696 lines
21 KiB
C
696 lines
21 KiB
C
/*
|
|
* This file is part of Cleanflight and Betaflight.
|
|
*
|
|
* Cleanflight and Betaflight are free software. You can redistribute
|
|
* this software and/or modify this software under the terms of the
|
|
* GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* Cleanflight and Betaflight are distributed in the hope that they
|
|
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
|
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this software.
|
|
*
|
|
* If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "platform.h"
|
|
|
|
#include "build/debug.h"
|
|
|
|
#include "common/axis.h"
|
|
#include "common/maths.h"
|
|
#include "common/filter.h"
|
|
|
|
#include "drivers/accgyro/accgyro.h"
|
|
#include "drivers/accgyro/accgyro_fake.h"
|
|
#include "drivers/accgyro/accgyro_mpu.h"
|
|
#include "drivers/accgyro/accgyro_mpu3050.h"
|
|
#include "drivers/accgyro/accgyro_mpu6050.h"
|
|
#include "drivers/accgyro/accgyro_mpu6500.h"
|
|
#include "drivers/accgyro/accgyro_spi_bmi160.h"
|
|
#include "drivers/accgyro/accgyro_spi_bmi270.h"
|
|
#include "drivers/accgyro/accgyro_spi_icm20649.h"
|
|
#include "drivers/accgyro/accgyro_spi_icm20689.h"
|
|
#include "drivers/accgyro/accgyro_spi_icm20689.h"
|
|
#include "drivers/accgyro/accgyro_spi_icm42605.h"
|
|
#include "drivers/accgyro/accgyro_spi_mpu6000.h"
|
|
#include "drivers/accgyro/accgyro_spi_mpu6500.h"
|
|
#include "drivers/accgyro/accgyro_spi_mpu9250.h"
|
|
|
|
#ifdef USE_GYRO_L3GD20
|
|
#include "drivers/accgyro/accgyro_spi_l3gd20.h"
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_L3G4200D
|
|
#include "drivers/accgyro_legacy/accgyro_l3g4200d.h"
|
|
#endif
|
|
|
|
#include "drivers/accgyro/gyro_sync.h"
|
|
|
|
#include "fc/runtime_config.h"
|
|
|
|
#ifdef USE_GYRO_DATA_ANALYSE
|
|
#include "flight/gyroanalyse.h"
|
|
#endif
|
|
|
|
#include "pg/gyrodev.h"
|
|
|
|
#include "sensors/gyro.h"
|
|
#include "sensors/sensors.h"
|
|
|
|
#ifdef USE_GYRO_DATA_ANALYSE
|
|
#define DYNAMIC_NOTCH_DEFAULT_CENTER_HZ 350
|
|
#define DYNAMIC_NOTCH_DEFAULT_CUTOFF_HZ 300
|
|
#endif
|
|
|
|
#ifdef USE_MULTI_GYRO
|
|
#define ACTIVE_GYRO ((gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_2) ? &gyro.gyroSensor2 : &gyro.gyroSensor1)
|
|
#else
|
|
#define ACTIVE_GYRO (&gyro.gyroSensor1)
|
|
#endif
|
|
|
|
static gyroDetectionFlags_t gyroDetectionFlags = NO_GYROS_DETECTED;
|
|
|
|
static uint16_t calculateNyquistAdjustedNotchHz(uint16_t notchHz, uint16_t notchCutoffHz)
|
|
{
|
|
const uint32_t gyroFrequencyNyquist = 1000000 / 2 / gyro.targetLooptime;
|
|
if (notchHz > gyroFrequencyNyquist) {
|
|
if (notchCutoffHz < gyroFrequencyNyquist) {
|
|
notchHz = gyroFrequencyNyquist;
|
|
} else {
|
|
notchHz = 0;
|
|
}
|
|
}
|
|
|
|
return notchHz;
|
|
}
|
|
|
|
static void gyroInitFilterNotch1(uint16_t notchHz, uint16_t notchCutoffHz)
|
|
{
|
|
gyro.notchFilter1ApplyFn = nullFilterApply;
|
|
|
|
notchHz = calculateNyquistAdjustedNotchHz(notchHz, notchCutoffHz);
|
|
|
|
if (notchHz != 0 && notchCutoffHz != 0) {
|
|
gyro.notchFilter1ApplyFn = (filterApplyFnPtr)biquadFilterApply;
|
|
const float notchQ = filterGetNotchQ(notchHz, notchCutoffHz);
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
biquadFilterInit(&gyro.notchFilter1[axis], notchHz, gyro.targetLooptime, notchQ, FILTER_NOTCH);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gyroInitFilterNotch2(uint16_t notchHz, uint16_t notchCutoffHz)
|
|
{
|
|
gyro.notchFilter2ApplyFn = nullFilterApply;
|
|
|
|
notchHz = calculateNyquistAdjustedNotchHz(notchHz, notchCutoffHz);
|
|
|
|
if (notchHz != 0 && notchCutoffHz != 0) {
|
|
gyro.notchFilter2ApplyFn = (filterApplyFnPtr)biquadFilterApply;
|
|
const float notchQ = filterGetNotchQ(notchHz, notchCutoffHz);
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
biquadFilterInit(&gyro.notchFilter2[axis], notchHz, gyro.targetLooptime, notchQ, FILTER_NOTCH);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef USE_GYRO_DATA_ANALYSE
|
|
static void gyroInitFilterDynamicNotch()
|
|
{
|
|
gyro.notchFilterDynApplyFn = nullFilterApply;
|
|
gyro.notchFilterDynApplyFn2 = nullFilterApply;
|
|
|
|
if (isDynamicFilterActive()) {
|
|
gyro.notchFilterDynApplyFn = (filterApplyFnPtr)biquadFilterApplyDF1; // must be this function, not DF2
|
|
if(gyroConfig()->dyn_notch_width_percent != 0) {
|
|
gyro.notchFilterDynApplyFn2 = (filterApplyFnPtr)biquadFilterApplyDF1; // must be this function, not DF2
|
|
}
|
|
const float notchQ = filterGetNotchQ(DYNAMIC_NOTCH_DEFAULT_CENTER_HZ, DYNAMIC_NOTCH_DEFAULT_CUTOFF_HZ); // any defaults OK here
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
biquadFilterInit(&gyro.notchFilterDyn[axis], DYNAMIC_NOTCH_DEFAULT_CENTER_HZ, gyro.targetLooptime, notchQ, FILTER_NOTCH);
|
|
biquadFilterInit(&gyro.notchFilterDyn2[axis], DYNAMIC_NOTCH_DEFAULT_CENTER_HZ, gyro.targetLooptime, notchQ, FILTER_NOTCH);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static bool gyroInitLowpassFilterLpf(int slot, int type, uint16_t lpfHz, uint32_t looptime)
|
|
{
|
|
filterApplyFnPtr *lowpassFilterApplyFn;
|
|
gyroLowpassFilter_t *lowpassFilter = NULL;
|
|
|
|
switch (slot) {
|
|
case FILTER_LOWPASS:
|
|
lowpassFilterApplyFn = &gyro.lowpassFilterApplyFn;
|
|
lowpassFilter = gyro.lowpassFilter;
|
|
break;
|
|
|
|
case FILTER_LOWPASS2:
|
|
lowpassFilterApplyFn = &gyro.lowpass2FilterApplyFn;
|
|
lowpassFilter = gyro.lowpass2Filter;
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
bool ret = false;
|
|
|
|
// Establish some common constants
|
|
const uint32_t gyroFrequencyNyquist = 1000000 / 2 / looptime;
|
|
const float gyroDt = looptime * 1e-6f;
|
|
|
|
// Gain could be calculated a little later as it is specific to the pt1/bqrcf2/fkf branches
|
|
const float gain = pt1FilterGain(lpfHz, gyroDt);
|
|
|
|
// Dereference the pointer to null before checking valid cutoff and filter
|
|
// type. It will be overridden for positive cases.
|
|
*lowpassFilterApplyFn = nullFilterApply;
|
|
|
|
// If lowpass cutoff has been specified and is less than the Nyquist frequency
|
|
if (lpfHz && lpfHz <= gyroFrequencyNyquist) {
|
|
switch (type) {
|
|
case FILTER_PT1:
|
|
*lowpassFilterApplyFn = (filterApplyFnPtr) pt1FilterApply;
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
pt1FilterInit(&lowpassFilter[axis].pt1FilterState, gain);
|
|
}
|
|
ret = true;
|
|
break;
|
|
case FILTER_BIQUAD:
|
|
#ifdef USE_DYN_LPF
|
|
*lowpassFilterApplyFn = (filterApplyFnPtr) biquadFilterApplyDF1;
|
|
#else
|
|
*lowpassFilterApplyFn = (filterApplyFnPtr) biquadFilterApply;
|
|
#endif
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
biquadFilterInitLPF(&lowpassFilter[axis].biquadFilterState, lpfHz, looptime);
|
|
}
|
|
ret = true;
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#ifdef USE_DYN_LPF
|
|
static void dynLpfFilterInit()
|
|
{
|
|
if (gyroConfig()->dyn_lpf_gyro_min_hz > 0) {
|
|
switch (gyroConfig()->gyro_lowpass_type) {
|
|
case FILTER_PT1:
|
|
gyro.dynLpfFilter = DYN_LPF_PT1;
|
|
break;
|
|
case FILTER_BIQUAD:
|
|
gyro.dynLpfFilter = DYN_LPF_BIQUAD;
|
|
break;
|
|
default:
|
|
gyro.dynLpfFilter = DYN_LPF_NONE;
|
|
break;
|
|
}
|
|
} else {
|
|
gyro.dynLpfFilter = DYN_LPF_NONE;
|
|
}
|
|
gyro.dynLpfMin = gyroConfig()->dyn_lpf_gyro_min_hz;
|
|
gyro.dynLpfMax = gyroConfig()->dyn_lpf_gyro_max_hz;
|
|
}
|
|
#endif
|
|
|
|
void gyroInitFilters(void)
|
|
{
|
|
uint16_t gyro_lowpass_hz = gyroConfig()->gyro_lowpass_hz;
|
|
|
|
#ifdef USE_DYN_LPF
|
|
if (gyroConfig()->dyn_lpf_gyro_min_hz > 0) {
|
|
gyro_lowpass_hz = gyroConfig()->dyn_lpf_gyro_min_hz;
|
|
}
|
|
#endif
|
|
|
|
gyroInitLowpassFilterLpf(
|
|
FILTER_LOWPASS,
|
|
gyroConfig()->gyro_lowpass_type,
|
|
gyro_lowpass_hz,
|
|
gyro.targetLooptime
|
|
);
|
|
|
|
gyro.downsampleFilterEnabled = gyroInitLowpassFilterLpf(
|
|
FILTER_LOWPASS2,
|
|
gyroConfig()->gyro_lowpass2_type,
|
|
gyroConfig()->gyro_lowpass2_hz,
|
|
gyro.sampleLooptime
|
|
);
|
|
|
|
gyroInitFilterNotch1(gyroConfig()->gyro_soft_notch_hz_1, gyroConfig()->gyro_soft_notch_cutoff_1);
|
|
gyroInitFilterNotch2(gyroConfig()->gyro_soft_notch_hz_2, gyroConfig()->gyro_soft_notch_cutoff_2);
|
|
#ifdef USE_GYRO_DATA_ANALYSE
|
|
gyroInitFilterDynamicNotch();
|
|
#endif
|
|
#ifdef USE_DYN_LPF
|
|
dynLpfFilterInit();
|
|
#endif
|
|
#ifdef USE_GYRO_DATA_ANALYSE
|
|
gyroDataAnalyseStateInit(&gyro.gyroAnalyseState, gyro.targetLooptime);
|
|
#endif
|
|
}
|
|
|
|
#if defined(USE_GYRO_SLEW_LIMITER)
|
|
void gyroInitSlewLimiter(gyroSensor_t *gyroSensor) {
|
|
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
gyroSensor->gyroDev.gyroADCRawPrevious[axis] = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void gyroInitSensorFilters(gyroSensor_t *gyroSensor)
|
|
{
|
|
#if defined(USE_GYRO_SLEW_LIMITER)
|
|
gyroInitSlewLimiter(gyroSensor);
|
|
#else
|
|
UNUSED(gyroSensor);
|
|
#endif
|
|
}
|
|
|
|
void gyroInitSensor(gyroSensor_t *gyroSensor, const gyroDeviceConfig_t *config)
|
|
{
|
|
gyroSensor->gyroDev.gyro_high_fsr = gyroConfig()->gyro_high_fsr;
|
|
gyroSensor->gyroDev.gyroAlign = config->alignment;
|
|
buildRotationMatrixFromAlignment(&config->customAlignment, &gyroSensor->gyroDev.rotationMatrix);
|
|
gyroSensor->gyroDev.mpuIntExtiTag = config->extiTag;
|
|
gyroSensor->gyroDev.hardware_lpf = gyroConfig()->gyro_hardware_lpf;
|
|
|
|
// The targetLooptime gets set later based on the active sensor's gyroSampleRateHz and pid_process_denom
|
|
gyroSensor->gyroDev.gyroSampleRateHz = gyroSetSampleRate(&gyroSensor->gyroDev);
|
|
gyroSensor->gyroDev.initFn(&gyroSensor->gyroDev);
|
|
|
|
// As new gyros are supported, be sure to add them below based on whether they are subject to the overflow/inversion bug
|
|
// Any gyro not explicitly defined will default to not having built-in overflow protection as a safe alternative.
|
|
switch (gyroSensor->gyroDev.gyroHardware) {
|
|
case GYRO_NONE: // Won't ever actually get here, but included to account for all gyro types
|
|
case GYRO_DEFAULT:
|
|
case GYRO_FAKE:
|
|
case GYRO_MPU6050:
|
|
case GYRO_L3G4200D:
|
|
case GYRO_MPU3050:
|
|
case GYRO_L3GD20:
|
|
case GYRO_BMI160:
|
|
case GYRO_BMI270:
|
|
case GYRO_MPU6000:
|
|
case GYRO_MPU6500:
|
|
case GYRO_MPU9250:
|
|
gyroSensor->gyroDev.gyroHasOverflowProtection = true;
|
|
break;
|
|
|
|
case GYRO_ICM20601:
|
|
case GYRO_ICM20602:
|
|
case GYRO_ICM20608G:
|
|
case GYRO_ICM20649: // we don't actually know if this is affected, but as there are currently no flight controllers using it we err on the side of caution
|
|
case GYRO_ICM20689:
|
|
gyroSensor->gyroDev.gyroHasOverflowProtection = false;
|
|
break;
|
|
|
|
default:
|
|
gyroSensor->gyroDev.gyroHasOverflowProtection = false; // default catch for newly added gyros until proven to be unaffected
|
|
break;
|
|
}
|
|
|
|
gyroInitSensorFilters(gyroSensor);
|
|
}
|
|
|
|
STATIC_UNIT_TESTED gyroHardware_e gyroDetect(gyroDev_t *dev)
|
|
{
|
|
gyroHardware_e gyroHardware = GYRO_DEFAULT;
|
|
|
|
switch (gyroHardware) {
|
|
case GYRO_DEFAULT:
|
|
FALLTHROUGH;
|
|
|
|
#ifdef USE_GYRO_MPU6050
|
|
case GYRO_MPU6050:
|
|
if (mpu6050GyroDetect(dev)) {
|
|
gyroHardware = GYRO_MPU6050;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_L3G4200D
|
|
case GYRO_L3G4200D:
|
|
if (l3g4200dDetect(dev)) {
|
|
gyroHardware = GYRO_L3G4200D;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_MPU3050
|
|
case GYRO_MPU3050:
|
|
if (mpu3050Detect(dev)) {
|
|
gyroHardware = GYRO_MPU3050;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_L3GD20
|
|
case GYRO_L3GD20:
|
|
if (l3gd20GyroDetect(dev)) {
|
|
gyroHardware = GYRO_L3GD20;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_SPI_MPU6000
|
|
case GYRO_MPU6000:
|
|
if (mpu6000SpiGyroDetect(dev)) {
|
|
gyroHardware = GYRO_MPU6000;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#if defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500)
|
|
case GYRO_MPU6500:
|
|
case GYRO_ICM20601:
|
|
case GYRO_ICM20602:
|
|
case GYRO_ICM20608G:
|
|
#ifdef USE_GYRO_SPI_MPU6500
|
|
if (mpu6500GyroDetect(dev) || mpu6500SpiGyroDetect(dev)) {
|
|
#else
|
|
if (mpu6500GyroDetect(dev)) {
|
|
#endif
|
|
switch (dev->mpuDetectionResult.sensor) {
|
|
case MPU_9250_SPI:
|
|
gyroHardware = GYRO_MPU9250;
|
|
break;
|
|
case ICM_20601_SPI:
|
|
gyroHardware = GYRO_ICM20601;
|
|
break;
|
|
case ICM_20602_SPI:
|
|
gyroHardware = GYRO_ICM20602;
|
|
break;
|
|
case ICM_20608_SPI:
|
|
gyroHardware = GYRO_ICM20608G;
|
|
break;
|
|
default:
|
|
gyroHardware = GYRO_MPU6500;
|
|
}
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_SPI_MPU9250
|
|
case GYRO_MPU9250:
|
|
if (mpu9250SpiGyroDetect(dev)) {
|
|
gyroHardware = GYRO_MPU9250;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_SPI_ICM20649
|
|
case GYRO_ICM20649:
|
|
if (icm20649SpiGyroDetect(dev)) {
|
|
gyroHardware = GYRO_ICM20649;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_SPI_ICM20689
|
|
case GYRO_ICM20689:
|
|
if (icm20689SpiGyroDetect(dev)) {
|
|
gyroHardware = GYRO_ICM20689;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_SPI_ICM42605
|
|
case GYRO_ICM42605:
|
|
if (icm42605SpiGyroDetect(dev)) {
|
|
gyroHardware = GYRO_ICM42605;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_ACCGYRO_BMI160
|
|
case GYRO_BMI160:
|
|
if (bmi160SpiGyroDetect(dev)) {
|
|
gyroHardware = GYRO_BMI160;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_ACCGYRO_BMI270
|
|
case GYRO_BMI270:
|
|
if (bmi270SpiGyroDetect(dev)) {
|
|
gyroHardware = GYRO_BMI270;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_FAKE_GYRO
|
|
case GYRO_FAKE:
|
|
if (fakeGyroDetect(dev)) {
|
|
gyroHardware = GYRO_FAKE;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
default:
|
|
gyroHardware = GYRO_NONE;
|
|
}
|
|
|
|
if (gyroHardware != GYRO_NONE) {
|
|
sensorsSet(SENSOR_GYRO);
|
|
}
|
|
|
|
|
|
return gyroHardware;
|
|
}
|
|
|
|
static bool gyroDetectSensor(gyroSensor_t *gyroSensor, const gyroDeviceConfig_t *config)
|
|
{
|
|
#if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) \
|
|
|| defined(USE_ACC_MPU6050) || defined(USE_GYRO_SPI_MPU9250) || defined(USE_GYRO_SPI_ICM20601) || defined(USE_GYRO_SPI_ICM20649) \
|
|
|| defined(USE_GYRO_SPI_ICM20689) || defined(USE_GYRO_L3GD20) || defined(USE_ACCGYRO_BMI160) || defined(USE_ACCGYRO_BMI270)
|
|
|
|
bool gyroFound = mpuDetect(&gyroSensor->gyroDev, config);
|
|
|
|
#if !defined(USE_FAKE_GYRO) // Allow resorting to fake accgyro if defined
|
|
if (!gyroFound) {
|
|
return false;
|
|
}
|
|
#else
|
|
UNUSED(gyroFound);
|
|
#endif
|
|
#else
|
|
UNUSED(config);
|
|
#endif
|
|
|
|
const gyroHardware_e gyroHardware = gyroDetect(&gyroSensor->gyroDev);
|
|
gyroSensor->gyroDev.gyroHardware = gyroHardware;
|
|
|
|
return gyroHardware != GYRO_NONE;
|
|
}
|
|
|
|
static void gyroPreInitSensor(const gyroDeviceConfig_t *config)
|
|
{
|
|
#if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) \
|
|
|| defined(USE_ACC_MPU6050) || defined(USE_GYRO_SPI_MPU9250) || defined(USE_GYRO_SPI_ICM20601) || defined(USE_GYRO_SPI_ICM20649) \
|
|
|| defined(USE_GYRO_SPI_ICM20689) || defined(USE_ACCGYRO_BMI160) || defined(USE_ACCGYRO_BMI270)
|
|
mpuPreInit(config);
|
|
#else
|
|
UNUSED(config);
|
|
#endif
|
|
}
|
|
|
|
void gyroPreInit(void)
|
|
{
|
|
gyroPreInitSensor(gyroDeviceConfig(0));
|
|
#ifdef USE_MULTI_GYRO
|
|
gyroPreInitSensor(gyroDeviceConfig(1));
|
|
#endif
|
|
}
|
|
|
|
bool gyroInit(void)
|
|
{
|
|
#ifdef USE_GYRO_OVERFLOW_CHECK
|
|
if (gyroConfig()->checkOverflow == GYRO_OVERFLOW_CHECK_YAW) {
|
|
gyro.overflowAxisMask = GYRO_OVERFLOW_Z;
|
|
} else if (gyroConfig()->checkOverflow == GYRO_OVERFLOW_CHECK_ALL_AXES) {
|
|
gyro.overflowAxisMask = GYRO_OVERFLOW_X | GYRO_OVERFLOW_Y | GYRO_OVERFLOW_Z;
|
|
} else {
|
|
gyro.overflowAxisMask = 0;
|
|
}
|
|
#endif
|
|
|
|
gyro.gyroDebugMode = DEBUG_NONE;
|
|
gyro.useDualGyroDebugging = false;
|
|
gyro.gyroHasOverflowProtection = true;
|
|
|
|
switch (debugMode) {
|
|
case DEBUG_FFT:
|
|
case DEBUG_FFT_FREQ:
|
|
case DEBUG_GYRO_RAW:
|
|
case DEBUG_GYRO_SCALED:
|
|
case DEBUG_GYRO_FILTERED:
|
|
case DEBUG_DYN_LPF:
|
|
case DEBUG_GYRO_SAMPLE:
|
|
gyro.gyroDebugMode = debugMode;
|
|
break;
|
|
case DEBUG_DUAL_GYRO_DIFF:
|
|
case DEBUG_DUAL_GYRO_RAW:
|
|
case DEBUG_DUAL_GYRO_SCALED:
|
|
gyro.useDualGyroDebugging = true;
|
|
break;
|
|
}
|
|
|
|
gyroDetectionFlags = NO_GYROS_DETECTED;
|
|
|
|
gyro.gyroToUse = gyroConfig()->gyro_to_use;
|
|
gyro.gyroDebugAxis = gyroConfig()->gyro_filter_debug_axis;
|
|
|
|
if (gyroDetectSensor(&gyro.gyroSensor1, gyroDeviceConfig(0))) {
|
|
gyroDetectionFlags |= DETECTED_GYRO_1;
|
|
}
|
|
|
|
#if defined(USE_MULTI_GYRO)
|
|
if (gyroDetectSensor(&gyro.gyroSensor2, gyroDeviceConfig(1))) {
|
|
gyroDetectionFlags |= DETECTED_GYRO_2;
|
|
}
|
|
#endif
|
|
|
|
if (gyroDetectionFlags == NO_GYROS_DETECTED) {
|
|
return false;
|
|
}
|
|
|
|
#if defined(USE_MULTI_GYRO)
|
|
if ((gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH && !((gyroDetectionFlags & DETECTED_BOTH_GYROS) == DETECTED_BOTH_GYROS))
|
|
|| (gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_1 && !(gyroDetectionFlags & DETECTED_GYRO_1))
|
|
|| (gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_2 && !(gyroDetectionFlags & DETECTED_GYRO_2))) {
|
|
if (gyroDetectionFlags & DETECTED_GYRO_1) {
|
|
gyro.gyroToUse = GYRO_CONFIG_USE_GYRO_1;
|
|
} else {
|
|
gyro.gyroToUse = GYRO_CONFIG_USE_GYRO_2;
|
|
}
|
|
|
|
gyroConfigMutable()->gyro_to_use = gyro.gyroToUse;
|
|
}
|
|
|
|
// Only allow using both gyros simultaneously if they are the same hardware type.
|
|
if (((gyroDetectionFlags & DETECTED_BOTH_GYROS) == DETECTED_BOTH_GYROS) && gyro.gyroSensor1.gyroDev.gyroHardware == gyro.gyroSensor2.gyroDev.gyroHardware) {
|
|
gyroDetectionFlags |= DETECTED_DUAL_GYROS;
|
|
} else if (gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH) {
|
|
// If the user selected "BOTH" and they are not the same type, then reset to using only the first gyro.
|
|
gyro.gyroToUse = GYRO_CONFIG_USE_GYRO_1;
|
|
gyroConfigMutable()->gyro_to_use = gyro.gyroToUse;
|
|
}
|
|
|
|
if (gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_2 || gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH) {
|
|
gyroInitSensor(&gyro.gyroSensor2, gyroDeviceConfig(1));
|
|
gyro.gyroHasOverflowProtection = gyro.gyroHasOverflowProtection && gyro.gyroSensor2.gyroDev.gyroHasOverflowProtection;
|
|
detectedSensors[SENSOR_INDEX_GYRO] = gyro.gyroSensor2.gyroDev.gyroHardware;
|
|
}
|
|
#endif
|
|
|
|
if (gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_1 || gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH) {
|
|
gyroInitSensor(&gyro.gyroSensor1, gyroDeviceConfig(0));
|
|
gyro.gyroHasOverflowProtection = gyro.gyroHasOverflowProtection && gyro.gyroSensor1.gyroDev.gyroHasOverflowProtection;
|
|
detectedSensors[SENSOR_INDEX_GYRO] = gyro.gyroSensor1.gyroDev.gyroHardware;
|
|
}
|
|
|
|
// Copy the sensor's scale to the high-level gyro object. If running in "BOTH" mode
|
|
// then logic above requires both sensors to be the same so we'll use sensor1's scale.
|
|
// This will need to be revised if we ever allow different sensor types to be used simultaneously.
|
|
// Likewise determine the appropriate raw data for use in DEBUG_GYRO_RAW
|
|
gyro.scale = gyro.gyroSensor1.gyroDev.scale;
|
|
gyro.rawSensorDev = &gyro.gyroSensor1.gyroDev;
|
|
#if defined(USE_MULTI_GYRO)
|
|
if (gyro.gyroToUse == GYRO_CONFIG_USE_GYRO_2) {
|
|
gyro.scale = gyro.gyroSensor2.gyroDev.scale;
|
|
gyro.rawSensorDev = &gyro.gyroSensor2.gyroDev;
|
|
}
|
|
#endif
|
|
|
|
if (gyro.rawSensorDev) {
|
|
gyro.sampleRateHz = gyro.rawSensorDev->gyroSampleRateHz;
|
|
gyro.accSampleRateHz = gyro.rawSensorDev->accSampleRateHz;
|
|
} else {
|
|
gyro.sampleRateHz = 0;
|
|
gyro.accSampleRateHz = 0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
gyroDetectionFlags_t getGyroDetectionFlags(void)
|
|
{
|
|
return gyroDetectionFlags;
|
|
}
|
|
|
|
void gyroSetTargetLooptime(uint8_t pidDenom)
|
|
{
|
|
activePidLoopDenom = pidDenom;
|
|
if (gyro.sampleRateHz) {
|
|
gyro.sampleLooptime = 1e6 / gyro.sampleRateHz;
|
|
gyro.targetLooptime = activePidLoopDenom * 1e6 / gyro.sampleRateHz;
|
|
} else {
|
|
gyro.sampleLooptime = 0;
|
|
gyro.targetLooptime = 0;
|
|
}
|
|
}
|
|
|
|
const busDevice_t *gyroSensorBus(void)
|
|
{
|
|
return &ACTIVE_GYRO->gyroDev.bus;
|
|
}
|
|
|
|
const mpuDetectionResult_t *gyroMpuDetectionResult(void)
|
|
{
|
|
return &ACTIVE_GYRO->gyroDev.mpuDetectionResult;
|
|
}
|
|
|
|
int16_t gyroRateDps(int axis)
|
|
{
|
|
return lrintf(gyro.gyroADCf[axis] / ACTIVE_GYRO->gyroDev.scale);
|
|
}
|
|
|
|
#ifdef USE_GYRO_REGISTER_DUMP
|
|
static const busDevice_t *gyroSensorBusByDevice(uint8_t whichSensor)
|
|
{
|
|
#ifdef USE_MULTI_GYRO
|
|
if (whichSensor == GYRO_CONFIG_USE_GYRO_2) {
|
|
return &gyro.gyroSensor2.gyroDev.bus;
|
|
}
|
|
#else
|
|
UNUSED(whichSensor);
|
|
#endif
|
|
return &gyro.gyroSensor1.gyroDev.bus;
|
|
}
|
|
|
|
uint8_t gyroReadRegister(uint8_t whichSensor, uint8_t reg)
|
|
{
|
|
return mpuGyroReadRegister(gyroSensorBusByDevice(whichSensor), reg);
|
|
}
|
|
#endif // USE_GYRO_REGISTER_DUMP
|