atbetaflight/drv_i2c.c

300 lines
13 KiB
C
Executable File

#include "board.h"
// I2C2
// SCL PB10
// SDA PB11
static I2C_TypeDef *I2Cx;
static void i2c_er_handler(void);
static void i2c_ev_handler(void);
static void i2cUnstick(void);
void I2C2_ER_IRQHandler(void)
{
i2c_er_handler();
}
void I2C2_EV_IRQHandler(void)
{
i2c_ev_handler();
}
static volatile bool error = false;
static volatile bool busy;
static volatile uint8_t addr;
static volatile uint8_t reg;
static volatile uint8_t bytes;
static volatile uint8_t writing;
static volatile uint8_t reading;
static volatile uint8_t* write_p;
static volatile uint8_t* read_p;
static void i2c_er_handler(void)
{
volatile uint32_t SR1Register, SR2Register;
/* Read the I2C1 status register */
SR1Register = I2Cx->SR1;
if (SR1Register & 0x0F00) { //an error
// I2C1error.error = ((SR1Register & 0x0F00) >> 8); //save error
// I2C1error.job = job; //the task
}
/* If AF, BERR or ARLO, abandon the current job and commence new if there are jobs */
if (SR1Register & 0x0700) {
SR2Register = I2Cx->SR2; //read second status register to clear ADDR if it is set (note that BTF will not be set after a NACK)
I2C_ITConfig(I2Cx, I2C_IT_BUF, DISABLE); //disable the RXNE/TXE interrupt - prevent the ISR tailchaining onto the ER (hopefully)
if (!(SR1Register & 0x0200) && !(I2Cx->CR1 & 0x0200)) { //if we dont have an ARLO error, ensure sending of a stop
if (I2Cx->CR1 & 0x0100) { //We are currently trying to send a start, this is very bad as start,stop will hang the peripheral
while (I2Cx->CR1 & 0x0100); //wait for any start to finish sending
I2C_GenerateSTOP(I2Cx, ENABLE); //send stop to finalise bus transaction
while (I2Cx->CR1 & 0x0200); //wait for stop to finish sending
i2cInit(I2Cx); //reset and configure the hardware
} else {
I2C_GenerateSTOP(I2Cx, ENABLE); //stop to free up the bus
I2C_ITConfig(I2Cx, I2C_IT_EVT | I2C_IT_ERR, DISABLE); //Disable EVT and ERR interrupts while bus inactive
}
}
}
I2Cx->SR1 &= ~0x0F00; //reset all the error bits to clear the interrupt
busy = 0;
}
bool i2cWrite(uint8_t addr_, uint8_t reg_, uint8_t data)
{
uint8_t my_data[1];
addr = addr_ << 1;
reg = reg_;
writing = 1;
reading = 0;
my_data[0] = data;
write_p = my_data;
read_p = my_data;
bytes = 1;
busy = 1;
if (!(I2Cx->CR2 & I2C_IT_EVT)) { //if we are restarting the driver
if (!(I2Cx->CR1 & 0x0100)) { // ensure sending a start
while (I2Cx->CR1 & 0x0200) { ; } //wait for any stop to finish sending
I2C_GenerateSTART(I2Cx, ENABLE); //send the start for the new job
}
I2C_ITConfig(I2Cx, I2C_IT_EVT | I2C_IT_ERR, ENABLE); //allow the interrupts to fire off again
}
while (busy); // TODO timeout
return true;
}
bool i2cRead(uint8_t addr_, uint8_t reg_, uint8_t len, uint8_t* buf)
{
addr = addr_ << 1;
reg = reg_;
writing = 0;
reading = 1;
read_p = buf;
write_p = buf;
bytes = len;
busy = 1;
if (!(I2Cx->CR2 & I2C_IT_EVT)) { //if we are restarting the driver
if (!(I2Cx->CR1 & 0x0100)) { // ensure sending a start
while (I2Cx->CR1 & 0x0200) { ; } //wait for any stop to finish sending
I2C_GenerateSTART(I2Cx, ENABLE); //send the start for the new job
}
I2C_ITConfig(I2Cx, I2C_IT_EVT | I2C_IT_ERR, ENABLE); //allow the interrupts to fire off again
}
while (busy); // TODO timeout
return true;
}
void i2c_ev_handler(void)
{
static uint8_t subaddress_sent, final_stop; //flag to indicate if subaddess sent, flag to indicate final bus condition
static int8_t index; //index is signed -1==send the subaddress
uint8_t SReg_1 = I2Cx->SR1; //read the status register here
if (SReg_1 & 0x0001) { //we just sent a start - EV5 in ref manual
I2Cx->CR1 &= ~0x0800; //reset the POS bit so ACK/NACK applied to the current byte
I2C_AcknowledgeConfig(I2Cx, ENABLE); //make sure ACK is on
index = 0; //reset the index
if (reading && (subaddress_sent || 0xFF == reg)) { //we have sent the subaddr
subaddress_sent = 1; //make sure this is set in case of no subaddress, so following code runs correctly
if (bytes == 2)
I2Cx->CR1 |= 0x0800; //set the POS bit so NACK applied to the final byte in the two byte read
I2C_Send7bitAddress(I2Cx, addr, I2C_Direction_Receiver); //send the address and set hardware mode
} else { //direction is Tx, or we havent sent the sub and rep start
I2C_Send7bitAddress(I2Cx, addr, I2C_Direction_Transmitter); //send the address and set hardware mode
if (reg != 0xFF) //0xFF as subaddress means it will be ignored, in Tx or Rx mode
index = -1; //send a subaddress
}
} else if (SReg_1 & 0x0002) { //we just sent the address - EV6 in ref manual
//Read SR1,2 to clear ADDR
volatile uint8_t a;
__DMB(); // asm volatile ("dmb":::"memory"); //memory fence to control hardware
if (bytes == 1 && reading && subaddress_sent) { //we are receiving 1 byte - EV6_3
I2C_AcknowledgeConfig(I2Cx, DISABLE); //turn off ACK
__DMB(); // asm volatile ("dmb":::"memory");
a = I2Cx->SR2; //clear ADDR after ACK is turned off
I2C_GenerateSTOP(I2Cx, ENABLE); //program the stop
final_stop = 1;
I2C_ITConfig(I2Cx, I2C_IT_BUF, ENABLE); //allow us to have an EV7
} else { //EV6 and EV6_1
a = I2Cx->SR2; //clear the ADDR here
__DMB(); // asm volatile ("dmb":::"memory");
if (bytes == 2 && reading && subaddress_sent) { //rx 2 bytes - EV6_1
I2C_AcknowledgeConfig(I2Cx, DISABLE); //turn off ACK
I2C_ITConfig(I2Cx, I2C_IT_BUF, DISABLE); //disable TXE to allow the buffer to fill
} else if (bytes == 3 && reading && subaddress_sent) //rx 3 bytes
I2C_ITConfig(I2Cx, I2C_IT_BUF, DISABLE); //make sure RXNE disabled so we get a BTF in two bytes time
else //receiving greater than three bytes, sending subaddress, or transmitting
I2C_ITConfig(I2Cx, I2C_IT_BUF, ENABLE);
}
} else if (SReg_1 & 0x004) { //Byte transfer finished - EV7_2, EV7_3 or EV8_2
final_stop = 1;
if (reading && subaddress_sent) { //EV7_2, EV7_3
if (bytes > 2) { //EV7_2
I2C_AcknowledgeConfig(I2Cx, DISABLE); //turn off ACK
read_p[index++] = I2C_ReceiveData(I2Cx); //read data N-2
I2C_GenerateSTOP(I2Cx, ENABLE); //program the Stop
final_stop = 1; //reuired to fix hardware
read_p[index++] = I2C_ReceiveData(I2Cx); //read data N-1
I2C_ITConfig(I2Cx, I2C_IT_BUF, ENABLE); //enable TXE to allow the final EV7
} else { //EV7_3
if (final_stop)
I2C_GenerateSTOP(I2Cx, ENABLE); //program the Stop
else
I2C_GenerateSTART(I2Cx, ENABLE); //program a rep start
read_p[index++] = I2C_ReceiveData(I2Cx); //read data N-1
read_p[index++] = I2C_ReceiveData(I2Cx); //read data N
index++; //to show job completed
}
} else { //EV8_2, which may be due to a subaddress sent or a write completion
if (subaddress_sent || (writing)) {
if (final_stop)
I2C_GenerateSTOP(I2Cx, ENABLE); //program the Stop
else
I2C_GenerateSTART(I2Cx, ENABLE); //program a rep start
index++; //to show that the job is complete
} else { //We need to send a subaddress
I2C_GenerateSTART(I2Cx, ENABLE); //program the repeated Start
subaddress_sent = 1; //this is set back to zero upon completion of the current task
}
}
//we must wait for the start to clear, otherwise we get constant BTF
while (I2Cx->CR1 & 0x0100) { ; }
} else if (SReg_1 & 0x0040) { //Byte received - EV7
read_p[index++] = I2C_ReceiveData(I2Cx);
if (bytes == (index + 3))
I2C_ITConfig(I2Cx, I2C_IT_BUF, DISABLE); //disable TXE to allow the buffer to flush so we can get an EV7_2
if (bytes == index) //We have completed a final EV7
index++; //to show job is complete
} else if (SReg_1 & 0x0080) { //Byte transmitted -EV8/EV8_1
if (index != -1) { //we dont have a subaddress to send
I2C_SendData(I2Cx, write_p[index++]);
if (bytes == index) //we have sent all the data
I2C_ITConfig(I2Cx, I2C_IT_BUF, DISABLE); //disable TXE to allow the buffer to flush
} else {
index++;
I2C_SendData(I2Cx, reg); //send the subaddress
if (reading || !bytes) //if receiving or sending 0 bytes, flush now
I2C_ITConfig(I2Cx, I2C_IT_BUF, DISABLE); //disable TXE to allow the buffer to flush
}
}
if (index == bytes + 1) { //we have completed the current job
//Completion Tasks go here
//End of completion tasks
subaddress_sent = 0; //reset this here
// I2Cx->CR1 &= ~0x0800; //reset the POS bit so NACK applied to the current byte
if (final_stop) //If there is a final stop and no more jobs, bus is inactive, disable interrupts to prevent BTF
I2C_ITConfig(I2Cx, I2C_IT_EVT | I2C_IT_ERR, DISABLE); //Disable EVT and ERR interrupts while bus inactive
busy = 0;
}
}
void i2cInit(I2C_TypeDef *I2C)
{
NVIC_InitTypeDef NVIC_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
I2C_InitTypeDef I2C_InitStructure;
// Init pins
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_11;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_OD;
GPIO_Init(GPIOB, &GPIO_InitStructure);
I2Cx = I2C;
// clock out stuff to make sure slaves arent stuck
i2cUnstick();
// Init I2C
I2C_DeInit(I2Cx);
I2C_StructInit(&I2C_InitStructure);
I2C_ITConfig(I2Cx, I2C_IT_EVT | I2C_IT_ERR, DISABLE); //Enable EVT and ERR interrupts - they are enabled by the first request
I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;
I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2;
I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
I2C_InitStructure.I2C_ClockSpeed = 400000;
I2C_Cmd(I2Cx, ENABLE);
I2C_Init(I2Cx, &I2C_InitStructure);
NVIC_PriorityGroupConfig(0x500);
// I2C ER Interrupt
NVIC_InitStructure.NVIC_IRQChannel = I2C2_ER_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
// I2C EV Interrupt
NVIC_InitStructure.NVIC_IRQChannel = I2C2_EV_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_Init(&NVIC_InitStructure);
}
static void i2cUnstick(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
uint8_t i;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_11;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_SetBits(GPIOB, GPIO_Pin_10 | GPIO_Pin_11);
for (i = 0; i < 8; i++) {
// Wait for any clock stretching to finish
while (!GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_10))
delayMicroseconds(10);
// Pull low
GPIO_ResetBits(GPIOB, GPIO_Pin_10); //Set bus low
delayMicroseconds(10);
// Release high again
GPIO_SetBits(GPIOB, GPIO_Pin_10); //Set bus high
delayMicroseconds(10);
}
// Generate a start then stop condition
// SCL PB10
// SDA PB11
GPIO_ResetBits(GPIOB, GPIO_Pin_11); // Set bus data low
delayMicroseconds(10);
GPIO_ResetBits(GPIOB, GPIO_Pin_10); // Set bus scl low
delayMicroseconds(10);
GPIO_SetBits(GPIOB, GPIO_Pin_10); // Set bus scl high
delayMicroseconds(10);
GPIO_SetBits(GPIOB, GPIO_Pin_11); // Set bus sda high
// Init pins
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_11;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_OD;
GPIO_Init(GPIOB, &GPIO_InitStructure);
}