atbetaflight/src/test/unit/pid_unittest.cc

828 lines
30 KiB
C++

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
#include <limits.h>
#include <cmath>
#include "unittest_macros.h"
#include "gtest/gtest.h"
#include "build/debug.h"
bool simulatedAirmodeEnabled = true;
float simulatedSetpointRate[3] = { 0,0,0 };
float simulatedPrevSetpointRate[3] = { 0,0,0 };
float simulatedRcDeflection[3] = { 0,0,0 };
float simulatedThrottlePIDAttenuation = 1.0f;
float simulatedMotorMixRange = 0.0f;
int16_t debug[DEBUG16_VALUE_COUNT];
uint8_t debugMode;
extern "C" {
#include "platform.h"
#include "build/debug.h"
#include "common/axis.h"
#include "common/maths.h"
#include "common/filter.h"
#include "config/config.h"
#include "config/config_reset.h"
#include "drivers/sound_beeper.h"
#include "drivers/time.h"
#include "fc/controlrate_profile.h"
#include "fc/core.h"
#include "fc/rc.h"
#include "fc/rc_controls.h"
#include "fc/runtime_config.h"
#include "flight/imu.h"
#include "flight/mixer.h"
#include "flight/pid.h"
#include "flight/pid_init.h"
#include "io/gps.h"
#include "pg/pg.h"
#include "pg/pg_ids.h"
#include "sensors/gyro.h"
#include "sensors/acceleration.h"
gyro_t gyro;
attitudeEulerAngles_t attitude;
PG_REGISTER(accelerometerConfig_t, accelerometerConfig, PG_ACCELEROMETER_CONFIG, 0);
PG_REGISTER(systemConfig_t, systemConfig, PG_SYSTEM_CONFIG, 2);
bool unitLaunchControlActive = false;
launchControlMode_e unitLaunchControlMode = LAUNCH_CONTROL_MODE_NORMAL;
float getThrottlePIDAttenuation(void) { return simulatedThrottlePIDAttenuation; }
float getMotorMixRange(void) { return simulatedMotorMixRange; }
float getSetpointRate(int axis) { return simulatedSetpointRate[axis]; }
bool isAirmodeActivated() { return simulatedAirmodeEnabled; }
float getRcDeflectionAbs(int axis) { return fabsf(simulatedRcDeflection[axis]); }
void systemBeep(bool) { }
bool gyroOverflowDetected(void) { return false; }
float getRcDeflection(int axis) { return simulatedRcDeflection[axis]; }
void beeperConfirmationBeeps(uint8_t) { }
bool isLaunchControlActive(void) {return unitLaunchControlActive; }
void disarm(flightLogDisarmReason_e) { }
float applyFeedforwardLimit(int axis, float value, float Kp, float currentPidSetpoint)
{
UNUSED(axis);
UNUSED(Kp);
UNUSED(currentPidSetpoint);
return value;
}
void feedforwardInit(const pidProfile_t) { }
float feedforwardApply(int axis, bool newRcFrame, feedforwardAveraging_t feedforwardAveraging)
{
UNUSED(newRcFrame);
UNUSED(feedforwardAveraging);
return simulatedSetpointRate[axis] - simulatedPrevSetpointRate[axis];
}
bool shouldApplyFeedforwardLimits(int axis)
{
UNUSED(axis);
return true;
}
bool getShouldUpdateFeedforward() { return true; }
void initRcProcessing(void) { }
}
pidProfile_t *pidProfile;
int loopIter = 0;
// Always use same defaults for testing in future releases even when defaults change
void setDefaultTestSettings(void) {
pgResetAll();
pidProfile = pidProfilesMutable(1);
pidProfile->pid[PID_ROLL] = { 40, 40, 30, 65 };
pidProfile->pid[PID_PITCH] = { 58, 50, 35, 60 };
pidProfile->pid[PID_YAW] = { 70, 45, 20, 60 };
pidProfile->pid[PID_LEVEL] = { 50, 50, 75, 0 };
// Compensate for the upscaling done without 'use_integrated_yaw'
pidProfile->pid[PID_YAW].I = pidProfile->pid[PID_YAW].I / 2.5f;
pidProfile->pidSumLimit = PIDSUM_LIMIT;
pidProfile->pidSumLimitYaw = PIDSUM_LIMIT_YAW;
pidProfile->yaw_lowpass_hz = 0;
pidProfile->dterm_lowpass_hz = 100;
pidProfile->dterm_lowpass2_hz = 0;
pidProfile->dterm_notch_hz = 260;
pidProfile->dterm_notch_cutoff = 160;
pidProfile->dterm_filter_type = FILTER_BIQUAD;
pidProfile->itermWindupPointPercent = 50;
pidProfile->pidAtMinThrottle = PID_STABILISATION_ON;
pidProfile->levelAngleLimit = 55;
pidProfile->feedforwardTransition = 100;
pidProfile->yawRateAccelLimit = 100;
pidProfile->rateAccelLimit = 0;
pidProfile->antiGravityMode = ANTI_GRAVITY_SMOOTH;
pidProfile->itermThrottleThreshold = 250;
pidProfile->itermAcceleratorGain = 1000;
pidProfile->crash_time = 500;
pidProfile->crash_delay = 0;
pidProfile->crash_recovery_angle = 10;
pidProfile->crash_recovery_rate = 100;
pidProfile->crash_dthreshold = 50;
pidProfile->crash_gthreshold = 400;
pidProfile->crash_setpoint_threshold = 350;
pidProfile->crash_recovery = PID_CRASH_RECOVERY_OFF;
pidProfile->horizon_tilt_effect = 75;
pidProfile->horizon_tilt_expert_mode = false;
pidProfile->crash_limit_yaw = 200;
pidProfile->itermLimit = 150;
pidProfile->throttle_boost = 0;
pidProfile->throttle_boost_cutoff = 15;
pidProfile->iterm_rotation = false;
pidProfile->iterm_relax = ITERM_RELAX_OFF,
pidProfile->iterm_relax_cutoff = 11,
pidProfile->iterm_relax_type = ITERM_RELAX_SETPOINT,
pidProfile->abs_control_gain = 0,
pidProfile->launchControlMode = LAUNCH_CONTROL_MODE_NORMAL,
pidProfile->launchControlGain = 40,
pidProfile->level_race_mode = false,
gyro.targetLooptime = 8000;
}
timeUs_t currentTestTime(void) {
return targetPidLooptime * loopIter++;
}
void resetTest(void) {
loopIter = 0;
simulatedThrottlePIDAttenuation = 1.0f;
simulatedMotorMixRange = 0.0f;
pidStabilisationState(PID_STABILISATION_OFF);
DISABLE_ARMING_FLAG(ARMED);
setDefaultTestSettings();
for (int axis = FD_ROLL; axis <= FD_YAW; axis++) {
pidData[axis].P = 0;
pidData[axis].I = 0;
pidData[axis].D = 0;
pidData[axis].F = 0;
pidData[axis].Sum = 0;
simulatedSetpointRate[axis] = 0;
simulatedRcDeflection[axis] = 0;
gyro.gyroADCf[axis] = 0;
}
attitude.values.roll = 0;
attitude.values.pitch = 0;
attitude.values.yaw = 0;
flightModeFlags = 0;
unitLaunchControlActive = false;
pidProfile->launchControlMode = unitLaunchControlMode;
pidInit(pidProfile);
loadControlRateProfile();
currentControlRateProfile->levelExpo[FD_ROLL] = 0;
currentControlRateProfile->levelExpo[FD_PITCH] = 0;
// Run pidloop for a while after reset
for (int loop = 0; loop < 20; loop++) {
pidController(pidProfile, currentTestTime());
}
}
void setStickPosition(int axis, float stickRatio) {
simulatedPrevSetpointRate[axis] = simulatedSetpointRate[axis];
simulatedSetpointRate[axis] = 1998.0f * stickRatio;
simulatedRcDeflection[axis] = stickRatio;
}
// All calculations will have 10% tolerance
float calculateTolerance(float input) {
return fabs(input * 0.1f);
}
TEST(pidControllerTest, testInitialisation)
{
resetTest();
// In initial state PIDsums should be 0
for (int axis = 0; axis <= FD_YAW; axis++) {
EXPECT_FLOAT_EQ(0, pidData[axis].P);
EXPECT_FLOAT_EQ(0, pidData[axis].I);
EXPECT_FLOAT_EQ(0, pidData[axis].D);
}
}
TEST(pidControllerTest, testStabilisationDisabled) {
ENABLE_ARMING_FLAG(ARMED);
// Run few loops to make sure there is no error building up when stabilisation disabled
for (int loop = 0; loop < 10; loop++) {
pidController(pidProfile, currentTestTime());
// PID controller should not do anything, while stabilisation disabled
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].P);
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].P);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].P);
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].I);
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].I);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].I);
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].D);
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].D);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].D);
}
}
TEST(pidControllerTest, testPidLoop) {
// Make sure to start with fresh values
resetTest();
ENABLE_ARMING_FLAG(ARMED);
pidStabilisationState(PID_STABILISATION_ON);
pidController(pidProfile, currentTestTime());
// Loop 1 - Expecting zero since there is no error
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].P);
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].P);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].P);
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].I);
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].I);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].I);
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].D);
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].D);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].D);
// Add some rotation on ROLL to generate error
gyro.gyroADCf[FD_ROLL] = 100;
pidController(pidProfile, currentTestTime());
// Loop 2 - Expect PID loop reaction to ROLL error
EXPECT_NEAR(-128.1, pidData[FD_ROLL].P, calculateTolerance(-128.1));
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].P);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].P);
EXPECT_NEAR(-7.8, pidData[FD_ROLL].I, calculateTolerance(-7.8));
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].I);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].I);
EXPECT_NEAR(-198.4, pidData[FD_ROLL].D, calculateTolerance(-198.4));
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].D);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].D);
// Add some rotation on PITCH to generate error
gyro.gyroADCf[FD_PITCH] = -100;
pidController(pidProfile, currentTestTime());
// Loop 3 - Expect PID loop reaction to PITCH error, ROLL is still in error
EXPECT_NEAR(-128.1, pidData[FD_ROLL].P, calculateTolerance(-128.1));
EXPECT_NEAR(185.8, pidData[FD_PITCH].P, calculateTolerance(185.8));
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].P);
EXPECT_NEAR(-15.6, pidData[FD_ROLL].I, calculateTolerance(-15.6));
EXPECT_NEAR(9.8, pidData[FD_PITCH].I, calculateTolerance(9.8));
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].I);
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].D);
EXPECT_NEAR(231.4, pidData[FD_PITCH].D, calculateTolerance(231.4));
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].D);
// Add some rotation on YAW to generate error
gyro.gyroADCf[FD_YAW] = 100;
pidController(pidProfile, currentTestTime());
// Loop 4 - Expect PID loop reaction to PITCH error, ROLL and PITCH are still in error
EXPECT_NEAR(-128.1, pidData[FD_ROLL].P, calculateTolerance(-128.1));
EXPECT_NEAR(185.8, pidData[FD_PITCH].P, calculateTolerance(185.8));
EXPECT_NEAR(-224.2, pidData[FD_YAW].P, calculateTolerance(-224.2));
EXPECT_NEAR(-23.5, pidData[FD_ROLL].I, calculateTolerance(-23.5));
EXPECT_NEAR(19.6, pidData[FD_PITCH].I, calculateTolerance(19.6));
EXPECT_NEAR(-8.7, pidData[FD_YAW].I, calculateTolerance(-8.7));
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].D);
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].D);
EXPECT_NEAR(-132.25, pidData[FD_YAW].D, calculateTolerance(-132.25));
// Simulate Iterm behaviour during mixer saturation
simulatedMotorMixRange = 1.2f;
pidController(pidProfile, currentTestTime());
EXPECT_NEAR(-31.3, pidData[FD_ROLL].I, calculateTolerance(-31.3));
EXPECT_NEAR(29.3, pidData[FD_PITCH].I, calculateTolerance(29.3));
EXPECT_NEAR(-8.8, pidData[FD_YAW].I, calculateTolerance(-8.8));
simulatedMotorMixRange = 0;
// Match the stick to gyro to stop error
simulatedSetpointRate[FD_ROLL] = 100;
simulatedSetpointRate[FD_PITCH] = -100;
simulatedSetpointRate[FD_YAW] = 100;
for(int loop = 0; loop < 5; loop++) {
pidController(pidProfile, currentTestTime());
}
// Iterm is stalled as it is not accumulating anymore
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].P);
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].P);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].P);
EXPECT_NEAR(-31.3, pidData[FD_ROLL].I, calculateTolerance(-31.3));
EXPECT_NEAR(29.3, pidData[FD_PITCH].I, calculateTolerance(29.3));
EXPECT_NEAR(-10.6, pidData[FD_YAW].I, calculateTolerance(-10.6));
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].D);
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].D);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].D);
// Now disable Stabilisation
pidStabilisationState(PID_STABILISATION_OFF);
pidController(pidProfile, currentTestTime());
// Should all be zero again
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].P);
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].P);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].P);
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].I);
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].I);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].I);
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].D);
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].D);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].D);
}
TEST(pidControllerTest, testPidLevel) {
// Make sure to start with fresh values
resetTest();
ENABLE_ARMING_FLAG(ARMED);
pidStabilisationState(PID_STABILISATION_ON);
// Test Angle mode response
enableFlightMode(ANGLE_MODE);
float currentPidSetpoint = 30;
rollAndPitchTrims_t angleTrim = { { 0, 0 } };
currentPidSetpoint = pidLevel(FD_ROLL, pidProfile, &angleTrim, currentPidSetpoint);
EXPECT_FLOAT_EQ(0, currentPidSetpoint);
currentPidSetpoint = pidLevel(FD_PITCH, pidProfile, &angleTrim, currentPidSetpoint);
EXPECT_FLOAT_EQ(0, currentPidSetpoint);
// Test attitude response
setStickPosition(FD_ROLL, 1.0f);
setStickPosition(FD_PITCH, -1.0f);
currentPidSetpoint = pidLevel(FD_ROLL, pidProfile, &angleTrim, currentPidSetpoint);
EXPECT_FLOAT_EQ(275, currentPidSetpoint);
currentPidSetpoint = pidLevel(FD_PITCH, pidProfile, &angleTrim, currentPidSetpoint);
EXPECT_FLOAT_EQ(-275, currentPidSetpoint);
setStickPosition(FD_ROLL, -0.5f);
setStickPosition(FD_PITCH, 0.5f);
currentPidSetpoint = pidLevel(FD_ROLL, pidProfile, &angleTrim, currentPidSetpoint);
EXPECT_FLOAT_EQ(-137.5, currentPidSetpoint);
currentPidSetpoint = pidLevel(FD_PITCH, pidProfile, &angleTrim, currentPidSetpoint);
EXPECT_FLOAT_EQ(137.5, currentPidSetpoint);
attitude.values.roll = -275;
attitude.values.pitch = 275;
currentPidSetpoint = pidLevel(FD_ROLL, pidProfile, &angleTrim, currentPidSetpoint);
EXPECT_FLOAT_EQ(0, currentPidSetpoint);
currentPidSetpoint = pidLevel(FD_PITCH, pidProfile, &angleTrim, currentPidSetpoint);
EXPECT_FLOAT_EQ(0, currentPidSetpoint);
// Disable ANGLE_MODE
disableFlightMode(ANGLE_MODE);
currentPidSetpoint = pidLevel(FD_ROLL, pidProfile, &angleTrim, currentPidSetpoint);
EXPECT_FLOAT_EQ(0, currentPidSetpoint);
currentPidSetpoint = pidLevel(FD_PITCH, pidProfile, &angleTrim, currentPidSetpoint);
EXPECT_FLOAT_EQ(0, currentPidSetpoint);
// Test level mode expo
enableFlightMode(ANGLE_MODE);
attitude.values.roll = 0;
attitude.values.pitch = 0;
setStickPosition(FD_ROLL, 0.5f);
setStickPosition(FD_PITCH, -0.5f);
currentControlRateProfile->levelExpo[FD_ROLL] = 50;
currentControlRateProfile->levelExpo[FD_PITCH] = 26;
currentPidSetpoint = pidLevel(FD_ROLL, pidProfile, &angleTrim, currentPidSetpoint);
EXPECT_FLOAT_EQ(85.9375, currentPidSetpoint);
currentPidSetpoint = pidLevel(FD_PITCH, pidProfile, &angleTrim, currentPidSetpoint);
EXPECT_FLOAT_EQ(-110.6875, currentPidSetpoint);
}
TEST(pidControllerTest, testPidHorizon) {
resetTest();
ENABLE_ARMING_FLAG(ARMED);
pidStabilisationState(PID_STABILISATION_ON);
enableFlightMode(HORIZON_MODE);
// Test full stick response
setStickPosition(FD_ROLL, 1.0f);
setStickPosition(FD_PITCH, -1.0f);
EXPECT_FLOAT_EQ(0, calcHorizonLevelStrength());
// Expect full rate output on full stick
// Test zero stick response
setStickPosition(FD_ROLL, 0);
setStickPosition(FD_PITCH, 0);
EXPECT_FLOAT_EQ(1, calcHorizonLevelStrength());
// Test small stick response
setStickPosition(FD_ROLL, 0.1f);
setStickPosition(FD_PITCH, -0.1f);
EXPECT_NEAR(0.82, calcHorizonLevelStrength(), calculateTolerance(0.82));
}
TEST(pidControllerTest, testMixerSaturation) {
resetTest();
ENABLE_ARMING_FLAG(ARMED);
pidStabilisationState(PID_STABILISATION_ON);
// Test full stick response
setStickPosition(FD_ROLL, 1.0f);
setStickPosition(FD_PITCH, -1.0f);
setStickPosition(FD_YAW, 1.0f);
simulatedMotorMixRange = 2.0f;
pidController(pidProfile, currentTestTime());
// Expect no iterm accumulation for yaw
EXPECT_FLOAT_EQ(150, pidData[FD_ROLL].I);
EXPECT_FLOAT_EQ(-150, pidData[FD_PITCH].I);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].I);
// Test itermWindup limit (note: windup limit now only affects yaw)
// First store values without exceeding iterm windup limit
resetTest();
ENABLE_ARMING_FLAG(ARMED);
pidStabilisationState(PID_STABILISATION_ON);
setStickPosition(FD_ROLL, 0.1f);
setStickPosition(FD_PITCH, -0.1f);
setStickPosition(FD_YAW, 0.1f);
simulatedMotorMixRange = 0.0f;
pidController(pidProfile, currentTestTime());
float rollTestIterm = pidData[FD_ROLL].I;
float pitchTestIterm = pidData[FD_PITCH].I;
float yawTestIterm = pidData[FD_YAW].I;
// Now compare values when exceeding the limit
resetTest();
ENABLE_ARMING_FLAG(ARMED);
pidStabilisationState(PID_STABILISATION_ON);
setStickPosition(FD_ROLL, 0.1f);
setStickPosition(FD_PITCH, -0.1f);
setStickPosition(FD_YAW, 0.1f);
simulatedMotorMixRange = (pidProfile->itermWindupPointPercent + 1) / 100.0f;
pidController(pidProfile, currentTestTime());
EXPECT_FLOAT_EQ(pidData[FD_ROLL].I, rollTestIterm);
EXPECT_FLOAT_EQ(pidData[FD_PITCH].I, pitchTestIterm);
EXPECT_LT(pidData[FD_YAW].I, yawTestIterm);
}
// TODO - Add more scenarios
TEST(pidControllerTest, testCrashRecoveryMode) {
resetTest();
pidProfile->crash_recovery = PID_CRASH_RECOVERY_ON;
pidInit(pidProfile);
ENABLE_ARMING_FLAG(ARMED);
pidStabilisationState(PID_STABILISATION_ON);
sensorsSet(SENSOR_ACC);
EXPECT_FALSE(crashRecoveryModeActive());
int loopsToCrashTime = (int)((pidProfile->crash_time * 1000) / targetPidLooptime) + 1;
// generate crash detection for roll axis
gyro.gyroADCf[FD_ROLL] = 800;
simulatedMotorMixRange = 1.2f;
for (int loop =0; loop <= loopsToCrashTime; loop++) {
gyro.gyroADCf[FD_ROLL] += gyro.gyroADCf[FD_ROLL];
// advance the time to avoid initialized state prevention of crash recovery
pidController(pidProfile, currentTestTime() + 2000000);
}
EXPECT_TRUE(crashRecoveryModeActive());
// Add additional verifications
}
TEST(pidControllerTest, testFeedForward) {
resetTest();
ENABLE_ARMING_FLAG(ARMED);
pidStabilisationState(PID_STABILISATION_ON);
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].F);
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].F);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].F);
// Match the stick to gyro to stop error
setStickPosition(FD_ROLL, 1.0f);
setStickPosition(FD_PITCH, -1.0f);
setStickPosition(FD_YAW, -1.0f);
pidController(pidProfile, currentTestTime());
EXPECT_NEAR(2232.78, pidData[FD_ROLL].F, calculateTolerance(2232.78));
EXPECT_NEAR(-2061.03, pidData[FD_PITCH].F, calculateTolerance(-2061.03));
EXPECT_NEAR(-2061.03, pidData[FD_YAW].F, calculateTolerance(-2061.03));
// Match the stick to gyro to stop error
setStickPosition(FD_ROLL, 0.5f);
setStickPosition(FD_PITCH, -0.5f);
setStickPosition(FD_YAW, -0.5f);
pidController(pidProfile, currentTestTime());
EXPECT_NEAR(-558.20, pidData[FD_ROLL].F, calculateTolerance(-558.20));
EXPECT_NEAR(515.26, pidData[FD_PITCH].F, calculateTolerance(515.26));
EXPECT_NEAR(515.26, pidData[FD_YAW].F, calculateTolerance(515.26));
setStickPosition(FD_ROLL, 0.0f);
setStickPosition(FD_PITCH, 0.0f);
setStickPosition(FD_YAW, 0.0f);
for (int loop = 0; loop <= 15; loop++) {
gyro.gyroADCf[FD_ROLL] += gyro.gyroADCf[FD_ROLL];
pidController(pidProfile, currentTestTime());
}
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].F);
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].F);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].F);
}
TEST(pidControllerTest, testItermRelax) {
resetTest();
pidProfile->iterm_relax = ITERM_RELAX_RP;
ENABLE_ARMING_FLAG(ARMED);
pidStabilisationState(PID_STABILISATION_ON);
pidProfile->iterm_relax_type = ITERM_RELAX_SETPOINT;
pidInit(pidProfile);
float itermErrorRate = 0;
float currentPidSetpoint = 0;
float gyroRate = 0;
applyItermRelax(FD_PITCH, 0, gyroRate, &itermErrorRate, &currentPidSetpoint);
EXPECT_FLOAT_EQ(itermErrorRate, 0);
itermErrorRate = -10;
currentPidSetpoint = 10;
pidData[FD_PITCH].I = 10;
applyItermRelax(FD_PITCH, pidData[FD_PITCH].I, gyroRate, &itermErrorRate, &currentPidSetpoint);
EXPECT_NEAR(-8.16, itermErrorRate, calculateTolerance(-8.16));
currentPidSetpoint += ITERM_RELAX_SETPOINT_THRESHOLD;
applyItermRelax(FD_PITCH, pidData[FD_PITCH].I, gyroRate, &itermErrorRate, &currentPidSetpoint);
EXPECT_NEAR(0, itermErrorRate, calculateTolerance(0));
applyItermRelax(FD_PITCH, pidData[FD_PITCH].I, gyroRate, &itermErrorRate, &currentPidSetpoint);
EXPECT_NEAR(0, itermErrorRate, calculateTolerance(0));
pidProfile->iterm_relax_type = ITERM_RELAX_GYRO;
pidInit(pidProfile);
currentPidSetpoint = 100;
applyItermRelax(FD_PITCH, pidData[FD_PITCH].I, gyroRate, &itermErrorRate, &currentPidSetpoint);
EXPECT_FLOAT_EQ(itermErrorRate, 0);
gyroRate = 10;
itermErrorRate = -10;
applyItermRelax(FD_PITCH, pidData[FD_PITCH].I, gyroRate, &itermErrorRate, &currentPidSetpoint);
EXPECT_NEAR(7, itermErrorRate, calculateTolerance(7));
gyroRate += 100;
applyItermRelax(FD_PITCH, pidData[FD_PITCH].I, gyroRate, &itermErrorRate, &currentPidSetpoint);
EXPECT_NEAR(-10, itermErrorRate, calculateTolerance(-10));
pidProfile->iterm_relax = ITERM_RELAX_RP_INC;
pidInit(pidProfile);
itermErrorRate = -10;
pidData[FD_PITCH].I = 10;
currentPidSetpoint = 10;
applyItermRelax(FD_PITCH, pidData[FD_PITCH].I, gyroRate, &itermErrorRate, &currentPidSetpoint);
EXPECT_FLOAT_EQ(itermErrorRate, -10);
itermErrorRate = 10;
pidData[FD_PITCH].I = -10;
applyItermRelax(FD_PITCH, pidData[FD_PITCH].I, gyroRate, &itermErrorRate, &currentPidSetpoint);
EXPECT_FLOAT_EQ(itermErrorRate, 10);
itermErrorRate = -10;
currentPidSetpoint = 10;
applyItermRelax(FD_PITCH, pidData[FD_PITCH].I, gyroRate, &itermErrorRate, &currentPidSetpoint);
EXPECT_FLOAT_EQ(itermErrorRate, -100);
pidProfile->iterm_relax_type = ITERM_RELAX_SETPOINT;
pidInit(pidProfile);
itermErrorRate = -10;
currentPidSetpoint = ITERM_RELAX_SETPOINT_THRESHOLD;
applyItermRelax(FD_YAW, pidData[FD_YAW].I, gyroRate, &itermErrorRate, &currentPidSetpoint);
EXPECT_FLOAT_EQ(itermErrorRate, -10);
pidProfile->iterm_relax = ITERM_RELAX_RPY;
pidInit(pidProfile);
applyItermRelax(FD_YAW, pidData[FD_YAW].I, gyroRate, &itermErrorRate, &currentPidSetpoint);
EXPECT_NEAR(-3.6, itermErrorRate, calculateTolerance(-3.6));
}
// TODO - Add more tests
TEST(pidControllerTest, testAbsoluteControl) {
resetTest();
pidProfile->abs_control_gain = 10;
pidInit(pidProfile);
ENABLE_ARMING_FLAG(ARMED);
pidStabilisationState(PID_STABILISATION_ON);
float gyroRate = 0;
float itermErrorRate = 10;
float currentPidSetpoint = 10;
applyAbsoluteControl(FD_PITCH, gyroRate, &currentPidSetpoint, &itermErrorRate);
EXPECT_NEAR(10.8, itermErrorRate, calculateTolerance(10.8));
EXPECT_NEAR(10.8, currentPidSetpoint, calculateTolerance(10.8));
applyAbsoluteControl(FD_PITCH, gyroRate, &currentPidSetpoint, &itermErrorRate);
EXPECT_NEAR(10.8, itermErrorRate, calculateTolerance(10.8));
EXPECT_NEAR(10.8, currentPidSetpoint, calculateTolerance(10.8));
gyroRate = -53;
axisError[FD_PITCH] = -60;
applyAbsoluteControl(FD_PITCH, gyroRate, &currentPidSetpoint, &itermErrorRate);
EXPECT_NEAR(-79.2, itermErrorRate, calculateTolerance(-79.2));
EXPECT_NEAR(-79.2, currentPidSetpoint, calculateTolerance(-79.2));
}
TEST(pidControllerTest, testDtermFiltering) {
// TODO
}
TEST(pidControllerTest, testItermRotationHandling) {
resetTest();
pidInit(pidProfile);
rotateItermAndAxisError();
EXPECT_FLOAT_EQ(pidData[FD_ROLL].I, 0);
EXPECT_FLOAT_EQ(pidData[FD_PITCH].I, 0);
EXPECT_FLOAT_EQ(pidData[FD_YAW].I, 0);
pidProfile->iterm_rotation = true;
pidInit(pidProfile);
rotateItermAndAxisError();
EXPECT_FLOAT_EQ(pidData[FD_ROLL].I, 0);
EXPECT_FLOAT_EQ(pidData[FD_PITCH].I, 0);
EXPECT_FLOAT_EQ(pidData[FD_YAW].I, 0);
pidData[FD_ROLL].I = 10;
pidData[FD_PITCH].I = 1000;
pidData[FD_YAW].I = 1000;
gyro.gyroADCf[FD_ROLL] = -1000;
rotateItermAndAxisError();
EXPECT_FLOAT_EQ(pidData[FD_ROLL].I, 10);
EXPECT_NEAR(860.37, pidData[FD_PITCH].I, calculateTolerance(860.37));
EXPECT_NEAR(1139.6, pidData[FD_YAW].I, calculateTolerance(1139.6));
pidProfile->abs_control_gain = 10;
pidInit(pidProfile);
pidData[FD_ROLL].I = 10;
pidData[FD_PITCH].I = 1000;
pidData[FD_YAW].I = 1000;
gyro.gyroADCf[FD_ROLL] = -1000;
// FIXME - axisError changes don't affect the system. This is a potential bug or intendend behaviour?
axisError[FD_PITCH] = 1000;
axisError[FD_YAW] = 1000;
rotateItermAndAxisError();
EXPECT_FLOAT_EQ(pidData[FD_ROLL].I, 10);
EXPECT_NEAR(860.37, pidData[FD_PITCH].I, calculateTolerance(860.37));
EXPECT_NEAR(1139.6, pidData[FD_YAW].I, calculateTolerance(1139.6));
}
TEST(pidControllerTest, testLaunchControl) {
// The launchControlGain is indirectly tested since when launch control is active the
// the gain overrides the PID settings. If the logic to use launchControlGain wasn't
// working then any I calculations would be incorrect.
resetTest();
unitLaunchControlActive = true;
ENABLE_ARMING_FLAG(ARMED);
pidStabilisationState(PID_STABILISATION_ON);
// test that feedforward and D are disabled (always zero) when launch control is active
// set initial state
pidController(pidProfile, currentTestTime());
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].F);
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].F);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].F);
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].D);
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].D);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].D);
// Move the sticks to induce feedforward
setStickPosition(FD_ROLL, 0.5f);
setStickPosition(FD_PITCH, -0.5f);
setStickPosition(FD_YAW, -0.5f);
// add gyro activity to induce D
gyro.gyroADCf[FD_ROLL] = -1000;
gyro.gyroADCf[FD_PITCH] = 1000;
gyro.gyroADCf[FD_YAW] = -1000;
pidController(pidProfile, currentTestTime());
// validate that feedforwad is still 0
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].F);
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].F);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].F);
// validate that D is still 0
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].D);
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].D);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].D);
// test NORMAL mode - expect P/I on roll and pitch, P on yaw but I == 0
unitLaunchControlMode = LAUNCH_CONTROL_MODE_NORMAL;
resetTest();
unitLaunchControlActive = true;
ENABLE_ARMING_FLAG(ARMED);
pidStabilisationState(PID_STABILISATION_ON);
pidController(pidProfile, currentTestTime());
gyro.gyroADCf[FD_ROLL] = -20;
gyro.gyroADCf[FD_PITCH] = 20;
gyro.gyroADCf[FD_YAW] = -20;
pidController(pidProfile, currentTestTime());
EXPECT_NEAR(25.62, pidData[FD_ROLL].P, calculateTolerance(25.62));
EXPECT_NEAR(1.56, pidData[FD_ROLL].I, calculateTolerance(1.56));
EXPECT_NEAR(-37.15, pidData[FD_PITCH].P, calculateTolerance(-37.15));
EXPECT_NEAR(-1.56, pidData[FD_PITCH].I, calculateTolerance(-1.56));
EXPECT_NEAR(44.84, pidData[FD_YAW].P, calculateTolerance(44.84));
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].I);
// test PITCHONLY mode - expect P/I only on pitch; I cannot go negative
unitLaunchControlMode = LAUNCH_CONTROL_MODE_PITCHONLY;
resetTest();
unitLaunchControlActive = true;
ENABLE_ARMING_FLAG(ARMED);
pidStabilisationState(PID_STABILISATION_ON);
pidController(pidProfile, currentTestTime());
// first test that pitch I is prevented from going negative
gyro.gyroADCf[FD_ROLL] = 0;
gyro.gyroADCf[FD_PITCH] = 20;
gyro.gyroADCf[FD_YAW] = 0;
pidController(pidProfile, currentTestTime());
EXPECT_FLOAT_EQ(0, pidData[FD_PITCH].I);
gyro.gyroADCf[FD_ROLL] = 20;
gyro.gyroADCf[FD_PITCH] = -20;
gyro.gyroADCf[FD_YAW] = 20;
pidController(pidProfile, currentTestTime());
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].P);
EXPECT_FLOAT_EQ(0, pidData[FD_ROLL].I);
EXPECT_NEAR(37.15, pidData[FD_PITCH].P, calculateTolerance(37.15));
EXPECT_NEAR(1.56, pidData[FD_PITCH].I, calculateTolerance(1.56));
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].P);
EXPECT_FLOAT_EQ(0, pidData[FD_YAW].I);
// test FULL mode - expect P/I on all axes
unitLaunchControlMode = LAUNCH_CONTROL_MODE_FULL;
resetTest();
unitLaunchControlActive = true;
ENABLE_ARMING_FLAG(ARMED);
pidStabilisationState(PID_STABILISATION_ON);
pidController(pidProfile, currentTestTime());
gyro.gyroADCf[FD_ROLL] = -20;
gyro.gyroADCf[FD_PITCH] = 20;
gyro.gyroADCf[FD_YAW] = -20;
pidController(pidProfile, currentTestTime());
EXPECT_NEAR(25.62, pidData[FD_ROLL].P, calculateTolerance(25.62));
EXPECT_NEAR(1.56, pidData[FD_ROLL].I, calculateTolerance(1.56));
EXPECT_NEAR(-37.15, pidData[FD_PITCH].P, calculateTolerance(-37.15));
EXPECT_NEAR(-1.56, pidData[FD_PITCH].I, calculateTolerance(-1.56));
EXPECT_NEAR(44.84, pidData[FD_YAW].P, calculateTolerance(44.84));
EXPECT_NEAR(1.56, pidData[FD_YAW].I, calculateTolerance(1.56));
}