atbetaflight/lib/main/MAVLink/common/mavlink_msg_optical_flow_rad.h

474 lines
23 KiB
C
Executable File

// MESSAGE OPTICAL_FLOW_RAD PACKING
#define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD 106
typedef struct __mavlink_optical_flow_rad_t
{
uint64_t time_usec; ///< Timestamp (microseconds, synced to UNIX time or since system boot)
uint32_t integration_time_us; ///< Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
float integrated_x; ///< Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
float integrated_y; ///< Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
float integrated_xgyro; ///< RH rotation around X axis (rad)
float integrated_ygyro; ///< RH rotation around Y axis (rad)
float integrated_zgyro; ///< RH rotation around Z axis (rad)
uint32_t time_delta_distance_us; ///< Time in microseconds since the distance was sampled.
float distance; ///< Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
int16_t temperature; ///< Temperature * 100 in centi-degrees Celsius
uint8_t sensor_id; ///< Sensor ID
uint8_t quality; ///< Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
} mavlink_optical_flow_rad_t;
#define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN 44
#define MAVLINK_MSG_ID_106_LEN 44
#define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC 138
#define MAVLINK_MSG_ID_106_CRC 138
#define MAVLINK_MESSAGE_INFO_OPTICAL_FLOW_RAD { \
"OPTICAL_FLOW_RAD", \
12, \
{ { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_optical_flow_rad_t, time_usec) }, \
{ "integration_time_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 8, offsetof(mavlink_optical_flow_rad_t, integration_time_us) }, \
{ "integrated_x", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_optical_flow_rad_t, integrated_x) }, \
{ "integrated_y", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_optical_flow_rad_t, integrated_y) }, \
{ "integrated_xgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_optical_flow_rad_t, integrated_xgyro) }, \
{ "integrated_ygyro", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_optical_flow_rad_t, integrated_ygyro) }, \
{ "integrated_zgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 28, offsetof(mavlink_optical_flow_rad_t, integrated_zgyro) }, \
{ "time_delta_distance_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 32, offsetof(mavlink_optical_flow_rad_t, time_delta_distance_us) }, \
{ "distance", NULL, MAVLINK_TYPE_FLOAT, 0, 36, offsetof(mavlink_optical_flow_rad_t, distance) }, \
{ "temperature", NULL, MAVLINK_TYPE_INT16_T, 0, 40, offsetof(mavlink_optical_flow_rad_t, temperature) }, \
{ "sensor_id", NULL, MAVLINK_TYPE_UINT8_T, 0, 42, offsetof(mavlink_optical_flow_rad_t, sensor_id) }, \
{ "quality", NULL, MAVLINK_TYPE_UINT8_T, 0, 43, offsetof(mavlink_optical_flow_rad_t, quality) }, \
} \
}
/**
* @brief Pack a optical_flow_rad message
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param msg The MAVLink message to compress the data into
*
* @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot)
* @param sensor_id Sensor ID
* @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
* @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
* @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
* @param integrated_xgyro RH rotation around X axis (rad)
* @param integrated_ygyro RH rotation around Y axis (rad)
* @param integrated_zgyro RH rotation around Z axis (rad)
* @param temperature Temperature * 100 in centi-degrees Celsius
* @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
* @param time_delta_distance_us Time in microseconds since the distance was sampled.
* @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
* @return length of the message in bytes (excluding serial stream start sign)
*/
static inline uint16_t mavlink_msg_optical_flow_rad_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg,
uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN];
_mav_put_uint64_t(buf, 0, time_usec);
_mav_put_uint32_t(buf, 8, integration_time_us);
_mav_put_float(buf, 12, integrated_x);
_mav_put_float(buf, 16, integrated_y);
_mav_put_float(buf, 20, integrated_xgyro);
_mav_put_float(buf, 24, integrated_ygyro);
_mav_put_float(buf, 28, integrated_zgyro);
_mav_put_uint32_t(buf, 32, time_delta_distance_us);
_mav_put_float(buf, 36, distance);
_mav_put_int16_t(buf, 40, temperature);
_mav_put_uint8_t(buf, 42, sensor_id);
_mav_put_uint8_t(buf, 43, quality);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
#else
mavlink_optical_flow_rad_t packet;
packet.time_usec = time_usec;
packet.integration_time_us = integration_time_us;
packet.integrated_x = integrated_x;
packet.integrated_y = integrated_y;
packet.integrated_xgyro = integrated_xgyro;
packet.integrated_ygyro = integrated_ygyro;
packet.integrated_zgyro = integrated_zgyro;
packet.time_delta_distance_us = time_delta_distance_us;
packet.distance = distance;
packet.temperature = temperature;
packet.sensor_id = sensor_id;
packet.quality = quality;
memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
#endif
msg->msgid = MAVLINK_MSG_ID_OPTICAL_FLOW_RAD;
#if MAVLINK_CRC_EXTRA
return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
#else
return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
#endif
}
/**
* @brief Pack a optical_flow_rad message on a channel
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param chan The MAVLink channel this message will be sent over
* @param msg The MAVLink message to compress the data into
* @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot)
* @param sensor_id Sensor ID
* @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
* @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
* @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
* @param integrated_xgyro RH rotation around X axis (rad)
* @param integrated_ygyro RH rotation around Y axis (rad)
* @param integrated_zgyro RH rotation around Z axis (rad)
* @param temperature Temperature * 100 in centi-degrees Celsius
* @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
* @param time_delta_distance_us Time in microseconds since the distance was sampled.
* @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
* @return length of the message in bytes (excluding serial stream start sign)
*/
static inline uint16_t mavlink_msg_optical_flow_rad_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan,
mavlink_message_t* msg,
uint64_t time_usec,uint8_t sensor_id,uint32_t integration_time_us,float integrated_x,float integrated_y,float integrated_xgyro,float integrated_ygyro,float integrated_zgyro,int16_t temperature,uint8_t quality,uint32_t time_delta_distance_us,float distance)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN];
_mav_put_uint64_t(buf, 0, time_usec);
_mav_put_uint32_t(buf, 8, integration_time_us);
_mav_put_float(buf, 12, integrated_x);
_mav_put_float(buf, 16, integrated_y);
_mav_put_float(buf, 20, integrated_xgyro);
_mav_put_float(buf, 24, integrated_ygyro);
_mav_put_float(buf, 28, integrated_zgyro);
_mav_put_uint32_t(buf, 32, time_delta_distance_us);
_mav_put_float(buf, 36, distance);
_mav_put_int16_t(buf, 40, temperature);
_mav_put_uint8_t(buf, 42, sensor_id);
_mav_put_uint8_t(buf, 43, quality);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
#else
mavlink_optical_flow_rad_t packet;
packet.time_usec = time_usec;
packet.integration_time_us = integration_time_us;
packet.integrated_x = integrated_x;
packet.integrated_y = integrated_y;
packet.integrated_xgyro = integrated_xgyro;
packet.integrated_ygyro = integrated_ygyro;
packet.integrated_zgyro = integrated_zgyro;
packet.time_delta_distance_us = time_delta_distance_us;
packet.distance = distance;
packet.temperature = temperature;
packet.sensor_id = sensor_id;
packet.quality = quality;
memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
#endif
msg->msgid = MAVLINK_MSG_ID_OPTICAL_FLOW_RAD;
#if MAVLINK_CRC_EXTRA
return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
#else
return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
#endif
}
/**
* @brief Encode a optical_flow_rad struct
*
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param msg The MAVLink message to compress the data into
* @param optical_flow_rad C-struct to read the message contents from
*/
static inline uint16_t mavlink_msg_optical_flow_rad_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_optical_flow_rad_t* optical_flow_rad)
{
return mavlink_msg_optical_flow_rad_pack(system_id, component_id, msg, optical_flow_rad->time_usec, optical_flow_rad->sensor_id, optical_flow_rad->integration_time_us, optical_flow_rad->integrated_x, optical_flow_rad->integrated_y, optical_flow_rad->integrated_xgyro, optical_flow_rad->integrated_ygyro, optical_flow_rad->integrated_zgyro, optical_flow_rad->temperature, optical_flow_rad->quality, optical_flow_rad->time_delta_distance_us, optical_flow_rad->distance);
}
/**
* @brief Encode a optical_flow_rad struct on a channel
*
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param chan The MAVLink channel this message will be sent over
* @param msg The MAVLink message to compress the data into
* @param optical_flow_rad C-struct to read the message contents from
*/
static inline uint16_t mavlink_msg_optical_flow_rad_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_optical_flow_rad_t* optical_flow_rad)
{
return mavlink_msg_optical_flow_rad_pack_chan(system_id, component_id, chan, msg, optical_flow_rad->time_usec, optical_flow_rad->sensor_id, optical_flow_rad->integration_time_us, optical_flow_rad->integrated_x, optical_flow_rad->integrated_y, optical_flow_rad->integrated_xgyro, optical_flow_rad->integrated_ygyro, optical_flow_rad->integrated_zgyro, optical_flow_rad->temperature, optical_flow_rad->quality, optical_flow_rad->time_delta_distance_us, optical_flow_rad->distance);
}
/**
* @brief Send a optical_flow_rad message
* @param chan MAVLink channel to send the message
*
* @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot)
* @param sensor_id Sensor ID
* @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
* @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
* @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
* @param integrated_xgyro RH rotation around X axis (rad)
* @param integrated_ygyro RH rotation around Y axis (rad)
* @param integrated_zgyro RH rotation around Z axis (rad)
* @param temperature Temperature * 100 in centi-degrees Celsius
* @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
* @param time_delta_distance_us Time in microseconds since the distance was sampled.
* @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
*/
#ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS
static inline void mavlink_msg_optical_flow_rad_send(mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN];
_mav_put_uint64_t(buf, 0, time_usec);
_mav_put_uint32_t(buf, 8, integration_time_us);
_mav_put_float(buf, 12, integrated_x);
_mav_put_float(buf, 16, integrated_y);
_mav_put_float(buf, 20, integrated_xgyro);
_mav_put_float(buf, 24, integrated_ygyro);
_mav_put_float(buf, 28, integrated_zgyro);
_mav_put_uint32_t(buf, 32, time_delta_distance_us);
_mav_put_float(buf, 36, distance);
_mav_put_int16_t(buf, 40, temperature);
_mav_put_uint8_t(buf, 42, sensor_id);
_mav_put_uint8_t(buf, 43, quality);
#if MAVLINK_CRC_EXTRA
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
#else
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
#endif
#else
mavlink_optical_flow_rad_t packet;
packet.time_usec = time_usec;
packet.integration_time_us = integration_time_us;
packet.integrated_x = integrated_x;
packet.integrated_y = integrated_y;
packet.integrated_xgyro = integrated_xgyro;
packet.integrated_ygyro = integrated_ygyro;
packet.integrated_zgyro = integrated_zgyro;
packet.time_delta_distance_us = time_delta_distance_us;
packet.distance = distance;
packet.temperature = temperature;
packet.sensor_id = sensor_id;
packet.quality = quality;
#if MAVLINK_CRC_EXTRA
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)&packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
#else
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)&packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
#endif
#endif
}
#if MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN <= MAVLINK_MAX_PAYLOAD_LEN
/*
This varient of _send() can be used to save stack space by re-using
memory from the receive buffer. The caller provides a
mavlink_message_t which is the size of a full mavlink message. This
is usually the receive buffer for the channel, and allows a reply to an
incoming message with minimum stack space usage.
*/
static inline void mavlink_msg_optical_flow_rad_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char *buf = (char *)msgbuf;
_mav_put_uint64_t(buf, 0, time_usec);
_mav_put_uint32_t(buf, 8, integration_time_us);
_mav_put_float(buf, 12, integrated_x);
_mav_put_float(buf, 16, integrated_y);
_mav_put_float(buf, 20, integrated_xgyro);
_mav_put_float(buf, 24, integrated_ygyro);
_mav_put_float(buf, 28, integrated_zgyro);
_mav_put_uint32_t(buf, 32, time_delta_distance_us);
_mav_put_float(buf, 36, distance);
_mav_put_int16_t(buf, 40, temperature);
_mav_put_uint8_t(buf, 42, sensor_id);
_mav_put_uint8_t(buf, 43, quality);
#if MAVLINK_CRC_EXTRA
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
#else
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
#endif
#else
mavlink_optical_flow_rad_t *packet = (mavlink_optical_flow_rad_t *)msgbuf;
packet->time_usec = time_usec;
packet->integration_time_us = integration_time_us;
packet->integrated_x = integrated_x;
packet->integrated_y = integrated_y;
packet->integrated_xgyro = integrated_xgyro;
packet->integrated_ygyro = integrated_ygyro;
packet->integrated_zgyro = integrated_zgyro;
packet->time_delta_distance_us = time_delta_distance_us;
packet->distance = distance;
packet->temperature = temperature;
packet->sensor_id = sensor_id;
packet->quality = quality;
#if MAVLINK_CRC_EXTRA
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
#else
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
#endif
#endif
}
#endif
#endif
// MESSAGE OPTICAL_FLOW_RAD UNPACKING
/**
* @brief Get field time_usec from optical_flow_rad message
*
* @return Timestamp (microseconds, synced to UNIX time or since system boot)
*/
static inline uint64_t mavlink_msg_optical_flow_rad_get_time_usec(const mavlink_message_t* msg)
{
return _MAV_RETURN_uint64_t(msg, 0);
}
/**
* @brief Get field sensor_id from optical_flow_rad message
*
* @return Sensor ID
*/
static inline uint8_t mavlink_msg_optical_flow_rad_get_sensor_id(const mavlink_message_t* msg)
{
return _MAV_RETURN_uint8_t(msg, 42);
}
/**
* @brief Get field integration_time_us from optical_flow_rad message
*
* @return Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
*/
static inline uint32_t mavlink_msg_optical_flow_rad_get_integration_time_us(const mavlink_message_t* msg)
{
return _MAV_RETURN_uint32_t(msg, 8);
}
/**
* @brief Get field integrated_x from optical_flow_rad message
*
* @return Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
*/
static inline float mavlink_msg_optical_flow_rad_get_integrated_x(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 12);
}
/**
* @brief Get field integrated_y from optical_flow_rad message
*
* @return Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
*/
static inline float mavlink_msg_optical_flow_rad_get_integrated_y(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 16);
}
/**
* @brief Get field integrated_xgyro from optical_flow_rad message
*
* @return RH rotation around X axis (rad)
*/
static inline float mavlink_msg_optical_flow_rad_get_integrated_xgyro(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 20);
}
/**
* @brief Get field integrated_ygyro from optical_flow_rad message
*
* @return RH rotation around Y axis (rad)
*/
static inline float mavlink_msg_optical_flow_rad_get_integrated_ygyro(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 24);
}
/**
* @brief Get field integrated_zgyro from optical_flow_rad message
*
* @return RH rotation around Z axis (rad)
*/
static inline float mavlink_msg_optical_flow_rad_get_integrated_zgyro(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 28);
}
/**
* @brief Get field temperature from optical_flow_rad message
*
* @return Temperature * 100 in centi-degrees Celsius
*/
static inline int16_t mavlink_msg_optical_flow_rad_get_temperature(const mavlink_message_t* msg)
{
return _MAV_RETURN_int16_t(msg, 40);
}
/**
* @brief Get field quality from optical_flow_rad message
*
* @return Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
*/
static inline uint8_t mavlink_msg_optical_flow_rad_get_quality(const mavlink_message_t* msg)
{
return _MAV_RETURN_uint8_t(msg, 43);
}
/**
* @brief Get field time_delta_distance_us from optical_flow_rad message
*
* @return Time in microseconds since the distance was sampled.
*/
static inline uint32_t mavlink_msg_optical_flow_rad_get_time_delta_distance_us(const mavlink_message_t* msg)
{
return _MAV_RETURN_uint32_t(msg, 32);
}
/**
* @brief Get field distance from optical_flow_rad message
*
* @return Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
*/
static inline float mavlink_msg_optical_flow_rad_get_distance(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 36);
}
/**
* @brief Decode a optical_flow_rad message into a struct
*
* @param msg The message to decode
* @param optical_flow_rad C-struct to decode the message contents into
*/
static inline void mavlink_msg_optical_flow_rad_decode(const mavlink_message_t* msg, mavlink_optical_flow_rad_t* optical_flow_rad)
{
#if MAVLINK_NEED_BYTE_SWAP
optical_flow_rad->time_usec = mavlink_msg_optical_flow_rad_get_time_usec(msg);
optical_flow_rad->integration_time_us = mavlink_msg_optical_flow_rad_get_integration_time_us(msg);
optical_flow_rad->integrated_x = mavlink_msg_optical_flow_rad_get_integrated_x(msg);
optical_flow_rad->integrated_y = mavlink_msg_optical_flow_rad_get_integrated_y(msg);
optical_flow_rad->integrated_xgyro = mavlink_msg_optical_flow_rad_get_integrated_xgyro(msg);
optical_flow_rad->integrated_ygyro = mavlink_msg_optical_flow_rad_get_integrated_ygyro(msg);
optical_flow_rad->integrated_zgyro = mavlink_msg_optical_flow_rad_get_integrated_zgyro(msg);
optical_flow_rad->time_delta_distance_us = mavlink_msg_optical_flow_rad_get_time_delta_distance_us(msg);
optical_flow_rad->distance = mavlink_msg_optical_flow_rad_get_distance(msg);
optical_flow_rad->temperature = mavlink_msg_optical_flow_rad_get_temperature(msg);
optical_flow_rad->sensor_id = mavlink_msg_optical_flow_rad_get_sensor_id(msg);
optical_flow_rad->quality = mavlink_msg_optical_flow_rad_get_quality(msg);
#else
memcpy(optical_flow_rad, _MAV_PAYLOAD(msg), MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
#endif
}