atbetaflight/lib/main/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_nand.c

1459 lines
45 KiB
C

/**
******************************************************************************
* @file stm32f7xx_hal_nand.c
* @author MCD Application Team
* @version V1.1.2
* @date 23-September-2016
* @brief NAND HAL module driver.
* This file provides a generic firmware to drive NAND memories mounted
* as external device.
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
This driver is a generic layered driver which contains a set of APIs used to
control NAND flash memories. It uses the FMC/FSMC layer functions to interface
with NAND devices. This driver is used as follows:
(+) NAND flash memory configuration sequence using the function HAL_NAND_Init()
with control and timing parameters for both common and attribute spaces.
(+) Read NAND flash memory maker and device IDs using the function
HAL_NAND_Read_ID(). The read information is stored in the NAND_ID_TypeDef
structure declared by the function caller.
(+) Access NAND flash memory by read/write operations using the functions
HAL_NAND_Read_Page()/HAL_NAND_Read_SpareArea(), HAL_NAND_Write_Page()/HAL_NAND_Write_SpareArea()
to read/write page(s)/spare area(s). These functions use specific device
information (Block, page size..) predefined by the user in the HAL_NAND_Info_TypeDef
structure. The read/write address information is contained by the Nand_Address_Typedef
structure passed as parameter.
(+) Perform NAND flash Reset chip operation using the function HAL_NAND_Reset().
(+) Perform NAND flash erase block operation using the function HAL_NAND_Erase_Block().
The erase block address information is contained in the Nand_Address_Typedef
structure passed as parameter.
(+) Read the NAND flash status operation using the function HAL_NAND_Read_Status().
(+) You can also control the NAND device by calling the control APIs HAL_NAND_ECC_Enable()/
HAL_NAND_ECC_Disable() to respectively enable/disable the ECC code correction
feature or the function HAL_NAND_GetECC() to get the ECC correction code.
(+) You can monitor the NAND device HAL state by calling the function
HAL_NAND_GetState()
[..]
(@) This driver is a set of generic APIs which handle standard NAND flash operations.
If a NAND flash device contains different operations and/or implementations,
it should be implemented separately.
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f7xx_hal.h"
/** @addtogroup STM32F7xx_HAL_Driver
* @{
*/
#ifdef HAL_NAND_MODULE_ENABLED
/** @defgroup NAND NAND
* @brief NAND HAL module driver
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private Constants ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup NAND_Exported_Functions NAND Exported Functions
* @{
*/
/** @defgroup NAND_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### NAND Initialization and de-initialization functions #####
==============================================================================
[..]
This section provides functions allowing to initialize/de-initialize
the NAND memory
@endverbatim
* @{
*/
/**
* @brief Perform NAND memory Initialization sequence
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @param ComSpace_Timing: pointer to Common space timing structure
* @param AttSpace_Timing: pointer to Attribute space timing structure
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NAND_Init(NAND_HandleTypeDef *hnand, FMC_NAND_PCC_TimingTypeDef *ComSpace_Timing, FMC_NAND_PCC_TimingTypeDef *AttSpace_Timing)
{
/* Check the NAND handle state */
if(hnand == NULL)
{
return HAL_ERROR;
}
if(hnand->State == HAL_NAND_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hnand->Lock = HAL_UNLOCKED;
/* Initialize the low level hardware (MSP) */
HAL_NAND_MspInit(hnand);
}
/* Initialize NAND control Interface */
FMC_NAND_Init(hnand->Instance, &(hnand->Init));
/* Initialize NAND common space timing Interface */
FMC_NAND_CommonSpace_Timing_Init(hnand->Instance, ComSpace_Timing, hnand->Init.NandBank);
/* Initialize NAND attribute space timing Interface */
FMC_NAND_AttributeSpace_Timing_Init(hnand->Instance, AttSpace_Timing, hnand->Init.NandBank);
/* Enable the NAND device */
__FMC_NAND_ENABLE(hnand->Instance);
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_READY;
return HAL_OK;
}
/**
* @brief Perform NAND memory De-Initialization sequence
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NAND_DeInit(NAND_HandleTypeDef *hnand)
{
/* Initialize the low level hardware (MSP) */
HAL_NAND_MspDeInit(hnand);
/* Configure the NAND registers with their reset values */
FMC_NAND_DeInit(hnand->Instance, hnand->Init.NandBank);
/* Reset the NAND controller state */
hnand->State = HAL_NAND_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hnand);
return HAL_OK;
}
/**
* @brief NAND MSP Init
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @retval None
*/
__weak void HAL_NAND_MspInit(NAND_HandleTypeDef *hnand)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hnand);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_NAND_MspInit could be implemented in the user file
*/
}
/**
* @brief NAND MSP DeInit
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @retval None
*/
__weak void HAL_NAND_MspDeInit(NAND_HandleTypeDef *hnand)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hnand);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_NAND_MspDeInit could be implemented in the user file
*/
}
/**
* @brief This function handles NAND device interrupt request.
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @retval HAL status
*/
void HAL_NAND_IRQHandler(NAND_HandleTypeDef *hnand)
{
/* Check NAND interrupt Rising edge flag */
if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_RISING_EDGE))
{
/* NAND interrupt callback*/
HAL_NAND_ITCallback(hnand);
/* Clear NAND interrupt Rising edge pending bit */
__FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_RISING_EDGE);
}
/* Check NAND interrupt Level flag */
if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_LEVEL))
{
/* NAND interrupt callback*/
HAL_NAND_ITCallback(hnand);
/* Clear NAND interrupt Level pending bit */
__FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_LEVEL);
}
/* Check NAND interrupt Falling edge flag */
if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FALLING_EDGE))
{
/* NAND interrupt callback*/
HAL_NAND_ITCallback(hnand);
/* Clear NAND interrupt Falling edge pending bit */
__FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_FALLING_EDGE);
}
/* Check NAND interrupt FIFO empty flag */
if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FEMPT))
{
/* NAND interrupt callback*/
HAL_NAND_ITCallback(hnand);
/* Clear NAND interrupt FIFO empty pending bit */
__FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_FEMPT);
}
}
/**
* @brief NAND interrupt feature callback
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @retval None
*/
__weak void HAL_NAND_ITCallback(NAND_HandleTypeDef *hnand)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hnand);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_NAND_ITCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup NAND_Exported_Functions_Group2 Input and Output functions
* @brief Input Output and memory control functions
*
@verbatim
==============================================================================
##### NAND Input and Output functions #####
==============================================================================
[..]
This section provides functions allowing to use and control the NAND
memory
@endverbatim
* @{
*/
/**
* @brief Read the NAND memory electronic signature
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @param pNAND_ID: NAND ID structure
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NAND_Read_ID(NAND_HandleTypeDef *hnand, NAND_IDTypeDef *pNAND_ID)
{
__IO uint32_t data = 0;
__IO uint32_t data1 = 0;
uint32_t deviceAddress = 0;
/* Process Locked */
__HAL_LOCK(hnand);
/* Check the NAND controller state */
if(hnand->State == HAL_NAND_STATE_BUSY)
{
return HAL_BUSY;
}
/* Identify the device address */
deviceAddress = NAND_DEVICE;
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_BUSY;
/* Send Read ID command sequence */
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_READID;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
__DSB();
/* Read the electronic signature from NAND flash */
if (hnand->Init.MemoryDataWidth == FMC_NAND_PCC_MEM_BUS_WIDTH_8)
{
data = *(__IO uint32_t *)deviceAddress;
/* Return the data read */
pNAND_ID->Maker_Id = ADDR_1ST_CYCLE(data);
pNAND_ID->Device_Id = ADDR_2ND_CYCLE(data);
pNAND_ID->Third_Id = ADDR_3RD_CYCLE(data);
pNAND_ID->Fourth_Id = ADDR_4TH_CYCLE(data);
}
else
{
data = *(__IO uint32_t *)deviceAddress;
data1 = *((__IO uint32_t *)deviceAddress + 4);
/* Return the data read */
pNAND_ID->Maker_Id = ADDR_1ST_CYCLE(data);
pNAND_ID->Device_Id = ADDR_3RD_CYCLE(data);
pNAND_ID->Third_Id = ADDR_1ST_CYCLE(data1);
pNAND_ID->Fourth_Id = ADDR_3RD_CYCLE(data1);
}
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnand);
return HAL_OK;
}
/**
* @brief NAND memory reset
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NAND_Reset(NAND_HandleTypeDef *hnand)
{
uint32_t deviceAddress = 0;
/* Process Locked */
__HAL_LOCK(hnand);
/* Check the NAND controller state */
if(hnand->State == HAL_NAND_STATE_BUSY)
{
return HAL_BUSY;
}
/* Identify the device address */
deviceAddress = NAND_DEVICE;
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_BUSY;
/* Send NAND reset command */
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = 0xFF;
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnand);
return HAL_OK;
}
/**
* @brief Read Page(s) from NAND memory block (8-bits addressing)
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @param pAddress : pointer to NAND address structure
* @param pBuffer : pointer to destination read buffer
* @param NumPageToRead : number of pages to read from block
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NAND_Read_Page_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumPageToRead)
{
__IO uint32_t index = 0;
uint32_t deviceAddress = 0, size = 0, numPagesRead = 0, nandAddress = 0;
/* Process Locked */
__HAL_LOCK(hnand);
/* Check the NAND controller state */
if(hnand->State == HAL_NAND_STATE_BUSY)
{
return HAL_BUSY;
}
/* Identify the device address */
deviceAddress = NAND_DEVICE;
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_BUSY;
/* NAND raw address calculation */
nandAddress = ARRAY_ADDRESS(pAddress, hnand);
/* Page(s) read loop */
while((NumPageToRead != 0) && (nandAddress < ((hnand->Info.BlockSize) * (hnand->Info.PageSize) * (hnand->Info.ZoneSize))))
{
/* update the buffer size */
size = (hnand->Info.PageSize) + ((hnand->Info.PageSize) * numPagesRead);
/* Send read page command sequence */
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_A;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
__DSB();
/* for 512 and 1 GB devices, 4th cycle is required */
if(hnand->Info.BlockNbr >= 1024)
{
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4TH_CYCLE(nandAddress);
__DSB();
}
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1;
__DSB();
if (hnand->Init.MemoryDataWidth == FMC_NAND_MEM_BUS_WIDTH_8)
{
/* Get Data into Buffer */
for(; index < size; index++)
{
*(uint8_t *)pBuffer++ = *(uint8_t *)deviceAddress;
}
}
else
{
/* Get Data into Buffer */
for(; index < size; index++)
{
*(uint16_t *)pBuffer++ = *(uint16_t *)deviceAddress;
}
}
/* Increment read pages number */
numPagesRead++;
/* Decrement pages to read */
NumPageToRead--;
/* Increment the NAND address */
nandAddress = (uint32_t)(nandAddress + (hnand->Info.PageSize * 8));
}
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnand);
return HAL_OK;
}
/**
* @brief Read Page(s) from NAND memory block (16-bits addressing)
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @param pAddress : pointer to NAND address structure
* @param pBuffer : pointer to destination read buffer
* @param NumPageToRead : number of pages to read from block
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NAND_Read_Page_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumPageToRead)
{
__IO uint32_t index = 0;
uint32_t deviceAddress = 0, size = 0, numPagesRead = 0, nandAddress = 0;
/* Process Locked */
__HAL_LOCK(hnand);
/* Check the NAND controller state */
if(hnand->State == HAL_NAND_STATE_BUSY)
{
return HAL_BUSY;
}
/* Identify the device address */
deviceAddress = NAND_DEVICE;
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_BUSY;
/* NAND raw address calculation */
nandAddress = ARRAY_ADDRESS(pAddress, hnand);
/* Page(s) read loop */
while((NumPageToRead != 0) && (nandAddress < ((hnand->Info.BlockSize) * (hnand->Info.PageSize) * (hnand->Info.ZoneSize))))
{
/* update the buffer size */
size = (hnand->Info.PageSize) + ((hnand->Info.PageSize) * numPagesRead);
/* Send read page command sequence */
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_A;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
__DSB();
/* for 512 and 1 GB devices, 4th cycle is required */
if(hnand->Info.BlockNbr >= 1024)
{
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4TH_CYCLE(nandAddress);
__DSB();
}
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1;
__DSB();
/* Get Data into Buffer */
for(; index < size; index++)
{
*(uint16_t *)pBuffer++ = *(uint16_t *)deviceAddress;
}
/* Increment read pages number */
numPagesRead++;
/* Decrement pages to read */
NumPageToRead--;
/* Increment the NAND address */
nandAddress = (uint32_t)(nandAddress + (hnand->Info.PageSize * 8));
}
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnand);
return HAL_OK;
}
/**
* @brief Write Page(s) to NAND memory block (8-bits addressing)
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @param pAddress : pointer to NAND address structure
* @param pBuffer : pointer to source buffer to write
* @param NumPageToWrite : number of pages to write to block
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NAND_Write_Page_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumPageToWrite)
{
__IO uint32_t index = 0;
uint32_t tickstart = 0;
uint32_t deviceAddress = 0, size = 0, numPagesWritten = 0, nandAddress = 0;
/* Process Locked */
__HAL_LOCK(hnand);
/* Check the NAND controller state */
if(hnand->State == HAL_NAND_STATE_BUSY)
{
return HAL_BUSY;
}
/* Identify the device address */
deviceAddress = NAND_DEVICE;
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_BUSY;
/* NAND raw address calculation */
nandAddress = ARRAY_ADDRESS(pAddress, hnand);
/* Page(s) write loop */
while((NumPageToWrite != 0) && (nandAddress < ((hnand->Info.BlockSize) * (hnand->Info.PageSize) * (hnand->Info.ZoneSize))))
{
/* update the buffer size */
size = (hnand->Info.PageSize) + ((hnand->Info.PageSize) * numPagesWritten);
/* Send write page command sequence */
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_A;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE0;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
__DSB();
/* for 512 and 1 GB devices, 4th cycle is required */
if(hnand->Info.BlockNbr >= 1024)
{
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4TH_CYCLE(nandAddress);
__DSB();
}
if (hnand->Init.MemoryDataWidth == FMC_NAND_MEM_BUS_WIDTH_8)
{
/* Write data to memory */
for(; index < size; index++)
{
*(__IO uint8_t *)deviceAddress = *(uint8_t *)pBuffer++;
__DSB();
}
}
else
{
/* Write data to memory */
for(; index < size; index++)
{
*(__IO uint16_t *)deviceAddress = *(uint16_t *)pBuffer++;
__DSB();
}
}
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1;
__DSB();
/* Read status until NAND is ready */
while(HAL_NAND_Read_Status(hnand) != NAND_READY)
{
/* Get tick */
tickstart = HAL_GetTick();
if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT)
{
return HAL_TIMEOUT;
}
}
/* Increment written pages number */
numPagesWritten++;
/* Decrement pages to write */
NumPageToWrite--;
/* Increment the NAND address */
nandAddress = (uint32_t)(nandAddress + (hnand->Info.PageSize * 8));
}
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnand);
return HAL_OK;
}
/**
* @brief Write Page(s) to NAND memory block (16-bits addressing)
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @param pAddress : pointer to NAND address structure
* @param pBuffer : pointer to source buffer to write
* @param NumPageToWrite : number of pages to write to block
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NAND_Write_Page_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumPageToWrite)
{
__IO uint32_t index = 0;
uint32_t tickstart = 0;
uint32_t deviceAddress = 0, size = 0, numPagesWritten = 0, nandAddress = 0;
/* Process Locked */
__HAL_LOCK(hnand);
/* Check the NAND controller state */
if(hnand->State == HAL_NAND_STATE_BUSY)
{
return HAL_BUSY;
}
/* Identify the device address */
deviceAddress = NAND_DEVICE;
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_BUSY;
/* NAND raw address calculation */
nandAddress = ARRAY_ADDRESS(pAddress, hnand);
/* Page(s) write loop */
while((NumPageToWrite != 0) && (nandAddress < ((hnand->Info.BlockSize) * (hnand->Info.PageSize) * (hnand->Info.ZoneSize))))
{
/* update the buffer size */
size = (hnand->Info.PageSize) + ((hnand->Info.PageSize) * numPagesWritten);
/* Send write page command sequence */
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_A;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE0;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
__DSB();
/* for 512 and 1 GB devices, 4th cycle is required */
if(hnand->Info.BlockNbr >= 1024)
{
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4TH_CYCLE(nandAddress);
__DSB();
}
/* Write data to memory */
for(; index < size; index++)
{
*(__IO uint16_t *)deviceAddress = *(uint16_t *)pBuffer++;
__DSB();
}
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1;
__DSB();
/* Read status until NAND is ready */
while(HAL_NAND_Read_Status(hnand) != NAND_READY)
{
/* Get tick */
tickstart = HAL_GetTick();
if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT)
{
return HAL_TIMEOUT;
}
}
/* Increment written pages number */
numPagesWritten++;
/* Decrement pages to write */
NumPageToWrite--;
/* Increment the NAND address */
nandAddress = (uint32_t)(nandAddress + (hnand->Info.PageSize * 8));
}
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnand);
return HAL_OK;
}
/**
* @brief Read Spare area(s) from NAND memory (8-bits addressing)
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @param pAddress : pointer to NAND address structure
* @param pBuffer: pointer to source buffer to write
* @param NumSpareAreaToRead: Number of spare area to read
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NAND_Read_SpareArea_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumSpareAreaToRead)
{
__IO uint32_t index = 0;
uint32_t deviceAddress = 0, size = 0, numSpareAreaRead = 0, nandAddress = 0;
/* Process Locked */
__HAL_LOCK(hnand);
/* Check the NAND controller state */
if(hnand->State == HAL_NAND_STATE_BUSY)
{
return HAL_BUSY;
}
/* Identify the device address */
deviceAddress = NAND_DEVICE;
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_BUSY;
/* NAND raw address calculation */
nandAddress = ARRAY_ADDRESS(pAddress, hnand);
/* Spare area(s) read loop */
while((NumSpareAreaToRead != 0) && (nandAddress < ((hnand->Info.BlockSize) * (hnand->Info.SpareAreaSize) * (hnand->Info.ZoneSize))))
{
/* update the buffer size */
size = (hnand->Info.SpareAreaSize) + ((hnand->Info.SpareAreaSize) * numSpareAreaRead);
/* Send read spare area command sequence */
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_C;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
__DSB();
/* for 512 and 1 GB devices, 4th cycle is required */
if(hnand->Info.BlockNbr >= 1024)
{
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4TH_CYCLE(nandAddress);
__DSB();
}
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1;
__DSB();
/* Get Data into Buffer */
for(; index < size; index++)
{
*(uint8_t *)pBuffer++ = *(uint8_t *)deviceAddress;
}
/* Increment read spare areas number */
numSpareAreaRead++;
/* Decrement spare areas to read */
NumSpareAreaToRead--;
/* Increment the NAND address */
nandAddress = (uint32_t)(nandAddress + (hnand->Info.SpareAreaSize));
}
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnand);
return HAL_OK;
}
/**
* @brief Read Spare area(s) from NAND memory (16-bits addressing)
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @param pAddress : pointer to NAND address structure
* @param pBuffer: pointer to source buffer to write
* @param NumSpareAreaToRead: Number of spare area to read
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NAND_Read_SpareArea_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumSpareAreaToRead)
{
__IO uint32_t index = 0;
uint32_t deviceAddress = 0, size = 0, numSpareAreaRead = 0, nandAddress = 0;
/* Process Locked */
__HAL_LOCK(hnand);
/* Check the NAND controller state */
if(hnand->State == HAL_NAND_STATE_BUSY)
{
return HAL_BUSY;
}
/* Identify the device address */
deviceAddress = NAND_DEVICE;
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_BUSY;
/* NAND raw address calculation */
nandAddress = ARRAY_ADDRESS(pAddress, hnand);
/* Spare area(s) read loop */
while((NumSpareAreaToRead != 0) && (nandAddress < ((hnand->Info.BlockSize) * (hnand->Info.SpareAreaSize) * (hnand->Info.ZoneSize))))
{
/* update the buffer size */
size = (hnand->Info.SpareAreaSize) + ((hnand->Info.SpareAreaSize) * numSpareAreaRead);
/* Send read spare area command sequence */
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_C;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
__DSB();
/* for 512 and 1 GB devices, 4th cycle is required */
if(hnand->Info.BlockNbr >= 1024)
{
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4TH_CYCLE(nandAddress);
__DSB();
}
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1;
__DSB();
/* Get Data into Buffer */
for(; index < size; index++)
{
*(uint16_t *)pBuffer++ = *(uint16_t *)deviceAddress;
}
/* Increment read spare areas number */
numSpareAreaRead++;
/* Decrement spare areas to read */
NumSpareAreaToRead--;
/* Increment the NAND address */
nandAddress = (uint32_t)(nandAddress + (hnand->Info.SpareAreaSize));
}
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnand);
return HAL_OK;
}
/**
* @brief Write Spare area(s) to NAND memory (8-bits addressing)
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @param pAddress : pointer to NAND address structure
* @param pBuffer : pointer to source buffer to write
* @param NumSpareAreaTowrite : number of spare areas to write to block
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NAND_Write_SpareArea_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumSpareAreaTowrite)
{
__IO uint32_t index = 0;
uint32_t tickstart = 0;
uint32_t deviceAddress = 0, size = 0, numSpareAreaWritten = 0, nandAddress = 0;
/* Process Locked */
__HAL_LOCK(hnand);
/* Check the NAND controller state */
if(hnand->State == HAL_NAND_STATE_BUSY)
{
return HAL_BUSY;
}
/* Identify the device address */
deviceAddress = NAND_DEVICE;
/* Update the FMC_NAND controller state */
hnand->State = HAL_NAND_STATE_BUSY;
/* NAND raw address calculation */
nandAddress = ARRAY_ADDRESS(pAddress, hnand);
/* Spare area(s) write loop */
while((NumSpareAreaTowrite != 0) && (nandAddress < ((hnand->Info.BlockSize) * (hnand->Info.SpareAreaSize) * (hnand->Info.ZoneSize))))
{
/* update the buffer size */
size = (hnand->Info.SpareAreaSize) + ((hnand->Info.SpareAreaSize) * numSpareAreaWritten);
/* Send write Spare area command sequence */
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_C;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE0;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
__DSB();
/* for 512 and 1 GB devices, 4th cycle is required */
if(hnand->Info.BlockNbr >= 1024)
{
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4TH_CYCLE(nandAddress);
__DSB();
}
/* Write data to memory */
for(; index < size; index++)
{
*(__IO uint8_t *)deviceAddress = *(uint8_t *)pBuffer++;
__DSB();
}
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1;
__DSB();
/* Read status until NAND is ready */
while(HAL_NAND_Read_Status(hnand) != NAND_READY)
{
/* Get tick */
tickstart = HAL_GetTick();
if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT)
{
return HAL_TIMEOUT;
}
}
/* Increment written spare areas number */
numSpareAreaWritten++;
/* Decrement spare areas to write */
NumSpareAreaTowrite--;
/* Increment the NAND address */
nandAddress = (uint32_t)(nandAddress + (hnand->Info.PageSize));
}
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnand);
return HAL_OK;
}
/**
* @brief Write Spare area(s) to NAND memory (16-bits addressing)
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @param pAddress : pointer to NAND address structure
* @param pBuffer : pointer to source buffer to write
* @param NumSpareAreaTowrite : number of spare areas to write to block
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NAND_Write_SpareArea_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumSpareAreaTowrite)
{
__IO uint32_t index = 0;
uint32_t tickstart = 0;
uint32_t deviceAddress = 0, size = 0, numSpareAreaWritten = 0, nandAddress = 0;
/* Process Locked */
__HAL_LOCK(hnand);
/* Check the NAND controller state */
if(hnand->State == HAL_NAND_STATE_BUSY)
{
return HAL_BUSY;
}
/* Identify the device address */
deviceAddress = NAND_DEVICE;
/* Update the FMC_NAND controller state */
hnand->State = HAL_NAND_STATE_BUSY;
/* NAND raw address calculation */
nandAddress = ARRAY_ADDRESS(pAddress, hnand);
/* Spare area(s) write loop */
while((NumSpareAreaTowrite != 0) && (nandAddress < ((hnand->Info.BlockSize) * (hnand->Info.SpareAreaSize) * (hnand->Info.ZoneSize))))
{
/* update the buffer size */
size = (hnand->Info.SpareAreaSize) + ((hnand->Info.SpareAreaSize) * numSpareAreaWritten);
/* Send write Spare area command sequence */
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_C;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE0;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00;
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress);
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress);
__DSB();
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress);
__DSB();
/* for 512 and 1 GB devices, 4th cycle is required */
if(hnand->Info.BlockNbr >= 1024)
{
*(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4TH_CYCLE(nandAddress);
__DSB();
}
/* Write data to memory */
for(; index < size; index++)
{
*(__IO uint16_t *)deviceAddress = *(uint16_t *)pBuffer++;
__DSB();
}
*(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1;
__DSB();
/* Read status until NAND is ready */
while(HAL_NAND_Read_Status(hnand) != NAND_READY)
{
/* Get tick */
tickstart = HAL_GetTick();
if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT)
{
return HAL_TIMEOUT;
}
}
/* Increment written spare areas number */
numSpareAreaWritten++;
/* Decrement spare areas to write */
NumSpareAreaTowrite--;
/* Increment the NAND address */
nandAddress = (uint32_t)(nandAddress + (hnand->Info.PageSize));
}
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnand);
return HAL_OK;
}
/**
* @brief NAND memory Block erase
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @param pAddress : pointer to NAND address structure
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NAND_Erase_Block(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress)
{
uint32_t DeviceAddress = 0;
/* Process Locked */
__HAL_LOCK(hnand);
/* Check the NAND controller state */
if(hnand->State == HAL_NAND_STATE_BUSY)
{
return HAL_BUSY;
}
/* Identify the device address */
DeviceAddress = NAND_DEVICE;
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_BUSY;
/* Send Erase block command sequence */
*(__IO uint8_t *)((uint32_t)(DeviceAddress | CMD_AREA)) = NAND_CMD_ERASE0;
__DSB();
*(__IO uint8_t *)((uint32_t)(DeviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(ARRAY_ADDRESS(pAddress, hnand));
__DSB();
*(__IO uint8_t *)((uint32_t)(DeviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(ARRAY_ADDRESS(pAddress, hnand));
__DSB();
*(__IO uint8_t *)((uint32_t)(DeviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(ARRAY_ADDRESS(pAddress, hnand));
__DSB();
/* for 512 and 1 GB devices, 4th cycle is required */
if(hnand->Info.BlockNbr >= 1024)
{
*(__IO uint8_t *)((uint32_t)(DeviceAddress | ADDR_AREA)) = ADDR_4TH_CYCLE(ARRAY_ADDRESS(pAddress, hnand));
__DSB();
}
*(__IO uint8_t *)((uint32_t)(DeviceAddress | CMD_AREA)) = NAND_CMD_ERASE1;
__DSB();
/* Update the NAND controller state */
hnand->State = HAL_NAND_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnand);
return HAL_OK;
}
/**
* @brief NAND memory read status
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @retval NAND status
*/
uint32_t HAL_NAND_Read_Status(NAND_HandleTypeDef *hnand)
{
uint32_t data = 0;
uint32_t DeviceAddress = 0;
/* Identify the device address */
DeviceAddress = NAND_DEVICE;
/* Send Read status operation command */
*(__IO uint8_t *)((uint32_t)(DeviceAddress | CMD_AREA)) = NAND_CMD_STATUS;
/* Read status register data */
data = *(__IO uint8_t *)DeviceAddress;
/* Return the status */
if((data & NAND_ERROR) == NAND_ERROR)
{
return NAND_ERROR;
}
else if((data & NAND_READY) == NAND_READY)
{
return NAND_READY;
}
return NAND_BUSY;
}
/**
* @brief Increment the NAND memory address
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @param pAddress: pointer to NAND address structure
* @retval The new status of the increment address operation. It can be:
* - NAND_VALID_ADDRESS: When the new address is valid address
* - NAND_INVALID_ADDRESS: When the new address is invalid address
*/
uint32_t HAL_NAND_Address_Inc(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress)
{
uint32_t status = NAND_VALID_ADDRESS;
/* Increment page address */
pAddress->Page++;
/* Check NAND address is valid */
if(pAddress->Page == hnand->Info.BlockSize)
{
pAddress->Page = 0;
pAddress->Block++;
if(pAddress->Block == hnand->Info.ZoneSize)
{
pAddress->Block = 0;
pAddress->Zone++;
if(pAddress->Zone == (hnand->Info.ZoneSize/ hnand->Info.BlockNbr))
{
status = NAND_INVALID_ADDRESS;
}
}
}
return (status);
}
/**
* @}
*/
/** @defgroup NAND_Exported_Functions_Group3 Peripheral Control functions
* @brief management functions
*
@verbatim
==============================================================================
##### NAND Control functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to control dynamically
the NAND interface.
@endverbatim
* @{
*/
/**
* @brief Enables dynamically NAND ECC feature.
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NAND_ECC_Enable(NAND_HandleTypeDef *hnand)
{
/* Check the NAND controller state */
if(hnand->State == HAL_NAND_STATE_BUSY)
{
return HAL_BUSY;
}
/* Update the NAND state */
hnand->State = HAL_NAND_STATE_BUSY;
/* Enable ECC feature */
FMC_NAND_ECC_Enable(hnand->Instance, hnand->Init.NandBank);
/* Update the NAND state */
hnand->State = HAL_NAND_STATE_READY;
return HAL_OK;
}
/**
* @brief Disables dynamically FMC_NAND ECC feature.
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NAND_ECC_Disable(NAND_HandleTypeDef *hnand)
{
/* Check the NAND controller state */
if(hnand->State == HAL_NAND_STATE_BUSY)
{
return HAL_BUSY;
}
/* Update the NAND state */
hnand->State = HAL_NAND_STATE_BUSY;
/* Disable ECC feature */
FMC_NAND_ECC_Disable(hnand->Instance, hnand->Init.NandBank);
/* Update the NAND state */
hnand->State = HAL_NAND_STATE_READY;
return HAL_OK;
}
/**
* @brief Disables dynamically NAND ECC feature.
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @param ECCval: pointer to ECC value
* @param Timeout: maximum timeout to wait
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NAND_GetECC(NAND_HandleTypeDef *hnand, uint32_t *ECCval, uint32_t Timeout)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the NAND controller state */
if(hnand->State == HAL_NAND_STATE_BUSY)
{
return HAL_BUSY;
}
/* Update the NAND state */
hnand->State = HAL_NAND_STATE_BUSY;
/* Get NAND ECC value */
status = FMC_NAND_GetECC(hnand->Instance, ECCval, hnand->Init.NandBank, Timeout);
/* Update the NAND state */
hnand->State = HAL_NAND_STATE_READY;
return status;
}
/**
* @}
*/
/** @defgroup NAND_Exported_Functions_Group4 Peripheral State functions
* @brief Peripheral State functions
*
@verbatim
==============================================================================
##### NAND State functions #####
==============================================================================
[..]
This subsection permits to get in run-time the status of the NAND controller
and the data flow.
@endverbatim
* @{
*/
/**
* @brief return the NAND state
* @param hnand: pointer to a NAND_HandleTypeDef structure that contains
* the configuration information for NAND module.
* @retval HAL state
*/
HAL_NAND_StateTypeDef HAL_NAND_GetState(NAND_HandleTypeDef *hnand)
{
return hnand->State;
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_NAND_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/