilters();
// reinitialize the PID filters with the new values
pidInitFilters(currentPidProfile);
break;
case MSP_SET_PID_ADVANCED:
sbufReadU16(src);
sbufReadU16(src);
sbufReadU16(src); // was pidProfile.yaw_p_limit
sbufReadU8(src); // reserved
sbufReadU8(src); // was vbatPidCompensation
currentPidProfile->feedforwardTransition = sbufReadU8(src);
sbufReadU8(src); // was low byte of currentPidProfile->dtermSetpointWeight
sbufReadU8(src); // reserved
sbufReadU8(src); // reserved
sbufReadU8(src); // reserved
currentPidProfile->rateAccelLimit = sbufReadU16(src);
currentPidProfile->yawRateAccelLimit = sbufReadU16(src);
if (sbufBytesRemaining(src) >= 2) {
currentPidProfile->levelAngleLimit = sbufReadU8(src);
sbufReadU8(src); // was pidProfile.levelSensitivity
}
if (sbufBytesRemaining(src) >= 4) {
currentPidProfile->itermThrottleThreshold = sbufReadU16(src);
currentPidProfile->itermAcceleratorGain = sbufReadU16(src);
}
if (sbufBytesRemaining(src) >= 2) {
sbufReadU16(src); // was currentPidProfile->dtermSetpointWeight
}
if (sbufBytesRemaining(src) >= 14) {
// Added in MSP API 1.40
currentPidProfile->iterm_rotation = sbufReadU8(src);
sbufReadU8(src); // was currentPidProfile->smart_feedforward
#if defined(USE_ITERM_RELAX)
currentPidProfile->iterm_relax = sbufReadU8(src);
currentPidProfile->iterm_relax_type = sbufReadU8(src);
#else
sbufReadU8(src);
sbufReadU8(src);
#endif
#if defined(USE_ABSOLUTE_CONTROL)
currentPidProfile->abs_control_gain = sbufReadU8(src);
#else
sbufReadU8(src);
#endif
#if defined(USE_THROTTLE_BOOST)
currentPidProfile->throttle_boost = sbufReadU8(src);
#else
sbufReadU8(src);
#endif
#if defined(USE_ACRO_TRAINER)
currentPidProfile->acro_trainer_angle_limit = sbufReadU8(src);
#else
sbufReadU8(src);
#endif
// PID controller feedforward terms
currentPidProfile->pid[PID_ROLL].F = sbufReadU16(src);
currentPidProfile->pid[PID_PITCH].F = sbufReadU16(src);
currentPidProfile->pid[PID_YAW].F = sbufReadU16(src);
currentPidProfile->antiGravityMode = sbufReadU8(src);
}
if (sbufBytesRemaining(src) >= 7) {
// Added in MSP API 1.41
#if defined(USE_D_MIN)
currentPidProfile->d_min[PID_ROLL] = sbufReadU8(src);
currentPidProfile->d_min[PID_PITCH] = sbufReadU8(src);
currentPidProfile->d_min[PID_YAW] = sbufReadU8(src);
currentPidProfile->d_min_gain = sbufReadU8(src);
currentPidProfile->d_min_advance = sbufReadU8(src);
#else
sbufReadU8(src);
sbufReadU8(src);
sbufReadU8(src);
sbufReadU8(src);
sbufReadU8(src);
#endif
#if defined(USE_INTEGRATED_YAW_CONTROL)
currentPidProfile->use_integrated_yaw = sbufReadU8(src);
currentPidProfile->integrated_yaw_relax = sbufReadU8(src);
#else
sbufReadU8(src);
sbufReadU8(src);
#endif
}
if(sbufBytesRemaining(src) >= 1) {
// Added in MSP API 1.42
#if defined(USE_ITERM_RELAX)
currentPidProfile->iterm_relax_cutoff = sbufReadU8(src);
#else
sbufReadU8(src);
#endif
}
if (sbufBytesRemaining(src) >= 3) {
// Added in MSP API 1.43
currentPidProfile->motor_output_limit = sbufReadU8(src);
currentPidProfile->auto_profile_cell_count = sbufReadU8(src);
#if defined(USE_DYN_IDLE)
currentPidProfile->dyn_idle_min_rpm = sbufReadU8(src);
#else
sbufReadU8(src);
#endif
}
if (sbufBytesRemaining(src) >= 5) {
// Added in MSP API 1.44
#if defined(USE_FEEDFORWARD)
currentPidProfile->feedforward_averaging = sbufReadU8(src);
currentPidProfile->feedforward_smooth_factor = sbufReadU8(src);
#else
sbufReadU8(src);
sbufReadU8(src);
#endif
currentPidProfile->feedforward_boost = sbufReadU8(src);
#if defined(USE_BATTERY_VOLTAGE_SAG_COMPENSATION)
currentPidProfile->vbat_sag_compensation = sbufReadU8(src);
#else
sbufReadU8(src);
#endif
#if defined(USE_THRUST_LINEARIZATION)
currentPidProfile->thrustLinearization = sbufReadU8(src);
#else
sbufReadU8(src);
#endif
}
pidInitConfig(currentPidProfile);
break;
case MSP_SET_SENSOR_CONFIG:
#if defined(USE_ACC)
accelerometerConfigMutable()->acc_hardware = sbufReadU8(src);
#else
sbufReadU8(src);
#endif
#if defined(USE_BARO)
barometerConfigMutable()->baro_hardware = sbufReadU8(src);
#else
sbufReadU8(src);
#endif
#if defined(USE_MAG)
compassConfigMutable()->mag_hardware = sbufReadU8(src);
#else
sbufReadU8(src);
#endif
break;
#ifdef USE_ACC
case MSP_ACC_CALIBRATION:
if (!ARMING_FLAG(ARMED))
accStartCalibration();
break;
#endif
#if defined(USE_MAG)
case MSP_MAG_CALIBRATION:
if (!ARMING_FLAG(ARMED)) {
compassStartCalibration();
}
#endif
break;
case MSP_EEPROM_WRITE:
if (ARMING_FLAG(ARMED)) {
return MSP_RESULT_ERROR;
}
writeEEPROM();
readEEPROM();
#ifdef USE_VTX_TABLE
if (vtxTableNeedsInit) {
vtxTableNeedsInit = false;
vtxTableInit(); // Reinitialize and refresh the in-memory copies
}
#endif
break;
#ifdef USE_BLACKBOX
case MSP_SET_BLACKBOX_CONFIG:
// Don't allow config to be updated while Blackbox is logging
if (blackboxMayEditConfig()) {
blackboxConfigMutable()->device = sbufReadU8(src);
const int rateNum = sbufReadU8(src); // was rate_num
const int rateDenom = sbufReadU8(src); // was rate_denom
uint16_t pRatio = 0;
if (sbufBytesRemaining(src) >= 2) {
// p_ratio specified, so use it directly
pRatio = sbufReadU16(src);
} else {
// p_ratio not specified in MSP, so calculate it from old rateNum and rateDenom
pRatio = blackboxCalculatePDenom(rateNum, rateDenom);
}
if (sbufBytesRemaining(src) >= 1) {
// sample_rate specified, so use it directly
blackboxConfigMutable()->sample_rate = sbufReadU8(src);
} else {
// sample_rate not specified in MSP, so calculate it from old p_ratio
blackboxConfigMutable()->sample_rate = blackboxCalculateSampleRate(pRatio);
}
}
break;
#endif
#ifdef USE_VTX_COMMON
case MSP_SET_VTX_CONFIG:
{
vtxDevice_t *vtxDevice = vtxCommonDevice();
vtxDevType_e vtxType = VTXDEV_UNKNOWN;
if (vtxDevice) {
vtxType = vtxCommonGetDeviceType(vtxDevice);
}
uint16_t newFrequency = sbufReadU16(src);
if (newFrequency <= VTXCOMMON_MSP_BANDCHAN_CHKVAL) { // Value is band and channel
const uint8_t newBand = (newFrequency / 8) + 1;
const uint8_t newChannel = (newFrequency % 8) + 1;
vtxSettingsConfigMutable()->band = newBand;
vtxSettingsConfigMutable()->channel = newChannel;
vtxSettingsConfigMutable()->freq = vtxCommonLookupFrequency(vtxDevice, newBand, newChannel);
} else if (newFrequency <= VTX_SETTINGS_MAX_FREQUENCY_MHZ) { // Value is frequency in MHz
vtxSettingsConfigMutable()->band = 0;
vtxSettingsConfigMutable()->freq = newFrequency;
}
if (sbufBytesRemaining(src) >= 2) {
vtxSettingsConfigMutable()->power = sbufReadU8(src);
const uint8_t newPitmode = sbufReadU8(src);
if (vtxType != VTXDEV_UNKNOWN) {
// Delegate pitmode to vtx directly
unsigned vtxCurrentStatus;
vtxCommonGetStatus(vtxDevice, &vtxCurrentStatus);
if ((bool)(vtxCurrentStatus & VTX_STATUS_PIT_MODE) != (bool)newPitmode) {
vtxCommonSetPitMode(vtxDevice, newPitmode);
}
}
}
if (sbufBytesRemaining(src)) {
vtxSettingsConfigMutable()->lowPowerDisarm = sbufReadU8(src);
}
// API version 1.42 - this parameter kept separate since clients may already be supplying
if (sbufBytesRemaining(src) >= 2) {
vtxSettingsConfigMutable()->pitModeFreq = sbufReadU16(src);
}
// API version 1.42 - extensions for non-encoded versions of the band, channel or frequency
if (sbufBytesRemaining(src) >= 4) {
// Added standalone values for band, channel and frequency to move
// away from the flawed encoded combined method originally implemented.
uint8_t newBand = sbufReadU8(src);
const uint8_t newChannel = sbufReadU8(src);
uint16_t newFreq = sbufReadU16(src);
if (newBand) {
newFreq = vtxCommonLookupFrequency(vtxDevice, newBand, newChannel);
}
vtxSettingsConfigMutable()->band = newBand;
vtxSettingsConfigMutable()->channel = newChannel;
vtxSettingsConfigMutable()->freq = newFreq;
}
// API version 1.42 - extensions for vtxtable support
if (sbufBytesRemaining(src) >= 4) {
#ifdef USE_VTX_TABLE
const uint8_t newBandCount = sbufReadU8(src);
const uint8_t newChannelCount = sbufReadU8(src);
const uint8_t newPowerCount = sbufReadU8(src);
if ((newBandCount > VTX_TABLE_MAX_BANDS) ||
(newChannelCount > VTX_TABLE_MAX_CHANNELS) ||
(newPowerCount > VTX_TABLE_MAX_POWER_LEVELS)) {
return MSP_RESULT_ERROR;
}
vtxTableConfigMutable()->bands = newBandCount;
vtxTableConfigMutable()->channels = newChannelCount;
vtxTableConfigMutable()->powerLevels = newPowerCount;
// boolean to determine whether the vtxtable should be cleared in
// expectation that the detailed band/channel and power level messages
// will follow to repopulate the tables
if (sbufReadU8(src)) {
for (int i = 0; i < VTX_TABLE_MAX_BANDS; i++) {
vtxTableConfigClearBand(vtxTableConfigMutable(), i);
vtxTableConfigClearChannels(vtxTableConfigMutable(), i, 0);
}
vtxTableConfigClearPowerLabels(vtxTableConfigMutable(), 0);
vtxTableConfigClearPowerValues(vtxTableConfigMutable(), 0);
}
#else
sbufReadU8(src);
sbufReadU8(src);
sbufReadU8(src);
sbufReadU8(src);
#endif
}
}
break;
#endif
#ifdef USE_VTX_TABLE
case MSP_SET_VTXTABLE_BAND:
{
char bandName[VTX_TABLE_BAND_NAME_LENGTH + 1];
memset(bandName, 0, VTX_TABLE_BAND_NAME_LENGTH + 1);
uint16_t frequencies[VTX_TABLE_MAX_CHANNELS];
const uint8_t band = sbufReadU8(src);
const uint8_t bandNameLength = sbufReadU8(src);
for (int i = 0; i < bandNameLength; i++) {
const char nameChar = sbufReadU8(src);
if (i < VTX_TABLE_BAND_NAME_LENGTH) {
bandName[i] = toupper(nameChar);
}
}
const char bandLetter = toupper(sbufReadU8(src));
const bool isFactoryBand = (bool)sbufReadU8(src);
const uint8_t channelCount = sbufReadU8(src);
for (int i = 0; i < channelCount; i++) {
const uint16_t frequency = sbufReadU16(src);
if (i < vtxTableConfig()->channels) {
frequencies[i] = frequency;
}
}
if (band > 0 && band <= vtxTableConfig()->bands) {
vtxTableStrncpyWithPad(vtxTableConfigMutable()->bandNames[band - 1], bandName, VTX_TABLE_BAND_NAME_LENGTH);
vtxTableConfigMutable()->bandLetters[band - 1] = bandLetter;
vtxTableConfigMutable()->isFactoryBand[band - 1] = isFactoryBand;
for (int i = 0; i < vtxTableConfig()->channels; i++) {
vtxTableConfigMutable()->frequency[band - 1][i] = frequencies[i];
}
// If this is the currently selected band then reset the frequency
if (band == vtxSettingsConfig()->band) {
uint16_t newFreq = 0;
if (vtxSettingsConfig()->channel > 0 && vtxSettingsConfig()->channel <= vtxTableConfig()->channels) {
newFreq = frequencies[vtxSettingsConfig()->channel - 1];
}
vtxSettingsConfigMutable()->freq = newFreq;
}
vtxTableNeedsInit = true; // reinintialize vtxtable after eeprom write
} else {
return MSP_RESULT_ERROR;
}
}
break;
case MSP_SET_VTXTABLE_POWERLEVEL:
{
char powerLevelLabel[VTX_TABLE_POWER_LABEL_LENGTH + 1];
memset(powerLevelLabel, 0, VTX_TABLE_POWER_LABEL_LENGTH + 1);
const uint8_t powerLevel = sbufReadU8(src);
const uint16_t powerValue = sbufReadU16(src);
const uint8_t powerLevelLabelLength = sbufReadU8(src);
for (int i = 0; i < powerLevelLabelLength; i++) {
const char labelChar = sbufReadU8(src);
if (i < VTX_TABLE_POWER_LABEL_LENGTH) {
powerLevelLabel[i] = toupper(labelChar);
}
}
if (powerLevel > 0 && powerLevel <= vtxTableConfig()->powerLevels) {
vtxTableConfigMutable()->powerValues[powerLevel - 1] = powerValue;
vtxTableStrncpyWithPad(vtxTableConfigMutable()->powerLabels[powerLevel - 1], powerLevelLabel, VTX_TABLE_POWER_LABEL_LENGTH);
vtxTableNeedsInit = true; // reinintialize vtxtable after eeprom write
} else {
return MSP_RESULT_ERROR;
}
}
break;
#endif
case MSP2_SET_MOTOR_OUTPUT_REORDERING:
{
const uint8_t arraySize = sbufReadU8(src);
for (unsigned i = 0; i < MAX_SUPPORTED_MOTORS; i++) {
uint8_t value = i;
if (i < arraySize) {
value = sbufReadU8(src);
}
motorConfigMutable()->dev.motorOutputReordering[i] = value;
}
}
break;
#ifdef USE_DSHOT
case MSP2_SEND_DSHOT_COMMAND:
{
const bool armed = ARMING_FLAG(ARMED);
if (!armed) {
const uint8_t commandType = sbufReadU8(src);
const uint8_t motorIndex = sbufReadU8(src);
const uint8_t commandCount = sbufReadU8(src);
if (DSHOT_CMD_TYPE_BLOCKING == commandType) {
motorDisable();
}
for (uint8_t i = 0; i < commandCount; i++) {
const uint8_t commandIndex = sbufReadU8(src);
dshotCommandWrite(motorIndex, getMotorCount(), commandIndex, commandType);
}
if (DSHOT_CMD_TYPE_BLOCKING == commandType) {
motorEnable();
}
}
}
break;
#endif
#ifdef USE_SIMPLIFIED_TUNING
// Added in MSP API 1.44
case MSP_SET_SIMPLIFIED_TUNING:
currentPidProfile->simplified_pids_mode = sbufReadU8(src);
currentPidProfile->simplified_master_multiplier = sbufReadU8(src);
currentPidProfile->simplified_roll_pitch_ratio = sbufReadU8(src);
currentPidProfile->simplified_i_gain = sbufReadU8(src);
currentPidProfile->simplified_pd_ratio = sbufReadU8(src);
currentPidProfile->simplified_pd_gain = sbufReadU8(src);
currentPidProfile->simplified_dmin_ratio = sbufReadU8(src);
currentPidProfile->simplified_feedforward_gain = sbufReadU8(src);
currentPidProfile->simplified_dterm_filter = sbufReadU8(src);
currentPidProfile->simplified_dterm_filter_multiplier = sbufReadU8(src);
gyroConfigMutable()->simplified_gyro_filter = sbufReadU8(src);
gyroConfigMutable()->simplified_gyro_filter_multiplier = sbufReadU8(src);
applySimplifiedTuning(currentPidProfile);
break;
#endif
#ifdef USE_CAMERA_CONTROL
case MSP_CAMERA_CONTROL:
{
if (ARMING_FLAG(ARMED)) {
return MSP_RESULT_ERROR;
}
const uint8_t key = sbufReadU8(src);
cameraControlKeyPress(key, 0);
}
break;
#endif
case MSP_SET_ARMING_DISABLED:
{
const uint8_t command = sbufReadU8(src);
uint8_t disableRunawayTakeoff = 0;
#ifndef USE_RUNAWAY_TAKEOFF
UNUSED(disableRunawayTakeoff);
#endif
if (sbufBytesRemaining(src)) {
disableRunawayTakeoff = sbufReadU8(src);
}
if (command) {
mspArmingDisableByDescriptor(srcDesc);
setArmingDisabled(ARMING_DISABLED_MSP);
if (ARMING_FLAG(ARMED)) {
disarm(DISARM_REASON_ARMING_DISABLED);
}
#ifdef USE_RUNAWAY_TAKEOFF
runawayTakeoffTemporaryDisable(false);
#endif
} else {
mspArmingEnableByDescriptor(srcDesc);
if (mspIsMspArmingEnabled()) {
unsetArmingDisabled(ARMING_DISABLED_MSP);
#ifdef USE_RUNAWAY_TAKEOFF
runawayTakeoffTemporaryDisable(disableRunawayTakeoff);
#endif
}
}
}
break;
#ifdef USE_FLASHFS
case MSP_DATAFLASH_ERASE:
flashfsEraseCompletely();
break;
#endif
#ifdef USE_GPS
case MSP_SET_RAW_GPS:
gpsSetFixState(sbufReadU8(src));
gpsSol.numSat = sbufReadU8(src);
gpsSol.llh.lat = sbufReadU32(src);
gpsSol.llh.lon = sbufReadU32(src);
gpsSol.llh.altCm = sbufReadU16(src) * 100; // alt changed from 1m to 0.01m per lsb since MSP API 1.39 by RTH. Received MSP altitudes in 1m per lsb have to upscaled.
gpsSol.groundSpeed = sbufReadU16(src);
GPS_update |= GPS_MSP_UPDATE; // MSP data signalisation to GPS functions
break;
#endif // USE_GPS
case MSP_SET_FEATURE_CONFIG:
featureConfigReplace(sbufReadU32(src));
break;
#ifdef USE_BEEPER
case MSP_SET_BEEPER_CONFIG:
beeperConfigMutable()->beeper_off_flags = sbufReadU32(src);
if (sbufBytesRemaining(src) >= 1) {
beeperConfigMutable()->dshotBeaconTone = sbufReadU8(src);
}
if (sbufBytesRemaining(src) >= 4) {
beeperConfigMutable()->dshotBeaconOffFlags = sbufReadU32(src);
}
break;
#endif
case MSP_SET_BOARD_ALIGNMENT_CONFIG:
boardAlignmentMutable()->rollDegrees = sbufReadU16(src);
boardAlignmentMutable()->pitchDegrees = sbufReadU16(src);
boardAlignmentMutable()->yawDegrees = sbufReadU16(src);
break;
case MSP_SET_MIXER_CONFIG:
#ifndef USE_QUAD_MIXER_ONLY
mixerConfigMutable()->mixerMode = sbufReadU8(src);
#else
sbufReadU8(src);
#endif
if (sbufBytesRemaining(src) >= 1) {
mixerConfigMutable()->yaw_motors_reversed = sbufReadU8(src);
}
break;
case MSP_SET_RX_CONFIG:
rxConfigMutable()->serialrx_provider = sbufReadU8(src);
rxConfigMutable()->maxcheck = sbufReadU16(src);
rxConfigMutable()->midrc = sbufReadU16(src);
rxConfigMutable()->mincheck = sbufReadU16(src);
rxConfigMutable()->spektrum_sat_bind = sbufReadU8(src);
if (sbufBytesRemaining(src) >= 4) {
rxConfigMutable()->rx_min_usec = sbufReadU16(src);
rxConfigMutable()->rx_max_usec = sbufReadU16(src);
}
if (sbufBytesRemaining(src) >= 4) {
sbufReadU8(src); // not required in API 1.44, was rxConfigMutable()->rcInterpolation
sbufReadU8(src); // not required in API 1.44, was rxConfigMutable()->rcInterpolationInterval
rxConfigMutable()->airModeActivateThreshold = (sbufReadU16(src) - 1000) / 10;
}
if (sbufBytesRemaining(src) >= 6) {
#ifdef USE_RX_SPI
rxSpiConfigMutable()->rx_spi_protocol = sbufReadU8(src);
rxSpiConfigMutable()->rx_spi_id = sbufReadU32(src);
rxSpiConfigMutable()->rx_spi_rf_channel_count = sbufReadU8(src);
#else
sbufReadU8(src);
sbufReadU32(src);
sbufReadU8(src);
#endif
}
if (sbufBytesRemaining(src) >= 1) {
rxConfigMutable()->fpvCamAngleDegrees = sbufReadU8(src);
}
if (sbufBytesRemaining(src) >= 6) {
// Added in MSP API 1.40
sbufReadU8(src); // not required in API 1.44, was rxConfigMutable()->rcSmoothingChannels
#if defined(USE_RC_SMOOTHING_FILTER)
sbufReadU8(src); // not required in API 1.44, was rc_smoothing_type
configRebootUpdateCheckU8(&rxConfigMutable()->rc_smoothing_setpoint_cutoff, sbufReadU8(src));
configRebootUpdateCheckU8(&rxConfigMutable()->rc_smoothing_feedforward_cutoff, sbufReadU8(src));
sbufReadU8(src); // not required in API 1.44, was rc_smoothing_input_type
sbufReadU8(src); // not required in API 1.44, was rc_smoothing_derivative_type
#else
sbufReadU8(src);
sbufReadU8(src);
sbufReadU8(src);
sbufReadU8(src);
sbufReadU8(src);
#endif
}
if (sbufBytesRemaining(src) >= 1) {
// Added in MSP API 1.40
// Kept separate from the section above to work around missing Configurator support in version < 10.4.2
#if defined(USE_USB_CDC_HID)
usbDevConfigMutable()->type = sbufReadU8(src);
#else
sbufReadU8(src);
#endif
}
if (sbufBytesRemaining(src) >= 1) {
// Added in MSP API 1.42
#if defined(USE_RC_SMOOTHING_FILTER)
// Added extra validation/range constraint for rc_smoothing_auto_factor as a workaround for a bug in
// the 10.6 configurator where it was possible to submit an invalid out-of-range value. We might be
// able to remove the constraint at some point in the future once the affected versions are deprecated
// enough that the risk is low.
configRebootUpdateCheckU8(&rxConfigMutable()->rc_smoothing_auto_factor_rpy, constrain(sbufReadU8(src), RC_SMOOTHING_AUTO_FACTOR_MIN, RC_SMOOTHING_AUTO_FACTOR_MAX));
#else
sbufReadU8(src);
#endif
}
if (sbufBytesRemaining(src) >= 1) {
// Added in MSP API 1.44
#if defined(USE_RC_SMOOTHING_FILTER)
configRebootUpdateCheckU8(&rxConfigMutable()->rc_smoothing_mode, sbufReadU8(src));
#else
sbufReadU8(src);
#endif
}
break;
case MSP_SET_FAILSAFE_CONFIG:
failsafeConfigMutable()->failsafe_delay = sbufReadU8(src);
failsafeConfigMutable()->failsafe_off_delay = sbufReadU8(src);
failsafeConfigMutable()->failsafe_throttle = sbufReadU16(src);
failsafeConfigMutable()->failsafe_switch_mode = sbufReadU8(src);
failsafeConfigMutable()->failsafe_throttle_low_delay = sbufReadU16(src);
failsafeConfigMutable()->failsafe_procedure = sbufReadU8(src);
break;
case MSP_SET_RXFAIL_CONFIG:
i = sbufReadU8(src);
if (i < MAX_SUPPORTED_RC_CHANNEL_COUNT) {
rxFailsafeChannelConfigsMutable(i)->mode = sbufReadU8(src);
rxFailsafeChannelConfigsMutable(i)->step = CHANNEL_VALUE_TO_RXFAIL_STEP(sbufReadU16(src));
} else {
return MSP_RESULT_ERROR;
}
break;
case MSP_SET_RSSI_CONFIG:
rxConfigMutable()->rssi_channel = sbufReadU8(src);
break;
case MSP_SET_RX_MAP:
for (int i = 0; i < RX_MAPPABLE_CHANNEL_COUNT; i++) {
rxConfigMutable()->rcmap[i] = sbufReadU8(src);
}
break;
case MSP_SET_CF_SERIAL_CONFIG:
{
uint8_t portConfigSize = sizeof(uint8_t) + sizeof(uint16_t) + (sizeof(uint8_t) * 4);
if (dataSize % portConfigSize != 0) {
return MSP_RESULT_ERROR;
}
uint8_t remainingPortsInPacket = dataSize / portConfigSize;
while (remainingPortsInPacket--) {
uint8_t identifier = sbufReadU8(src);
serialPortConfig_t *portConfig = serialFindPortConfigurationMutable(identifier);
if (!portConfig) {
return MSP_RESULT_ERROR;
}
portConfig->identifier = identifier;
portConfig->functionMask = sbufReadU16(src);
portConfig->msp_baudrateIndex = sbufReadU8(src);
portConfig->gps_baudrateIndex = sbufReadU8(src);
portConfig->telemetry_baudrateIndex = sbufReadU8(src);
portConfig->blackbox_baudrateIndex = sbufReadU8(src);
}
}
break;
case MSP2_COMMON_SET_SERIAL_CONFIG: {
if (dataSize < 1) {
return MSP_RESULT_ERROR;
}
unsigned count = sbufReadU8(src);
unsigned portConfigSize = (dataSize - 1) / count;
unsigned expectedPortSize = sizeof(uint8_t) + sizeof(uint32_t) + (sizeof(uint8_t) * 4);
if (portConfigSize < expectedPortSize) {
return MSP_RESULT_ERROR;
}
for (unsigned ii = 0; ii < count; ii++) {
unsigned start = sbufBytesRemaining(src);
uint8_t identifier = sbufReadU8(src);
serialPortConfig_t *portConfig = serialFindPortConfigurationMutable(identifier);
if (!portConfig) {
return MSP_RESULT_ERROR;
}
portConfig->identifier = identifier;
portConfig->functionMask = sbufReadU32(src);
portConfig->msp_baudrateIndex = sbufReadU8(src);
portConfig->gps_baudrateIndex = sbufReadU8(src);
portConfig->telemetry_baudrateIndex = sbufReadU8(src);
portConfig->blackbox_baudrateIndex = sbufReadU8(src);
// Skip unknown bytes
while (start - sbufBytesRemaining(src) < portConfigSize && sbufBytesRemaining(src)) {
sbufReadU8(src);
}
}
break;
}
#ifdef USE_LED_STRIP_STATUS_MODE
case MSP_SET_LED_COLORS:
for (int i = 0; i < LED_CONFIGURABLE_COLOR_COUNT; i++) {
hsvColor_t *color = &ledStripStatusModeConfigMutable()->colors[i];
color->h = sbufReadU16(src);
color->s = sbufReadU8(src);
color->v = sbufReadU8(src);
}
break;
#endif
#ifdef USE_LED_STRIP
case MSP_SET_LED_STRIP_CONFIG:
{
i = sbufReadU8(src);
if (i >= LED_MAX_STRIP_LENGTH || dataSize != (1 + 4)) {
return MSP_RESULT_ERROR;
}
#ifdef USE_LED_STRIP_STATUS_MODE
ledConfig_t *ledConfig = &ledStripStatusModeConfigMutable()->ledConfigs[i];
*ledConfig = sbufReadU32(src);
reevaluateLedConfig();
#else
sbufReadU32(src);
#endif
// API 1.41 - selected ledstrip_profile
if (sbufBytesRemaining(src) >= 1) {
ledStripConfigMutable()->ledstrip_profile = sbufReadU8(src);
}
}
break;
#endif
#ifdef USE_LED_STRIP_STATUS_MODE
case MSP_SET_LED_STRIP_MODECOLOR:
{
ledModeIndex_e modeIdx = sbufReadU8(src);
int funIdx = sbufReadU8(src);
int color = sbufReadU8(src);
if (!setModeColor(modeIdx, funIdx, color)) {
return MSP_RESULT_ERROR;
}
}
break;
#endif
case MSP_SET_NAME:
memset(pilotConfigMutable()->name, 0, ARRAYLEN(pilotConfig()->name));
for (unsigned int i = 0; i < MIN(MAX_NAME_LENGTH, dataSize); i++) {
pilotConfigMutable()->name[i] = sbufReadU8(src);
}
#ifdef USE_OSD
osdAnalyzeActiveElements();
#endif
break;
#ifdef USE_RTC_TIME
case MSP_SET_RTC:
{
// Use seconds and milliseconds to make senders
// easier to implement. Generating a 64 bit value
// might not be trivial in some platforms.
int32_t secs = (int32_t)sbufReadU32(src);
uint16_t millis = sbufReadU16(src);
rtcTime_t t = rtcTimeMake(secs, millis);
rtcSet(&t);
}
break;
#endif
case MSP_SET_TX_INFO:
setRssiMsp(sbufReadU8(src));
break;
#if defined(USE_BOARD_INFO)
case MSP_SET_BOARD_INFO:
if (!boardInformationIsSet()) {
uint8_t length = sbufReadU8(src);
char boardName[MAX_BOARD_NAME_LENGTH + 1];
sbufReadData(src, boardName, MIN(length, MAX_BOARD_NAME_LENGTH));
if (length > MAX_BOARD_NAME_LENGTH) {
sbufAdvance(src, length - MAX_BOARD_NAME_LENGTH);
}
boardName[length] = '\0';
length = sbufReadU8(src);
char manufacturerId[MAX_MANUFACTURER_ID_LENGTH + 1];
sbufReadData(src, manufacturerId, MIN(length, MAX_MANUFACTURER_ID_LENGTH));
if (length > MAX_MANUFACTURER_ID_LENGTH) {
sbufAdvance(src, length - MAX_MANUFACTURER_ID_LENGTH);
}
manufacturerId[length] = '\0';
setBoardName(boardName);
setManufacturerId(manufacturerId);
persistBoardInformation();
} else {
return MSP_RESULT_ERROR;
}
break;
#if defined(USE_SIGNATURE)
case MSP_SET_SIGNATURE:
if (!signatureIsSet()) {
uint8_t signature[SIGNATURE_LENGTH];
sbufReadData(src, signature, SIGNATURE_LENGTH);
setSignature(signature);
persistSignature();
} else {
return MSP_RESULT_ERROR;
}
break;
#endif
#endif // USE_BOARD_INFO
#if defined(USE_RX_BIND)
case MSP2_BETAFLIGHT_BIND:
if (!startRxBind()) {
return MSP_RESULT_ERROR;
}
break;
#endif
default:
// we do not know how to handle the (valid) message, indicate error MSP $M!
return MSP_RESULT_ERROR;
}
return MSP_RESULT_ACK;
}
static mspResult_e mspCommonProcessInCommand(mspDescriptor_t srcDesc, int16_t cmdMSP, sbuf_t *src, mspPostProcessFnPtr *mspPostProcessFn)
{
UNUSED(mspPostProcessFn);
const unsigned int dataSize = sbufBytesRemaining(src);
UNUSED(dataSize); // maybe unused due to compiler options
switch (cmdMSP) {
#ifdef USE_TRANSPONDER
case MSP_SET_TRANSPONDER_CONFIG: {
// Backward compatibility to BFC 3.1.1 is lost for this message type
uint8_t provider = sbufReadU8(src);
uint8_t bytesRemaining = dataSize - 1;
if (provider > TRANSPONDER_PROVIDER_COUNT) {
return MSP_RESULT_ERROR;
}
const uint8_t requirementIndex = provider - 1;
const uint8_t transponderDataSize = transponderRequirements[requirementIndex].dataLength;
transponderConfigMutable()->provider = provider;
if (provider == TRANSPONDER_NONE) {
break;
}
if (bytesRemaining != transponderDataSize) {
return MSP_RESULT_ERROR;
}
if (provider != transponderConfig()->provider) {
transponderStopRepeating();
}
memset(transponderConfigMutable()->data, 0, sizeof(transponderConfig()->data));
for (unsigned int i = 0; i < transponderDataSize; i++) {
transponderConfigMutable()->data[i] = sbufReadU8(src);
}
transponderUpdateData();
break;
}
#endif
case MSP_SET_VOLTAGE_METER_CONFIG: {
int8_t id = sbufReadU8(src);
//
// find and configure an ADC voltage sensor
//
int8_t voltageSensorADCIndex;
for (voltageSensorADCIndex = 0; voltageSensorADCIndex < MAX_VOLTAGE_SENSOR_ADC; voltageSensorADCIndex++) {
if (id == voltageMeterADCtoIDMap[voltageSensorADCIndex]) {
break;
}
}
if (voltageSensorADCIndex < MAX_VOLTAGE_SENSOR_ADC) {
voltageSensorADCConfigMutable(voltageSensorADCIndex)->vbatscale = sbufReadU8(src);
voltageSensorADCConfigMutable(voltageSensorADCIndex)->vbatresdivval = sbufReadU8(src);
voltageSensorADCConfigMutable(voltageSensorADCIndex)->vbatresdivmultiplier = sbufReadU8(src);
} else {
// if we had any other types of voltage sensor to configure, this is where we'd do it.
sbufReadU8(src);
sbufReadU8(src);
sbufReadU8(src);
}
break;
}
case MSP_SET_CURRENT_METER_CONFIG: {
int id = sbufReadU8(src);
switch (id) {
case CURRENT_METER_ID_BATTERY_1:
currentSensorADCConfigMutable()->scale = sbufReadU16(src);
currentSensorADCConfigMutable()->offset = sbufReadU16(src);
break;
#ifdef USE_VIRTUAL_CURRENT_METER
case CURRENT_METER_ID_VIRTUAL_1:
currentSensorVirtualConfigMutable()->scale = sbufReadU16(src);
currentSensorVirtualConfigMutable()->offset = sbufReadU16(src);
break;
#endif
default:
sbufReadU16(src);
sbufReadU16(src);
break;
}
break;
}
case MSP_SET_BATTERY_CONFIG:
batteryConfigMutable()->vbatmincellvoltage = sbufReadU8(src) * 10; // vbatlevel_warn1 in MWC2.3 GUI
batteryConfigMutable()->vbatmaxcellvoltage = sbufReadU8(src) * 10; // vbatlevel_warn2 in MWC2.3 GUI
batteryConfigMutable()->vbatwarningcellvoltage = sbufReadU8(src) * 10; // vbatlevel when buzzer starts to alert
batteryConfigMutable()->batteryCapacity = sbufReadU16(src);
batteryConfigMutable()->voltageMeterSource = sbufReadU8(src);
batteryConfigMutable()->currentMeterSource = sbufReadU8(src);
if (sbufBytesRemaining(src) >= 6) {
batteryConfigMutable()->vbatmincellvoltage = sbufReadU16(src);
batteryConfigMutable()->vbatmaxcellvoltage = sbufReadU16(src);
batteryConfigMutable()->vbatwarningcellvoltage = sbufReadU16(src);
}
break;
#if defined(USE_OSD)
case MSP_SET_OSD_CONFIG:
{
const uint8_t addr = sbufReadU8(src);
if ((int8_t)addr == -1) {
/* Set general OSD settings */
#ifdef USE_MAX7456
vcdProfileMutable()->video_system = sbufReadU8(src);
#else
sbufReadU8(src); // Skip video system
#endif
#if defined(USE_OSD)
osdConfigMutable()->units = sbufReadU8(src);
// Alarms
osdConfigMutable()->rssi_alarm = sbufReadU8(src);
osdConfigMutable()->cap_alarm = sbufReadU16(src);
sbufReadU16(src); // Skip unused (previously fly timer)
osdConfigMutable()->alt_alarm = sbufReadU16(src);
if (sbufBytesRemaining(src) >= 2) {
/* Enabled warnings */
// API < 1.41 supports only the low 16 bits
osdConfigMutable()->enabledWarnings = sbufReadU16(src);
}
if (sbufBytesRemaining(src) >= 4) {
// 32bit version of enabled warnings (API >= 1.41)
osdConfigMutable()->enabledWarnings = sbufReadU32(src);
}
if (sbufBytesRemaining(src) >= 1) {
// API >= 1.41
// selected OSD profile
#ifdef USE_OSD_PROFILES
changeOsdProfileIndex(sbufReadU8(src));
#else
sbufReadU8(src);
#endif // USE_OSD_PROFILES
}
if (sbufBytesRemaining(src) >= 1) {
// API >= 1.41
// OSD stick overlay mode
#ifdef USE_OSD_STICK_OVERLAY
osdConfigMutable()->overlay_radio_mode = sbufReadU8(src);
#else
sbufReadU8(src);
#endif // USE_OSD_STICK_OVERLAY
}
if (sbufBytesRemaining(src) >= 2) {
// API >= 1.43
// OSD camera frame element width/height
osdConfigMutable()->camera_frame_width = sbufReadU8(src);
osdConfigMutable()->camera_frame_height = sbufReadU8(src);
}
#endif
} else if ((int8_t)addr == -2) {
#if defined(USE_OSD)
// Timers
uint8_t index = sbufReadU8(src);
if (index > OSD_TIMER_COUNT) {
return MSP_RESULT_ERROR;
}
osdConfigMutable()->timers[index] = sbufReadU16(src);
#endif
return MSP_RESULT_ERROR;
} else {
#if defined(USE_OSD)
const uint16_t value = sbufReadU16(src);
/* Get screen index, 0 is post flight statistics, 1 and above are in flight OSD screens */
const uint8_t screen = (sbufBytesRemaining(src) >= 1) ? sbufReadU8(src) : 1;
if (screen == 0 && addr < OSD_STAT_COUNT) {
/* Set statistic item enable */
osdStatSetState(addr, (value != 0));
} else if (addr < OSD_ITEM_COUNT) {
/* Set element positions */
osdElementConfigMutable()->item_pos[addr] = value;
osdAnalyzeActiveElements();
} else {
return MSP_RESULT_ERROR;
}
#else
return MSP_RESULT_ERROR;
#endif
}
}
break;
case MSP_OSD_CHAR_WRITE:
{
osdCharacter_t chr;
size_t osdCharacterBytes;
uint16_t addr;
if (dataSize >= OSD_CHAR_VISIBLE_BYTES + 2) {
if (dataSize >= OSD_CHAR_BYTES + 2) {
// 16 bit address, full char with metadata
addr = sbufReadU16(src);
osdCharacterBytes = OSD_CHAR_BYTES;
} else if (dataSize >= OSD_CHAR_BYTES + 1) {
// 8 bit address, full char with metadata
addr = sbufReadU8(src);
osdCharacterBytes = OSD_CHAR_BYTES;
} else {
// 16 bit character address, only visible char bytes
addr = sbufReadU16(src);
osdCharacterBytes = OSD_CHAR_VISIBLE_BYTES;
}
} else {
// 8 bit character address, only visible char bytes
addr = sbufReadU8(src);
osdCharacterBytes = OSD_CHAR_VISIBLE_BYTES;
}
for (unsigned ii = 0; ii < MIN(osdCharacterBytes, sizeof(chr.data)); ii++) {
chr.data[ii] = sbufReadU8(src);
}
displayPort_t *osdDisplayPort = osdGetDisplayPort(NULL);
if (!osdDisplayPort) {
return MSP_RESULT_ERROR;
}
if (!displayWriteFontCharacter(osdDisplayPort, addr, &chr)) {
return MSP_RESULT_ERROR;
}
}
break;
#endif // OSD
default:
return mspProcessInCommand(srcDesc, cmdMSP, src);
}
return MSP_RESULT_ACK;
}
/*
* Returns MSP_RESULT_ACK, MSP_RESULT_ERROR or MSP_RESULT_NO_REPLY
*/
mspResult_e mspFcProcessCommand(mspDescriptor_t srcDesc, mspPacket_t *cmd, mspPacket_t *reply, mspPostProcessFnPtr *mspPostProcessFn)
{
int ret = MSP_RESULT_ACK;
sbuf_t *dst = &reply->buf;
sbuf_t *src = &cmd->buf;
const int16_t cmdMSP = cmd->cmd;
// initialize reply by default
reply->cmd = cmd->cmd;
if (mspCommonProcessOutCommand(cmdMSP, dst, mspPostProcessFn)) {
ret = MSP_RESULT_ACK;
} else if (mspProcessOutCommand(cmdMSP, dst)) {
ret = MSP_RESULT_ACK;
} else if ((ret = mspFcProcessOutCommandWithArg(srcDesc, cmdMSP, src, dst, mspPostProcessFn)) != MSP_RESULT_CMD_UNKNOWN) {
/* ret */;
} else if (cmdMSP == MSP_SET_PASSTHROUGH) {
mspFcSetPassthroughCommand(dst, src, mspPostProcessFn);
ret = MSP_RESULT_ACK;
#ifdef USE_FLASHFS
} else if (cmdMSP == MSP_DATAFLASH_READ) {
mspFcDataFlashReadCommand(dst, src);
ret = MSP_RESULT_ACK;
#endif
} else {
ret = mspCommonProcessInCommand(srcDesc, cmdMSP, src, mspPostProcessFn);
}
reply->result = ret;
return ret;
}
void mspFcProcessReply(mspPacket_t *reply)
{
sbuf_t *src = &reply->buf;
UNUSED(src); // potentially unused depending on compile options.
switch (reply->cmd) {
case MSP_ANALOG:
{
uint8_t batteryVoltage = sbufReadU8(src);
uint16_t mAhDrawn = sbufReadU16(src);
uint16_t rssi = sbufReadU16(src);
uint16_t amperage = sbufReadU16(src);
UNUSED(rssi);
UNUSED(batteryVoltage);
UNUSED(amperage);
UNUSED(mAhDrawn);
#ifdef USE_MSP_CURRENT_METER
currentMeterMSPSet(amperage, mAhDrawn);
#endif
}
break;
}
}
void mspInit(void)
{
initActiveBoxIds();
}