atbetaflight/lib/main/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_qspi.c

2338 lines
75 KiB
C

/**
******************************************************************************
* @file stm32f7xx_hal_qspi.c
* @author MCD Application Team
* @version V1.1.2
* @date 23-September-2016
* @brief QSPI HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the QuadSPI interface (QSPI).
* + Initialization and de-initialization functions
* + Indirect functional mode management
* + Memory-mapped functional mode management
* + Auto-polling functional mode management
* + Interrupts and flags management
* + DMA channel configuration for indirect functional mode
* + Errors management and abort functionality
*
*
@verbatim
===============================================================================
##### How to use this driver #####
===============================================================================
[..]
*** Initialization ***
======================
[..]
(#) As prerequisite, fill in the HAL_QSPI_MspInit() :
(++) Enable QuadSPI clock interface with __HAL_RCC_QSPI_CLK_ENABLE().
(++) Reset QuadSPI IP with __HAL_RCC_QSPI_FORCE_RESET() and __HAL_RCC_QSPI_RELEASE_RESET().
(++) Enable the clocks for the QuadSPI GPIOS with __HAL_RCC_GPIOx_CLK_ENABLE().
(++) Configure these QuadSPI pins in alternate mode using HAL_GPIO_Init().
(++) If interrupt mode is used, enable and configure QuadSPI global
interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ().
(++) If DMA mode is used, enable the clocks for the QuadSPI DMA channel
with __HAL_RCC_DMAx_CLK_ENABLE(), configure DMA with HAL_DMA_Init(),
link it with QuadSPI handle using __HAL_LINKDMA(), enable and configure
DMA channel global interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ().
(#) Configure the flash size, the clock prescaler, the fifo threshold, the
clock mode, the sample shifting and the CS high time using the HAL_QSPI_Init() function.
*** Indirect functional mode ***
================================
[..]
(#) Configure the command sequence using the HAL_QSPI_Command() or HAL_QSPI_Command_IT()
functions :
(++) Instruction phase : the mode used and if present the instruction opcode.
(++) Address phase : the mode used and if present the size and the address value.
(++) Alternate-bytes phase : the mode used and if present the size and the alternate
bytes values.
(++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase).
(++) Data phase : the mode used and if present the number of bytes.
(++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay
if activated.
(++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode.
(#) If no data is required for the command, it is sent directly to the memory :
(++) In polling mode, the output of the function is done when the transfer is complete.
(++) In interrupt mode, HAL_QSPI_CmdCpltCallback() will be called when the transfer is complete.
(#) For the indirect write mode, use HAL_QSPI_Transmit(), HAL_QSPI_Transmit_DMA() or
HAL_QSPI_Transmit_IT() after the command configuration :
(++) In polling mode, the output of the function is done when the transfer is complete.
(++) In interrupt mode, HAL_QSPI_FifoThresholdCallback() will be called when the fifo threshold
is reached and HAL_QSPI_TxCpltCallback() will be called when the transfer is complete.
(++) In DMA mode, HAL_QSPI_TxHalfCpltCallback() will be called at the half transfer and
HAL_QSPI_TxCpltCallback() will be called when the transfer is complete.
(#) For the indirect read mode, use HAL_QSPI_Receive(), HAL_QSPI_Receive_DMA() or
HAL_QSPI_Receive_IT() after the command configuration :
(++) In polling mode, the output of the function is done when the transfer is complete.
(++) In interrupt mode, HAL_QSPI_FifoThresholdCallback() will be called when the fifo threshold
is reached and HAL_QSPI_RxCpltCallback() will be called when the transfer is complete.
(++) In DMA mode, HAL_QSPI_RxHalfCpltCallback() will be called at the half transfer and
HAL_QSPI_RxCpltCallback() will be called when the transfer is complete.
*** Auto-polling functional mode ***
====================================
[..]
(#) Configure the command sequence and the auto-polling functional mode using the
HAL_QSPI_AutoPolling() or HAL_QSPI_AutoPolling_IT() functions :
(++) Instruction phase : the mode used and if present the instruction opcode.
(++) Address phase : the mode used and if present the size and the address value.
(++) Alternate-bytes phase : the mode used and if present the size and the alternate
bytes values.
(++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase).
(++) Data phase : the mode used.
(++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay
if activated.
(++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode.
(++) The size of the status bytes, the match value, the mask used, the match mode (OR/AND),
the polling interval and the automatic stop activation.
(#) After the configuration :
(++) In polling mode, the output of the function is done when the status match is reached. The
automatic stop is activated to avoid an infinite loop.
(++) In interrupt mode, HAL_QSPI_StatusMatchCallback() will be called each time the status match is reached.
*** Memory-mapped functional mode ***
=====================================
[..]
(#) Configure the command sequence and the memory-mapped functional mode using the
HAL_QSPI_MemoryMapped() functions :
(++) Instruction phase : the mode used and if present the instruction opcode.
(++) Address phase : the mode used and the size.
(++) Alternate-bytes phase : the mode used and if present the size and the alternate
bytes values.
(++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase).
(++) Data phase : the mode used.
(++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay
if activated.
(++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode.
(++) The timeout activation and the timeout period.
(#) After the configuration, the QuadSPI will be used as soon as an access on the AHB is done on
the address range. HAL_QSPI_TimeOutCallback() will be called when the timeout expires.
*** Errors management and abort functionality ***
==================================================
[..]
(#) HAL_QSPI_GetError() function gives the error raised during the last operation.
(#) HAL_QSPI_Abort() and HAL_QSPI_AbortIT() functions aborts any on-going operation and
flushes the fifo :
(++) In polling mode, the output of the function is done when the transfer
complete bit is set and the busy bit cleared.
(++) In interrupt mode, HAL_QSPI_AbortCpltCallback() will be called when
the transfer complete bi is set.
*** Control functions ***
=========================
[..]
(#) HAL_QSPI_GetState() function gives the current state of the HAL QuadSPI driver.
(#) HAL_QSPI_SetTimeout() function configures the timeout value used in the driver.
(#) HAL_QSPI_SetFifoThreshold() function configures the threshold on the Fifo of the QSPI IP.
(#) HAL_QSPI_GetFifoThreshold() function gives the current of the Fifo's threshold
*** Workarounds linked to Silicon Limitation ***
====================================================
[..]
(#) Workarounds Implemented inside HAL Driver
(++) Extra data written in the FIFO at the end of a read transfer
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f7xx_hal.h"
/** @addtogroup STM32F7xx_HAL_Driver
* @{
*/
/** @defgroup QSPI QSPI
* @brief HAL QSPI module driver
* @{
*/
#ifdef HAL_QSPI_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup QSPI_Private_Constants
* @{
*/
#define QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE ((uint32_t)0x00000000U) /*!<Indirect write mode*/
#define QSPI_FUNCTIONAL_MODE_INDIRECT_READ ((uint32_t)QUADSPI_CCR_FMODE_0) /*!<Indirect read mode*/
#define QSPI_FUNCTIONAL_MODE_AUTO_POLLING ((uint32_t)QUADSPI_CCR_FMODE_1) /*!<Automatic polling mode*/
#define QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED ((uint32_t)QUADSPI_CCR_FMODE) /*!<Memory-mapped mode*/
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/** @addtogroup QSPI_Private_Macros QSPI Private Macros
* @{
*/
#define IS_QSPI_FUNCTIONAL_MODE(MODE) (((MODE) == QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE) || \
((MODE) == QSPI_FUNCTIONAL_MODE_INDIRECT_READ) || \
((MODE) == QSPI_FUNCTIONAL_MODE_AUTO_POLLING) || \
((MODE) == QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED))
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup QSPI_Private_Functions QSPI Private Functions
* @{
*/
static void QSPI_DMARxCplt(DMA_HandleTypeDef *hdma);
static void QSPI_DMATxCplt(DMA_HandleTypeDef *hdma);
static void QSPI_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
static void QSPI_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
static void QSPI_DMAError(DMA_HandleTypeDef *hdma);
static void QSPI_DMAAbortCplt(DMA_HandleTypeDef *hdma);
static HAL_StatusTypeDef QSPI_WaitFlagStateUntilTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Flag, FlagStatus State, uint32_t tickstart, uint32_t Timeout);
static void QSPI_Config(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t FunctionalMode);
/**
* @}
*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup QSPI_Exported_Functions QSPI Exported Functions
* @{
*/
/** @defgroup QSPI_Exported_Functions_Group1 Initialization/de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and Configuration functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to :
(+) Initialize the QuadSPI.
(+) De-initialize the QuadSPI.
@endverbatim
* @{
*/
/**
* @brief Initializes the QSPI mode according to the specified parameters
* in the QSPI_InitTypeDef and creates the associated handle.
* @param hqspi: qspi handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Init(QSPI_HandleTypeDef *hqspi)
{
HAL_StatusTypeDef status = HAL_ERROR;
uint32_t tickstart = HAL_GetTick();
/* Check the QSPI handle allocation */
if(hqspi == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_QSPI_ALL_INSTANCE(hqspi->Instance));
assert_param(IS_QSPI_CLOCK_PRESCALER(hqspi->Init.ClockPrescaler));
assert_param(IS_QSPI_FIFO_THRESHOLD(hqspi->Init.FifoThreshold));
assert_param(IS_QSPI_SSHIFT(hqspi->Init.SampleShifting));
assert_param(IS_QSPI_FLASH_SIZE(hqspi->Init.FlashSize));
assert_param(IS_QSPI_CS_HIGH_TIME(hqspi->Init.ChipSelectHighTime));
assert_param(IS_QSPI_CLOCK_MODE(hqspi->Init.ClockMode));
assert_param(IS_QSPI_DUAL_FLASH_MODE(hqspi->Init.DualFlash));
if (hqspi->Init.DualFlash != QSPI_DUALFLASH_ENABLE )
{
assert_param(IS_QSPI_FLASH_ID(hqspi->Init.FlashID));
}
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hqspi->Lock = HAL_UNLOCKED;
/* Init the low level hardware : GPIO, CLOCK */
HAL_QSPI_MspInit(hqspi);
/* Configure the default timeout for the QSPI memory access */
HAL_QSPI_SetTimeout(hqspi, HAL_QPSI_TIMEOUT_DEFAULT_VALUE);
}
/* Configure QSPI FIFO Threshold */
MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_FTHRES, ((hqspi->Init.FifoThreshold - 1) << 8));
/* Wait till BUSY flag reset */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout);
if(status == HAL_OK)
{
/* Configure QSPI Clock Prescaler and Sample Shift */
MODIFY_REG(hqspi->Instance->CR,(QUADSPI_CR_PRESCALER | QUADSPI_CR_SSHIFT | QUADSPI_CR_FSEL | QUADSPI_CR_DFM), ((hqspi->Init.ClockPrescaler << 24)| hqspi->Init.SampleShifting | hqspi->Init.FlashID| hqspi->Init.DualFlash ));
/* Configure QSPI Flash Size, CS High Time and Clock Mode */
MODIFY_REG(hqspi->Instance->DCR, (QUADSPI_DCR_FSIZE | QUADSPI_DCR_CSHT | QUADSPI_DCR_CKMODE),
((hqspi->Init.FlashSize << 16) | hqspi->Init.ChipSelectHighTime | hqspi->Init.ClockMode));
/* Enable the QSPI peripheral */
__HAL_QSPI_ENABLE(hqspi);
/* Set QSPI error code to none */
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
/* Initialize the QSPI state */
hqspi->State = HAL_QSPI_STATE_READY;
}
/* Release Lock */
__HAL_UNLOCK(hqspi);
/* Return function status */
return status;
}
/**
* @brief DeInitializes the QSPI peripheral
* @param hqspi: qspi handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_DeInit(QSPI_HandleTypeDef *hqspi)
{
/* Check the QSPI handle allocation */
if(hqspi == NULL)
{
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hqspi);
/* Disable the QSPI Peripheral Clock */
__HAL_QSPI_DISABLE(hqspi);
/* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
HAL_QSPI_MspDeInit(hqspi);
/* Set QSPI error code to none */
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
/* Initialize the QSPI state */
hqspi->State = HAL_QSPI_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hqspi);
return HAL_OK;
}
/**
* @brief QSPI MSP Init
* @param hqspi: QSPI handle
* @retval None
*/
__weak void HAL_QSPI_MspInit(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_QSPI_MspInit can be implemented in the user file
*/
}
/**
* @brief QSPI MSP DeInit
* @param hqspi: QSPI handle
* @retval None
*/
__weak void HAL_QSPI_MspDeInit(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_QSPI_MspDeInit can be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup QSPI_Exported_Functions_Group2 IO operation functions
* @brief QSPI Transmit/Receive functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to :
(+) Handle the interrupts.
(+) Handle the command sequence.
(+) Transmit data in blocking, interrupt or DMA mode.
(+) Receive data in blocking, interrupt or DMA mode.
(+) Manage the auto-polling functional mode.
(+) Manage the memory-mapped functional mode.
@endverbatim
* @{
*/
/**
* @brief This function handles QSPI interrupt request.
* @param hqspi: QSPI handle
* @retval None.
*/
void HAL_QSPI_IRQHandler(QSPI_HandleTypeDef *hqspi)
{
__IO uint32_t *data_reg;
uint32_t flag = READ_REG(hqspi->Instance->SR);
uint32_t itsource = READ_REG(hqspi->Instance->CR);
/* QSPI Fifo Threshold interrupt occurred ----------------------------------*/
if(((flag & QSPI_FLAG_FT)!= RESET) && ((itsource & QSPI_IT_FT)!= RESET))
{
data_reg = &hqspi->Instance->DR;
if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_TX)
{
/* Transmission process */
while(__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_FT) != 0)
{
if (hqspi->TxXferCount > 0)
{
/* Fill the FIFO until it is full */
*(__IO uint8_t *)data_reg = *hqspi->pTxBuffPtr++;
hqspi->TxXferCount--;
}
else
{
/* No more data available for the transfer */
/* Disable the QSPI FIFO Threshold Interrupt */
__HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_FT);
break;
}
}
}
else if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_RX)
{
/* Receiving Process */
while(__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_FT) != 0)
{
if (hqspi->RxXferCount > 0)
{
/* Read the FIFO until it is empty */
*hqspi->pRxBuffPtr++ = *(__IO uint8_t *)data_reg;
hqspi->RxXferCount--;
}
else
{
/* All data have been received for the transfer */
/* Disable the QSPI FIFO Threshold Interrupt */
__HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_FT);
break;
}
}
}
/* FIFO Threshold callback */
HAL_QSPI_FifoThresholdCallback(hqspi);
}
/* QSPI Transfer Complete interrupt occurred -------------------------------*/
else if(((flag & QSPI_FLAG_TC)!= RESET) && ((itsource & QSPI_IT_TC)!= RESET))
{
/* Clear interrupt */
WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_TC);
/* Disable the QSPI FIFO Threshold, Transfer Error and Transfer complete Interrupts */
__HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_TC | QSPI_IT_TE | QSPI_IT_FT);
/* Transfer complete callback */
if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_TX)
{
if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET)
{
/* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */
CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
/* Disable the DMA channel */
__HAL_DMA_DISABLE(hqspi->hdma);
}
#if defined(QSPI1_V1_0)
/* Clear Busy bit */
HAL_QSPI_Abort_IT(hqspi);
#endif
/* Change state of QSPI */
hqspi->State = HAL_QSPI_STATE_READY;
/* TX Complete callback */
HAL_QSPI_TxCpltCallback(hqspi);
}
else if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_RX)
{
if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET)
{
/* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */
CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
/* Disable the DMA channel */
__HAL_DMA_DISABLE(hqspi->hdma);
}
else
{
data_reg = &hqspi->Instance->DR;
while(READ_BIT(hqspi->Instance->SR, QUADSPI_SR_FLEVEL) != 0)
{
if (hqspi->RxXferCount > 0)
{
/* Read the last data received in the FIFO until it is empty */
*hqspi->pRxBuffPtr++ = *(__IO uint8_t *)data_reg;
hqspi->RxXferCount--;
}
else
{
/* All data have been received for the transfer */
break;
}
}
}
#if defined(QSPI1_V1_0)
/* Workaround - Extra data written in the FIFO at the end of a read transfer */
HAL_QSPI_Abort_IT(hqspi);
#endif /* QSPI_V1_0*/
/* Change state of QSPI */
hqspi->State = HAL_QSPI_STATE_READY;
/* RX Complete callback */
HAL_QSPI_RxCpltCallback(hqspi);
}
else if(hqspi->State == HAL_QSPI_STATE_BUSY)
{
/* Change state of QSPI */
hqspi->State = HAL_QSPI_STATE_READY;
/* Command Complete callback */
HAL_QSPI_CmdCpltCallback(hqspi);
}
else if(hqspi->State == HAL_QSPI_STATE_ABORT)
{
/* Change state of QSPI */
hqspi->State = HAL_QSPI_STATE_READY;
if (hqspi->ErrorCode == HAL_QSPI_ERROR_NONE)
{
/* Abort called by the user */
/* Abort Complete callback */
HAL_QSPI_AbortCpltCallback(hqspi);
}
else
{
/* Abort due to an error (eg : DMA error) */
/* Error callback */
HAL_QSPI_ErrorCallback(hqspi);
}
}
}
/* QSPI Status Match interrupt occurred ------------------------------------*/
else if(((flag & QSPI_FLAG_SM)!= RESET) && ((itsource & QSPI_IT_SM)!= RESET))
{
/* Clear interrupt */
WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_SM);
/* Check if the automatic poll mode stop is activated */
if(READ_BIT(hqspi->Instance->CR, QUADSPI_CR_APMS) != 0)
{
/* Disable the QSPI Transfer Error and Status Match Interrupts */
__HAL_QSPI_DISABLE_IT(hqspi, (QSPI_IT_SM | QSPI_IT_TE));
/* Change state of QSPI */
hqspi->State = HAL_QSPI_STATE_READY;
}
/* Status match callback */
HAL_QSPI_StatusMatchCallback(hqspi);
}
/* QSPI Transfer Error interrupt occurred ----------------------------------*/
else if(((flag & QSPI_FLAG_TE)!= RESET) && ((itsource & QSPI_IT_TE)!= RESET))
{
/* Clear interrupt */
WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_TE);
/* Disable all the QSPI Interrupts */
__HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_SM | QSPI_IT_TC | QSPI_IT_TE | QSPI_IT_FT);
/* Set error code */
hqspi->ErrorCode |= HAL_QSPI_ERROR_TRANSFER;
if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET)
{
/* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */
CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
/* Disable the DMA channel */
hqspi->hdma->XferAbortCallback = QSPI_DMAAbortCplt;
HAL_DMA_Abort_IT(hqspi->hdma);
}
else
{
/* Change state of QSPI */
hqspi->State = HAL_QSPI_STATE_READY;
/* Error callback */
HAL_QSPI_ErrorCallback(hqspi);
}
}
/* QSPI Timeout interrupt occurred -----------------------------------------*/
else if(((flag & QSPI_FLAG_TO)!= RESET) && ((itsource & QSPI_IT_TO)!= RESET))
{
/* Clear interrupt */
WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_TO);
/* Time out callback */
HAL_QSPI_TimeOutCallback(hqspi);
}
}
/**
* @brief Sets the command configuration.
* @param hqspi: QSPI handle
* @param cmd : structure that contains the command configuration information
* @param Timeout : Time out duration
* @note This function is used only in Indirect Read or Write Modes
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Command(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t Timeout)
{
HAL_StatusTypeDef status = HAL_ERROR;
uint32_t tickstart = HAL_GetTick();
/* Check the parameters */
assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode));
if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE)
{
assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction));
}
assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode));
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
{
assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize));
}
assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode));
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
{
assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize));
}
assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles));
assert_param(IS_QSPI_DATA_MODE(cmd->DataMode));
assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode));
assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle));
assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode));
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
/* Update QSPI state */
hqspi->State = HAL_QSPI_STATE_BUSY;
/* Wait till BUSY flag reset */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, Timeout);
if (status == HAL_OK)
{
/* Call the configuration function */
QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE);
if (cmd->DataMode == QSPI_DATA_NONE)
{
/* When there is no data phase, the transfer start as soon as the configuration is done
so wait until TC flag is set to go back in idle state */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, Timeout);
if (status == HAL_OK)
{
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC);
/* Update QSPI state */
hqspi->State = HAL_QSPI_STATE_READY;
}
}
else
{
/* Update QSPI state */
hqspi->State = HAL_QSPI_STATE_READY;
}
}
}
else
{
status = HAL_BUSY;
}
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Return function status */
return status;
}
/**
* @brief Sets the command configuration in interrupt mode.
* @param hqspi: QSPI handle
* @param cmd : structure that contains the command configuration information
* @note This function is used only in Indirect Read or Write Modes
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Command_IT(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd)
{
HAL_StatusTypeDef status = HAL_ERROR;
uint32_t tickstart = HAL_GetTick();
/* Check the parameters */
assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode));
if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE)
{
assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction));
}
assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode));
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
{
assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize));
}
assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode));
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
{
assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize));
}
assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles));
assert_param(IS_QSPI_DATA_MODE(cmd->DataMode));
assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode));
assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle));
assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode));
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
/* Update QSPI state */
hqspi->State = HAL_QSPI_STATE_BUSY;
/* Wait till BUSY flag reset */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout);
if (status == HAL_OK)
{
if (cmd->DataMode == QSPI_DATA_NONE)
{
/* Clear interrupt */
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_TC);
}
/* Call the configuration function */
QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE);
if (cmd->DataMode == QSPI_DATA_NONE)
{
/* When there is no data phase, the transfer start as soon as the configuration is done
so activate TC and TE interrupts */
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Enable the QSPI Transfer Error Interrupt */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_TC);
}
else
{
/* Update QSPI state */
hqspi->State = HAL_QSPI_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
}
else
{
status = HAL_BUSY;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
/* Return function status */
return status;
}
/**
* @brief Transmit an amount of data in blocking mode.
* @param hqspi: QSPI handle
* @param pData: pointer to data buffer
* @param Timeout : Time out duration
* @note This function is used only in Indirect Write Mode
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Transmit(QSPI_HandleTypeDef *hqspi, uint8_t *pData, uint32_t Timeout)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tickstart = HAL_GetTick();
__IO uint32_t *data_reg = &hqspi->Instance->DR;
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
if(pData != NULL )
{
/* Update state */
hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX;
/* Configure counters and size of the handle */
hqspi->TxXferCount = READ_REG(hqspi->Instance->DLR) + 1;
hqspi->TxXferSize = READ_REG(hqspi->Instance->DLR) + 1;
hqspi->pTxBuffPtr = pData;
/* Configure QSPI: CCR register with functional as indirect write */
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE);
while(hqspi->TxXferCount > 0)
{
/* Wait until FT flag is set to send data */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_FT, SET, tickstart, Timeout);
if (status != HAL_OK)
{
break;
}
*(__IO uint8_t *)data_reg = *hqspi->pTxBuffPtr++;
hqspi->TxXferCount--;
}
if (status == HAL_OK)
{
/* Wait until TC flag is set to go back in idle state */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, Timeout);
if (status == HAL_OK)
{
/* Clear Transfer Complete bit */
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC);
#if defined(QSPI1_V1_0)
/* Clear Busy bit */
status = HAL_QSPI_Abort(hqspi);
#endif /* QSPI_V1_0 */
}
}
/* Update QSPI state */
hqspi->State = HAL_QSPI_STATE_READY;
}
else
{
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
}
}
else
{
status = HAL_BUSY;
}
/* Process unlocked */
__HAL_UNLOCK(hqspi);
return status;
}
/**
* @brief Receive an amount of data in blocking mode
* @param hqspi: QSPI handle
* @param pData: pointer to data buffer
* @param Timeout : Time out duration
* @note This function is used only in Indirect Read Mode
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Receive(QSPI_HandleTypeDef *hqspi, uint8_t *pData, uint32_t Timeout)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tickstart = HAL_GetTick();
uint32_t addr_reg = READ_REG(hqspi->Instance->AR);
__IO uint32_t *data_reg = &hqspi->Instance->DR;
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
if(pData != NULL )
{
/* Update state */
hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX;
/* Configure counters and size of the handle */
hqspi->RxXferCount = READ_REG(hqspi->Instance->DLR) + 1;
hqspi->RxXferSize = READ_REG(hqspi->Instance->DLR) + 1;
hqspi->pRxBuffPtr = pData;
/* Configure QSPI: CCR register with functional as indirect read */
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ);
/* Start the transfer by re-writing the address in AR register */
WRITE_REG(hqspi->Instance->AR, addr_reg);
while(hqspi->RxXferCount > 0)
{
/* Wait until FT or TC flag is set to read received data */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, (QSPI_FLAG_FT | QSPI_FLAG_TC), SET, tickstart, Timeout);
if (status != HAL_OK)
{
break;
}
*hqspi->pRxBuffPtr++ = *(__IO uint8_t *)data_reg;
hqspi->RxXferCount--;
}
if (status == HAL_OK)
{
/* Wait until TC flag is set to go back in idle state */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, Timeout);
if (status == HAL_OK)
{
/* Clear Transfer Complete bit */
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC);
#if defined(QSPI1_V1_0)
/* Workaround - Extra data written in the FIFO at the end of a read transfer */
status = HAL_QSPI_Abort(hqspi);
#endif /* QSPI_V1_0 */
}
}
/* Update QSPI state */
hqspi->State = HAL_QSPI_STATE_READY;
}
else
{
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
}
}
else
{
status = HAL_BUSY;
}
/* Process unlocked */
__HAL_UNLOCK(hqspi);
return status;
}
/**
* @brief Send an amount of data in interrupt mode
* @param hqspi: QSPI handle
* @param pData: pointer to data buffer
* @note This function is used only in Indirect Write Mode
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Transmit_IT(QSPI_HandleTypeDef *hqspi, uint8_t *pData)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
if(pData != NULL )
{
/* Update state */
hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX;
/* Configure counters and size of the handle */
hqspi->TxXferCount = READ_REG(hqspi->Instance->DLR) + 1;
hqspi->TxXferSize = READ_REG(hqspi->Instance->DLR) + 1;
hqspi->pTxBuffPtr = pData;
/* Configure QSPI: CCR register with functional as indirect write */
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE);
/* Clear interrupt */
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_TC);
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Enable the QSPI transfer error, FIFO threshold and transfer complete Interrupts */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_FT | QSPI_IT_TC);
}
else
{
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
}
else
{
status = HAL_BUSY;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
return status;
}
/**
* @brief Receive an amount of data in no-blocking mode with Interrupt
* @param hqspi: QSPI handle
* @param pData: pointer to data buffer
* @note This function is used only in Indirect Read Mode
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Receive_IT(QSPI_HandleTypeDef *hqspi, uint8_t *pData)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t addr_reg = READ_REG(hqspi->Instance->AR);
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
if(pData != NULL )
{
/* Update state */
hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX;
/* Configure counters and size of the handle */
hqspi->RxXferCount = READ_REG(hqspi->Instance->DLR) + 1;
hqspi->RxXferSize = READ_REG(hqspi->Instance->DLR) + 1;
hqspi->pRxBuffPtr = pData;
/* Configure QSPI: CCR register with functional as indirect read */
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ);
/* Start the transfer by re-writing the address in AR register */
WRITE_REG(hqspi->Instance->AR, addr_reg);
/* Clear interrupt */
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_TC);
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Enable the QSPI transfer error, FIFO threshold and transfer complete Interrupts */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_FT | QSPI_IT_TC);
}
else
{
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
}
else
{
status = HAL_BUSY;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
return status;
}
/**
* @brief Sends an amount of data in non blocking mode with DMA.
* @param hqspi: QSPI handle
* @param pData: pointer to data buffer
* @note This function is used only in Indirect Write Mode
* @note If DMA peripheral access is configured as halfword, the number
* of data and the fifo threshold should be aligned on halfword
* @note If DMA peripheral access is configured as word, the number
* of data and the fifo threshold should be aligned on word
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Transmit_DMA(QSPI_HandleTypeDef *hqspi, uint8_t *pData)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t *tmp;
uint32_t data_size = (READ_REG(hqspi->Instance->DLR) + 1);
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
/* Clear the error code */
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
if(pData != NULL )
{
/* Configure counters of the handle */
if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_BYTE)
{
hqspi->TxXferCount = data_size;
}
else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_HALFWORD)
{
if (((data_size % 2) != 0) || ((hqspi->Init.FifoThreshold % 2) != 0))
{
/* The number of data or the fifo threshold is not aligned on halfword
=> no transfer possible with DMA peripheral access configured as halfword */
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
else
{
hqspi->TxXferCount = (data_size >> 1);
}
}
else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_WORD)
{
if (((data_size % 4) != 0) || ((hqspi->Init.FifoThreshold % 4) != 0))
{
/* The number of data or the fifo threshold is not aligned on word
=> no transfer possible with DMA peripheral access configured as word */
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
else
{
hqspi->TxXferCount = (data_size >> 2);
}
}
if (status == HAL_OK)
{
/* Update state */
hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX;
/* Clear interrupt */
__HAL_QSPI_CLEAR_FLAG(hqspi, (QSPI_FLAG_TE | QSPI_FLAG_TC));
/* Configure size and pointer of the handle */
hqspi->TxXferSize = hqspi->TxXferCount;
hqspi->pTxBuffPtr = pData;
/* Configure QSPI: CCR register with functional mode as indirect write */
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE);
/* Set the QSPI DMA transfer complete callback */
hqspi->hdma->XferCpltCallback = QSPI_DMATxCplt;
/* Set the QSPI DMA Half transfer complete callback */
hqspi->hdma->XferHalfCpltCallback = QSPI_DMATxHalfCplt;
/* Set the DMA error callback */
hqspi->hdma->XferErrorCallback = QSPI_DMAError;
/* Clear the DMA abort callback */
hqspi->hdma->XferAbortCallback = NULL;
/* Configure the direction of the DMA */
hqspi->hdma->Init.Direction = DMA_MEMORY_TO_PERIPH;
MODIFY_REG(hqspi->hdma->Instance->CR, DMA_SxCR_DIR, hqspi->hdma->Init.Direction);
/* Enable the QSPI transmit DMA Channel */
tmp = (uint32_t*)&pData;
HAL_DMA_Start_IT(hqspi->hdma, *(uint32_t*)tmp, (uint32_t)&hqspi->Instance->DR, hqspi->TxXferSize);
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Enable the QSPI transfer error Interrupt */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE);
/* Enable the DMA transfer by setting the DMAEN bit in the QSPI CR register */
SET_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
}
}
else
{
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
}
else
{
status = HAL_BUSY;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
return status;
}
/**
* @brief Receives an amount of data in non blocking mode with DMA.
* @param hqspi: QSPI handle
* @param pData: pointer to data buffer.
* @note This function is used only in Indirect Read Mode
* @note If DMA peripheral access is configured as halfword, the number
* of data and the fifo threshold should be aligned on halfword
* @note If DMA peripheral access is configured as word, the number
* of data and the fifo threshold should be aligned on word
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Receive_DMA(QSPI_HandleTypeDef *hqspi, uint8_t *pData)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t *tmp;
uint32_t addr_reg = READ_REG(hqspi->Instance->AR);
uint32_t data_size = (READ_REG(hqspi->Instance->DLR) + 1);
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
if(pData != NULL )
{
/* Configure counters of the handle */
if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_BYTE)
{
hqspi->RxXferCount = data_size;
}
else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_HALFWORD)
{
if (((data_size % 2) != 0) || ((hqspi->Init.FifoThreshold % 2) != 0))
{
/* The number of data or the fifo threshold is not aligned on halfword
=> no transfer possible with DMA peripheral access configured as halfword */
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
else
{
hqspi->RxXferCount = (data_size >> 1);
}
}
else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_WORD)
{
if (((data_size % 4) != 0) || ((hqspi->Init.FifoThreshold % 4) != 0))
{
/* The number of data or the fifo threshold is not aligned on word
=> no transfer possible with DMA peripheral access configured as word */
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
else
{
hqspi->RxXferCount = (data_size >> 2);
}
}
if (status == HAL_OK)
{
/* Update state */
hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX;
/* Clear interrupt */
__HAL_QSPI_CLEAR_FLAG(hqspi, (QSPI_FLAG_TE | QSPI_FLAG_TC));
/* Configure size and pointer of the handle */
hqspi->RxXferSize = hqspi->RxXferCount;
hqspi->pRxBuffPtr = pData;
/* Set the QSPI DMA transfer complete callback */
hqspi->hdma->XferCpltCallback = QSPI_DMARxCplt;
/* Set the QSPI DMA Half transfer complete callback */
hqspi->hdma->XferHalfCpltCallback = QSPI_DMARxHalfCplt;
/* Set the DMA error callback */
hqspi->hdma->XferErrorCallback = QSPI_DMAError;
/* Clear the DMA abort callback */
hqspi->hdma->XferAbortCallback = NULL;
/* Configure the direction of the DMA */
hqspi->hdma->Init.Direction = DMA_PERIPH_TO_MEMORY;
MODIFY_REG(hqspi->hdma->Instance->CR, DMA_SxCR_DIR, hqspi->hdma->Init.Direction);
/* Enable the DMA Channel */
tmp = (uint32_t*)&pData;
HAL_DMA_Start_IT(hqspi->hdma, (uint32_t)&hqspi->Instance->DR, *(uint32_t*)tmp, hqspi->RxXferSize);
/* Configure QSPI: CCR register with functional as indirect read */
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ);
/* Start the transfer by re-writing the address in AR register */
WRITE_REG(hqspi->Instance->AR, addr_reg);
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Enable the QSPI transfer error Interrupt */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE);
/* Enable the DMA transfer by setting the DMAEN bit in the QSPI CR register */
SET_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
}
}
else
{
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
}
else
{
status = HAL_BUSY;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
return status;
}
/**
* @brief Configure the QSPI Automatic Polling Mode in blocking mode.
* @param hqspi: QSPI handle
* @param cmd: structure that contains the command configuration information.
* @param cfg: structure that contains the polling configuration information.
* @param Timeout : Time out duration
* @note This function is used only in Automatic Polling Mode
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_AutoPolling(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_AutoPollingTypeDef *cfg, uint32_t Timeout)
{
HAL_StatusTypeDef status = HAL_ERROR;
uint32_t tickstart = HAL_GetTick();
/* Check the parameters */
assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode));
if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE)
{
assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction));
}
assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode));
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
{
assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize));
}
assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode));
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
{
assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize));
}
assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles));
assert_param(IS_QSPI_DATA_MODE(cmd->DataMode));
assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode));
assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle));
assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode));
assert_param(IS_QSPI_INTERVAL(cfg->Interval));
assert_param(IS_QSPI_STATUS_BYTES_SIZE(cfg->StatusBytesSize));
assert_param(IS_QSPI_MATCH_MODE(cfg->MatchMode));
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
/* Update state */
hqspi->State = HAL_QSPI_STATE_BUSY_AUTO_POLLING;
/* Wait till BUSY flag reset */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, Timeout);
if (status == HAL_OK)
{
/* Configure QSPI: PSMAR register with the status match value */
WRITE_REG(hqspi->Instance->PSMAR, cfg->Match);
/* Configure QSPI: PSMKR register with the status mask value */
WRITE_REG(hqspi->Instance->PSMKR, cfg->Mask);
/* Configure QSPI: PIR register with the interval value */
WRITE_REG(hqspi->Instance->PIR, cfg->Interval);
/* Configure QSPI: CR register with Match mode and Automatic stop enabled
(otherwise there will be an infinite loop in blocking mode) */
MODIFY_REG(hqspi->Instance->CR, (QUADSPI_CR_PMM | QUADSPI_CR_APMS),
(cfg->MatchMode | QSPI_AUTOMATIC_STOP_ENABLE));
/* Call the configuration function */
cmd->NbData = cfg->StatusBytesSize;
QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_AUTO_POLLING);
/* Wait until SM flag is set to go back in idle state */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_SM, SET, tickstart, Timeout);
if (status == HAL_OK)
{
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_SM);
/* Update state */
hqspi->State = HAL_QSPI_STATE_READY;
}
}
}
else
{
status = HAL_BUSY;
}
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Return function status */
return status;
}
/**
* @brief Configure the QSPI Automatic Polling Mode in non-blocking mode.
* @param hqspi: QSPI handle
* @param cmd: structure that contains the command configuration information.
* @param cfg: structure that contains the polling configuration information.
* @note This function is used only in Automatic Polling Mode
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_AutoPolling_IT(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_AutoPollingTypeDef *cfg)
{
HAL_StatusTypeDef status = HAL_ERROR;
uint32_t tickstart = HAL_GetTick();
/* Check the parameters */
assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode));
if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE)
{
assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction));
}
assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode));
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
{
assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize));
}
assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode));
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
{
assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize));
}
assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles));
assert_param(IS_QSPI_DATA_MODE(cmd->DataMode));
assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode));
assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle));
assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode));
assert_param(IS_QSPI_INTERVAL(cfg->Interval));
assert_param(IS_QSPI_STATUS_BYTES_SIZE(cfg->StatusBytesSize));
assert_param(IS_QSPI_MATCH_MODE(cfg->MatchMode));
assert_param(IS_QSPI_AUTOMATIC_STOP(cfg->AutomaticStop));
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
/* Update state */
hqspi->State = HAL_QSPI_STATE_BUSY_AUTO_POLLING;
/* Wait till BUSY flag reset */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout);
if (status == HAL_OK)
{
/* Configure QSPI: PSMAR register with the status match value */
WRITE_REG(hqspi->Instance->PSMAR, cfg->Match);
/* Configure QSPI: PSMKR register with the status mask value */
WRITE_REG(hqspi->Instance->PSMKR, cfg->Mask);
/* Configure QSPI: PIR register with the interval value */
WRITE_REG(hqspi->Instance->PIR, cfg->Interval);
/* Configure QSPI: CR register with Match mode and Automatic stop mode */
MODIFY_REG(hqspi->Instance->CR, (QUADSPI_CR_PMM | QUADSPI_CR_APMS),
(cfg->MatchMode | cfg->AutomaticStop));
/* Clear interrupt */
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_SM);
/* Call the configuration function */
cmd->NbData = cfg->StatusBytesSize;
QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_AUTO_POLLING);
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Enable the QSPI Transfer Error and status match Interrupt */
__HAL_QSPI_ENABLE_IT(hqspi, (QSPI_IT_SM | QSPI_IT_TE));
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
}
else
{
status = HAL_BUSY;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
/* Return function status */
return status;
}
/**
* @brief Configure the Memory Mapped mode.
* @param hqspi: QSPI handle
* @param cmd: structure that contains the command configuration information.
* @param cfg: structure that contains the memory mapped configuration information.
* @note This function is used only in Memory mapped Mode
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_MemoryMapped(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_MemoryMappedTypeDef *cfg)
{
HAL_StatusTypeDef status = HAL_ERROR;
uint32_t tickstart = HAL_GetTick();
/* Check the parameters */
assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode));
if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE)
{
assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction));
}
assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode));
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
{
assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize));
}
assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode));
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
{
assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize));
}
assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles));
assert_param(IS_QSPI_DATA_MODE(cmd->DataMode));
assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode));
assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle));
assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode));
assert_param(IS_QSPI_TIMEOUT_ACTIVATION(cfg->TimeOutActivation));
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
/* Update state */
hqspi->State = HAL_QSPI_STATE_BUSY_MEM_MAPPED;
/* Wait till BUSY flag reset */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout);
if (status == HAL_OK)
{
/* Configure QSPI: CR register with timeout counter enable */
MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_TCEN, cfg->TimeOutActivation);
if (cfg->TimeOutActivation == QSPI_TIMEOUT_COUNTER_ENABLE)
{
assert_param(IS_QSPI_TIMEOUT_PERIOD(cfg->TimeOutPeriod));
/* Configure QSPI: LPTR register with the low-power timeout value */
WRITE_REG(hqspi->Instance->LPTR, cfg->TimeOutPeriod);
/* Clear interrupt */
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TO);
/* Enable the QSPI TimeOut Interrupt */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TO);
}
/* Call the configuration function */
QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED);
}
}
else
{
status = HAL_BUSY;
}
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Return function status */
return status;
}
/**
* @brief Transfer Error callbacks
* @param hqspi: QSPI handle
* @retval None
*/
__weak void HAL_QSPI_ErrorCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_QSPI_ErrorCallback could be implemented in the user file
*/
}
/**
* @brief Abort completed callback.
* @param hqspi: QSPI handle
* @retval None
*/
__weak void HAL_QSPI_AbortCpltCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE: This function should not be modified, when the callback is needed,
the HAL_QSPI_AbortCpltCallback could be implemented in the user file
*/
}
/**
* @brief Command completed callback.
* @param hqspi: QSPI handle
* @retval None
*/
__weak void HAL_QSPI_CmdCpltCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_QSPI_CmdCpltCallback could be implemented in the user file
*/
}
/**
* @brief Rx Transfer completed callbacks.
* @param hqspi: QSPI handle
* @retval None
*/
__weak void HAL_QSPI_RxCpltCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_QSPI_RxCpltCallback could be implemented in the user file
*/
}
/**
* @brief Tx Transfer completed callbacks.
* @param hqspi: QSPI handle
* @retval None
*/
__weak void HAL_QSPI_TxCpltCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_QSPI_TxCpltCallback could be implemented in the user file
*/
}
/**
* @brief Rx Half Transfer completed callbacks.
* @param hqspi: QSPI handle
* @retval None
*/
__weak void HAL_QSPI_RxHalfCpltCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_QSPI_RxHalfCpltCallback could be implemented in the user file
*/
}
/**
* @brief Tx Half Transfer completed callbacks.
* @param hqspi: QSPI handle
* @retval None
*/
__weak void HAL_QSPI_TxHalfCpltCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_QSPI_TxHalfCpltCallback could be implemented in the user file
*/
}
/**
* @brief FIFO Threshold callbacks
* @param hqspi: QSPI handle
* @retval None
*/
__weak void HAL_QSPI_FifoThresholdCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_QSPI_FIFOThresholdCallback could be implemented in the user file
*/
}
/**
* @brief Status Match callbacks
* @param hqspi: QSPI handle
* @retval None
*/
__weak void HAL_QSPI_StatusMatchCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_QSPI_StatusMatchCallback could be implemented in the user file
*/
}
/**
* @brief Timeout callbacks
* @param hqspi: QSPI handle
* @retval None
*/
__weak void HAL_QSPI_TimeOutCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_QSPI_TimeOutCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup QSPI_Exported_Functions_Group3 Peripheral Control and State functions
* @brief QSPI control and State functions
*
@verbatim
===============================================================================
##### Peripheral Control and State functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to :
(+) Check in run-time the state of the driver.
(+) Check the error code set during last operation.
(+) Abort any operation.
.....
@endverbatim
* @{
*/
/**
* @brief Return the QSPI handle state.
* @param hqspi: QSPI handle
* @retval HAL state
*/
HAL_QSPI_StateTypeDef HAL_QSPI_GetState(QSPI_HandleTypeDef *hqspi)
{
/* Return QSPI handle state */
return hqspi->State;
}
/**
* @brief Return the QSPI error code
* @param hqspi: QSPI handle
* @retval QSPI Error Code
*/
uint32_t HAL_QSPI_GetError(QSPI_HandleTypeDef *hqspi)
{
return hqspi->ErrorCode;
}
/**
* @brief Abort the current transmission
* @param hqspi: QSPI handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Abort(QSPI_HandleTypeDef *hqspi)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tickstart = HAL_GetTick();
/* Check if the state is in one of the busy states */
if ((hqspi->State & 0x2) != 0)
{
/* Process unlocked */
__HAL_UNLOCK(hqspi);
if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET)
{
/* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */
CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
/* Abort DMA channel */
status = HAL_DMA_Abort(hqspi->hdma);
if(status != HAL_OK)
{
hqspi->ErrorCode |= HAL_QSPI_ERROR_DMA;
}
}
/* Configure QSPI: CR register with Abort request */
SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT);
/* Wait until TC flag is set to go back in idle state */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, hqspi->Timeout);
if(status == HAL_OK)
{
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC);
/* Wait until BUSY flag is reset */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout);
}
if (status == HAL_OK)
{
/* Update state */
hqspi->State = HAL_QSPI_STATE_READY;
}
}
return status;
}
/**
* @brief Abort the current transmission (non-blocking function)
* @param hqspi: QSPI handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Abort_IT(QSPI_HandleTypeDef *hqspi)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check if the state is in one of the busy states */
if ((hqspi->State & 0x2) != 0)
{
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Update QSPI state */
hqspi->State = HAL_QSPI_STATE_ABORT;
/* Disable all interrupts */
__HAL_QSPI_DISABLE_IT(hqspi, (QSPI_IT_TO | QSPI_IT_SM | QSPI_IT_FT | QSPI_IT_TC | QSPI_IT_TE));
if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET)
{
/* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */
CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
/* Abort DMA channel */
hqspi->hdma->XferAbortCallback = QSPI_DMAAbortCplt;
HAL_DMA_Abort_IT(hqspi->hdma);
}
else
{
/* Clear interrupt */
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC);
/* Enable the QSPI Transfer Complete Interrupt */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC);
/* Configure QSPI: CR register with Abort request */
SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT);
}
}
return status;
}
/** @brief Set QSPI timeout
* @param hqspi: QSPI handle.
* @param Timeout: Timeout for the QSPI memory access.
* @retval None
*/
void HAL_QSPI_SetTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Timeout)
{
hqspi->Timeout = Timeout;
}
/** @brief Set QSPI Fifo threshold.
* @param hqspi: QSPI handle.
* @param Threshold: Threshold of the Fifo (value between 1 and 16).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_SetFifoThreshold(QSPI_HandleTypeDef *hqspi, uint32_t Threshold)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
/* Synchronize init structure with new FIFO threshold value */
hqspi->Init.FifoThreshold = Threshold;
/* Configure QSPI FIFO Threshold */
MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_FTHRES,
((hqspi->Init.FifoThreshold - 1) << POSITION_VAL(QUADSPI_CR_FTHRES)));
}
else
{
status = HAL_BUSY;
}
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Return function status */
return status;
}
/** @brief Get QSPI Fifo threshold.
* @param hqspi: QSPI handle.
* @retval Fifo threshold (value between 1 and 16)
*/
uint32_t HAL_QSPI_GetFifoThreshold(QSPI_HandleTypeDef *hqspi)
{
return ((READ_BIT(hqspi->Instance->CR, QUADSPI_CR_FTHRES) >> POSITION_VAL(QUADSPI_CR_FTHRES)) + 1);
}
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/**
* @brief DMA QSPI receive process complete callback.
* @param hdma: DMA handle
* @retval None
*/
static void QSPI_DMARxCplt(DMA_HandleTypeDef *hdma)
{
QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
hqspi->RxXferCount = 0;
/* Enable the QSPI transfer complete Interrupt */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC);
}
/**
* @brief DMA QSPI transmit process complete callback.
* @param hdma: DMA handle
* @retval None
*/
static void QSPI_DMATxCplt(DMA_HandleTypeDef *hdma)
{
QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
hqspi->TxXferCount = 0;
/* Enable the QSPI transfer complete Interrupt */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC);
}
/**
* @brief DMA QSPI receive process half complete callback
* @param hdma : DMA handle
* @retval None
*/
static void QSPI_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
{
QSPI_HandleTypeDef* hqspi = (QSPI_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
HAL_QSPI_RxHalfCpltCallback(hqspi);
}
/**
* @brief DMA QSPI transmit process half complete callback
* @param hdma : DMA handle
* @retval None
*/
static void QSPI_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
{
QSPI_HandleTypeDef* hqspi = (QSPI_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
HAL_QSPI_TxHalfCpltCallback(hqspi);
}
/**
* @brief DMA QSPI communication error callback.
* @param hdma: DMA handle
* @retval None
*/
static void QSPI_DMAError(DMA_HandleTypeDef *hdma)
{
QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* if DMA error is FIFO error ignore it */
if(HAL_DMA_GetError(hdma) != HAL_DMA_ERROR_FE)
{
hqspi->RxXferCount = 0;
hqspi->TxXferCount = 0;
hqspi->ErrorCode |= HAL_QSPI_ERROR_DMA;
/* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */
CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
/* Abort the QSPI */
HAL_QSPI_Abort_IT(hqspi);
}
}
/**
* @brief DMA QSPI abort complete callback.
* @param hdma: DMA handle
* @retval None
*/
static void QSPI_DMAAbortCplt(DMA_HandleTypeDef *hdma)
{
QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
hqspi->RxXferCount = 0;
hqspi->TxXferCount = 0;
if(hqspi->State == HAL_QSPI_STATE_ABORT)
{
/* DMA Abort called by QSPI abort */
/* Clear interrupt */
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC);
/* Enable the QSPI Transfer Complete Interrupt */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC);
/* Configure QSPI: CR register with Abort request */
SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT);
}
else
{
/* DMA Abort called due to a transfer error interrupt */
/* Change state of QSPI */
hqspi->State = HAL_QSPI_STATE_READY;
/* Error callback */
HAL_QSPI_ErrorCallback(hqspi);
}
}
/**
* @brief Wait for a flag state until timeout.
* @param hqspi: QSPI handle
* @param Flag: Flag checked
* @param State: Value of the flag expected
* @param tickstart: Start tick value
* @param Timeout: Duration of the time out
* @retval HAL status
*/
static HAL_StatusTypeDef QSPI_WaitFlagStateUntilTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Flag,
FlagStatus State, uint32_t tickstart, uint32_t Timeout)
{
/* Wait until flag is in expected state */
while((FlagStatus)(__HAL_QSPI_GET_FLAG(hqspi, Flag)) != State)
{
/* Check for the Timeout */
if (Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
{
hqspi->State = HAL_QSPI_STATE_ERROR;
hqspi->ErrorCode |= HAL_QSPI_ERROR_TIMEOUT;
return HAL_ERROR;
}
}
}
return HAL_OK;
}
/**
* @brief Configure the communication registers.
* @param hqspi: QSPI handle
* @param cmd: structure that contains the command configuration information
* @param FunctionalMode: functional mode to configured
* This parameter can be one of the following values:
* @arg QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE: Indirect write mode
* @arg QSPI_FUNCTIONAL_MODE_INDIRECT_READ: Indirect read mode
* @arg QSPI_FUNCTIONAL_MODE_AUTO_POLLING: Automatic polling mode
* @arg QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED: Memory-mapped mode
* @retval None
*/
static void QSPI_Config(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t FunctionalMode)
{
assert_param(IS_QSPI_FUNCTIONAL_MODE(FunctionalMode));
if ((cmd->DataMode != QSPI_DATA_NONE) && (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED))
{
/* Configure QSPI: DLR register with the number of data to read or write */
WRITE_REG(hqspi->Instance->DLR, (cmd->NbData - 1));
}
if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE)
{
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
{
/* Configure QSPI: ABR register with alternate bytes value */
WRITE_REG(hqspi->Instance->ABR, cmd->AlternateBytes);
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
{
/*---- Command with instruction, address and alternate bytes ----*/
/* Configure QSPI: CCR register with all communications parameters */
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode |
cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateBytesSize |
cmd->AlternateByteMode | cmd->AddressSize | cmd->AddressMode |
cmd->InstructionMode | cmd->Instruction | FunctionalMode));
if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)
{
/* Configure QSPI: AR register with address value */
WRITE_REG(hqspi->Instance->AR, cmd->Address);
}
}
else
{
/*---- Command with instruction and alternate bytes ----*/
/* Configure QSPI: CCR register with all communications parameters */
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode |
cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateBytesSize |
cmd->AlternateByteMode | cmd->AddressMode | cmd->InstructionMode |
cmd->Instruction | FunctionalMode));
}
}
else
{
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
{
/*---- Command with instruction and address ----*/
/* Configure QSPI: CCR register with all communications parameters */
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode |
cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateByteMode |
cmd->AddressSize | cmd->AddressMode | cmd->InstructionMode |
cmd->Instruction | FunctionalMode));
if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)
{
/* Configure QSPI: AR register with address value */
WRITE_REG(hqspi->Instance->AR, cmd->Address);
}
}
else
{
/*---- Command with only instruction ----*/
/* Configure QSPI: CCR register with all communications parameters */
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode |
cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateByteMode |
cmd->AddressMode | cmd->InstructionMode | cmd->Instruction |
FunctionalMode));
}
}
}
else
{
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
{
/* Configure QSPI: ABR register with alternate bytes value */
WRITE_REG(hqspi->Instance->ABR, cmd->AlternateBytes);
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
{
/*---- Command with address and alternate bytes ----*/
/* Configure QSPI: CCR register with all communications parameters */
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode |
cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateBytesSize |
cmd->AlternateByteMode | cmd->AddressSize | cmd->AddressMode |
cmd->InstructionMode | FunctionalMode));
if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)
{
/* Configure QSPI: AR register with address value */
WRITE_REG(hqspi->Instance->AR, cmd->Address);
}
}
else
{
/*---- Command with only alternate bytes ----*/
/* Configure QSPI: CCR register with all communications parameters */
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode |
cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateBytesSize |
cmd->AlternateByteMode | cmd->AddressMode | cmd->InstructionMode |
FunctionalMode));
}
}
else
{
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
{
/*---- Command with only address ----*/
/* Configure QSPI: CCR register with all communications parameters */
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode |
cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateByteMode |
cmd->AddressSize | cmd->AddressMode | cmd->InstructionMode |
FunctionalMode));
if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)
{
/* Configure QSPI: AR register with address value */
WRITE_REG(hqspi->Instance->AR, cmd->Address);
}
}
else
{
/*---- Command with only data phase ----*/
if (cmd->DataMode != QSPI_DATA_NONE)
{
/* Configure QSPI: CCR register with all communications parameters */
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode |
cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateByteMode |
cmd->AddressMode | cmd->InstructionMode | FunctionalMode));
}
}
}
}
}
/**
* @}
*/
#endif /* HAL_QSPI_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/