atbetaflight/src/flight_common.c

194 lines
8.2 KiB
C

#include <stdbool.h>
#include <stdint.h>
#include <math.h>
#include "common/axis.h"
#include "common/maths.h"
#include "runtime_config.h"
#include "rc_controls.h"
#include "flight_common.h"
#include "gps_common.h"
extern uint16_t cycleTime;
int16_t heading, magHold;
int16_t axisPID[3];
uint8_t dynP8[3], dynI8[3], dynD8[3];
static int32_t errorGyroI[3] = { 0, 0, 0 };
static int32_t errorAngleI[2] = { 0, 0 };
static void pidMultiWii(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig,
uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim);
typedef void (*pidControllerFuncPtr)(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig,
uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim); // pid controller function prototype
pidControllerFuncPtr pid_controller = pidMultiWii; // which pid controller are we using, defaultMultiWii
void resetRollAndPitchTrims(rollAndPitchTrims_t *rollAndPitchTrims)
{
rollAndPitchTrims->trims.roll = 0;
rollAndPitchTrims->trims.pitch = 0;
}
void resetErrorAngle(void)
{
errorAngleI[ROLL] = 0;
errorAngleI[PITCH] = 0;
}
void resetErrorGyro(void)
{
errorGyroI[ROLL] = 0;
errorGyroI[PITCH] = 0;
errorGyroI[YAW] = 0;
}
static void pidMultiWii(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig,
uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim)
{
int axis, prop;
int32_t error, errorAngle;
int32_t PTerm, ITerm, PTermACC = 0, ITermACC = 0, PTermGYRO = 0, ITermGYRO = 0, DTerm;
static int16_t lastGyro[3] = { 0, 0, 0 };
static int32_t delta1[3], delta2[3];
int32_t deltaSum;
int32_t delta;
// **** PITCH & ROLL & YAW PID ****
prop = max(abs(rcCommand[PITCH]), abs(rcCommand[ROLL])); // range [0;500]
for (axis = 0; axis < 3; axis++) {
if ((f.ANGLE_MODE || f.HORIZON_MODE) && (axis == FD_ROLL || axis == FD_PITCH)) { // MODE relying on ACC
// 50 degrees max inclination
errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination),
+max_angle_inclination) - inclination.rawAngles[axis] + angleTrim->raw[axis];
PTermACC = errorAngle * pidProfile->P8[PIDLEVEL] / 100; // 32 bits is needed for calculation: errorAngle*P8[PIDLEVEL] could exceed 32768 16 bits is ok for result
PTermACC = constrain(PTermACC, -pidProfile->D8[PIDLEVEL] * 5, +pidProfile->D8[PIDLEVEL] * 5);
errorAngleI[axis] = constrain(errorAngleI[axis] + errorAngle, -10000, +10000); // WindUp
ITermACC = (errorAngleI[axis] * pidProfile->I8[PIDLEVEL]) >> 12;
}
if (!f.ANGLE_MODE || f.HORIZON_MODE || axis == FD_YAW) { // MODE relying on GYRO or YAW axis
error = (int32_t) rcCommand[axis] * 10 * 8 / pidProfile->P8[axis];
error -= gyroData[axis];
PTermGYRO = rcCommand[axis];
errorGyroI[axis] = constrain(errorGyroI[axis] + error, -16000, +16000); // WindUp
if (abs(gyroData[axis]) > 640)
errorGyroI[axis] = 0;
ITermGYRO = (errorGyroI[axis] / 125 * pidProfile->I8[axis]) >> 6;
}
if (f.HORIZON_MODE && (axis == FD_ROLL || axis == FD_PITCH)) {
PTerm = (PTermACC * (500 - prop) + PTermGYRO * prop) / 500;
ITerm = (ITermACC * (500 - prop) + ITermGYRO * prop) / 500;
} else {
if (f.ANGLE_MODE && (axis == FD_ROLL || axis == FD_PITCH)) {
PTerm = PTermACC;
ITerm = ITermACC;
} else {
PTerm = PTermGYRO;
ITerm = ITermGYRO;
}
}
PTerm -= (int32_t) gyroData[axis] * dynP8[axis] / 10 / 8; // 32 bits is needed for calculation
delta = gyroData[axis] - lastGyro[axis];
lastGyro[axis] = gyroData[axis];
deltaSum = delta1[axis] + delta2[axis] + delta;
delta2[axis] = delta1[axis];
delta1[axis] = delta;
DTerm = (deltaSum * dynD8[axis]) / 32;
axisPID[axis] = PTerm + ITerm - DTerm;
}
}
#define GYRO_I_MAX 256
static void pidRewrite(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination,
rollAndPitchTrims_t *angleTrim)
{
int32_t errorAngle;
int axis;
int32_t delta, deltaSum;
static int32_t delta1[3], delta2[3];
int32_t PTerm, ITerm, DTerm;
static int32_t lastError[3] = { 0, 0, 0 };
int32_t AngleRateTmp, RateError;
// ----------PID controller----------
for (axis = 0; axis < 3; axis++) {
// -----Get the desired angle rate depending on flight mode
if (axis == FD_YAW) { // YAW is always gyro-controlled (MAG correction is applied to rcCommand)
AngleRateTmp = (((int32_t)(controlRateConfig->yawRate + 27) * rcCommand[2]) >> 5);
} else {
// calculate error and limit the angle to max configured inclination
errorAngle = constrain((rcCommand[axis] << 1) + GPS_angle[axis], -((int) max_angle_inclination),
+max_angle_inclination) - inclination.rawAngles[axis] + angleTrim->raw[axis]; // 16 bits is ok here
if (!f.ANGLE_MODE) { //control is GYRO based (ACRO and HORIZON - direct sticks control is applied to rate PID
AngleRateTmp = ((int32_t)(controlRateConfig->rollPitchRate + 27) * rcCommand[axis]) >> 4;
if (f.HORIZON_MODE) {
// mix up angle error to desired AngleRateTmp to add a little auto-level feel
AngleRateTmp += (errorAngle * pidProfile->I8[PIDLEVEL]) >> 8;
}
} else { // it's the ANGLE mode - control is angle based, so control loop is needed
AngleRateTmp = (errorAngle * pidProfile->P8[PIDLEVEL]) >> 4;
}
}
// --------low-level gyro-based PID. ----------
// Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes
// -----calculate scaled error.AngleRates
// multiplication of rcCommand corresponds to changing the sticks scaling here
RateError = AngleRateTmp - gyroData[axis];
// -----calculate P component
PTerm = (RateError * pidProfile->P8[axis]) >> 7;
// -----calculate I component
// there should be no division before accumulating the error to integrator, because the precision would be reduced.
// Precision is critical, as I prevents from long-time drift. Thus, 32 bits integrator is used.
// Time correction (to avoid different I scaling for different builds based on average cycle time)
// is normalized to cycle time = 2048.
errorGyroI[axis] = errorGyroI[axis] + ((RateError * cycleTime) >> 11) * pidProfile->I8[axis];
// limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated.
// I coefficient (I8) moved before integration to make limiting independent from PID settings
errorGyroI[axis] = constrain(errorGyroI[axis], (int32_t) - GYRO_I_MAX << 13, (int32_t) + GYRO_I_MAX << 13);
ITerm = errorGyroI[axis] >> 13;
//-----calculate D-term
delta = RateError - lastError[axis]; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800
lastError[axis] = RateError;
// Correct difference by cycle time. Cycle time is jittery (can be different 2 times), so calculated difference
// would be scaled by different dt each time. Division by dT fixes that.
delta = (delta * ((uint16_t) 0xFFFF / (cycleTime >> 4))) >> 6;
// add moving average here to reduce noise
deltaSum = delta1[axis] + delta2[axis] + delta;
delta2[axis] = delta1[axis];
delta1[axis] = delta;
DTerm = (deltaSum * pidProfile->D8[axis]) >> 8;
// -----calculate total PID output
axisPID[axis] = PTerm + ITerm + DTerm;
}
}
void setPIDController(int type)
{
switch (type) {
case 0:
default:
pid_controller = pidMultiWii;
break;
case 1:
pid_controller = pidRewrite;
break;
}
}