atbetaflight/lib/main/DSP_Lib/Source/BasicMathFunctions/arm_scale_q31.c

240 lines
6.7 KiB
C

/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_scale_q31.c
*
* Description: Multiplies a Q31 vector by a scalar.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup scale
* @{
*/
/**
* @brief Multiplies a Q31 vector by a scalar.
* @param[in] *pSrc points to the input vector
* @param[in] scaleFract fractional portion of the scale value
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.31 format.
* These are multiplied to yield a 2.62 intermediate result and this is shifted with saturation to 1.31 format.
*/
void arm_scale_q31(
q31_t * pSrc,
q31_t scaleFract,
int8_t shift,
q31_t * pDst,
uint32_t blockSize)
{
int8_t kShift = shift + 1; /* Shift to apply after scaling */
int8_t sign = (kShift & 0x80);
uint32_t blkCnt; /* loop counter */
q31_t in, out;
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t in1, in2, in3, in4; /* temporary input variables */
q31_t out1, out2, out3, out4; /* temporary output variabels */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
if(sign == 0u)
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* read four inputs from source */
in1 = *pSrc;
in2 = *(pSrc + 1);
in3 = *(pSrc + 2);
in4 = *(pSrc + 3);
/* multiply input with scaler value */
in1 = ((q63_t) in1 * scaleFract) >> 32;
in2 = ((q63_t) in2 * scaleFract) >> 32;
in3 = ((q63_t) in3 * scaleFract) >> 32;
in4 = ((q63_t) in4 * scaleFract) >> 32;
/* apply shifting */
out1 = in1 << kShift;
out2 = in2 << kShift;
/* saturate the results. */
if(in1 != (out1 >> kShift))
out1 = 0x7FFFFFFF ^ (in1 >> 31);
if(in2 != (out2 >> kShift))
out2 = 0x7FFFFFFF ^ (in2 >> 31);
out3 = in3 << kShift;
out4 = in4 << kShift;
*pDst = out1;
*(pDst + 1) = out2;
if(in3 != (out3 >> kShift))
out3 = 0x7FFFFFFF ^ (in3 >> 31);
if(in4 != (out4 >> kShift))
out4 = 0x7FFFFFFF ^ (in4 >> 31);
/* Store result destination */
*(pDst + 2) = out3;
*(pDst + 3) = out4;
/* Update pointers to process next sampels */
pSrc += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* read four inputs from source */
in1 = *pSrc;
in2 = *(pSrc + 1);
in3 = *(pSrc + 2);
in4 = *(pSrc + 3);
/* multiply input with scaler value */
in1 = ((q63_t) in1 * scaleFract) >> 32;
in2 = ((q63_t) in2 * scaleFract) >> 32;
in3 = ((q63_t) in3 * scaleFract) >> 32;
in4 = ((q63_t) in4 * scaleFract) >> 32;
/* apply shifting */
out1 = in1 >> -kShift;
out2 = in2 >> -kShift;
out3 = in3 >> -kShift;
out4 = in4 >> -kShift;
/* Store result destination */
*pDst = out1;
*(pDst + 1) = out2;
*(pDst + 2) = out3;
*(pDst + 3) = out4;
/* Update pointers to process next sampels */
pSrc += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
if(sign == 0)
{
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
in = *pSrc++;
in = ((q63_t) in * scaleFract) >> 32;
out = in << kShift;
if(in != (out >> kShift))
out = 0x7FFFFFFF ^ (in >> 31);
*pDst++ = out;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
in = *pSrc++;
in = ((q63_t) in * scaleFract) >> 32;
out = in >> -kShift;
*pDst++ = out;
/* Decrement the loop counter */
blkCnt--;
}
}
}
/**
* @} end of scale group
*/