445 lines
15 KiB
C
Executable File
445 lines
15 KiB
C
Executable File
#include "board.h"
|
|
#include "mw.h"
|
|
|
|
int16_t gyroADC[3], accADC[3], accSmooth[3], magADC[3];
|
|
int32_t accSum[3];
|
|
uint32_t accTimeSum = 0; // keep track for integration of acc
|
|
int accSumCount = 0;
|
|
int16_t acc_25deg = 0;
|
|
int32_t baroPressure = 0;
|
|
int32_t baroTemperature = 0;
|
|
int32_t baroPressureSum = 0;
|
|
int32_t BaroAlt = 0;
|
|
int32_t sonarAlt; // to think about the unit
|
|
int32_t EstAlt; // in cm
|
|
int32_t BaroPID = 0;
|
|
int32_t AltHold;
|
|
int32_t errorAltitudeI = 0;
|
|
int32_t vario = 0; // variometer in cm/s
|
|
int16_t throttleAngleCorrection = 0; // correction of throttle in lateral wind,
|
|
float magneticDeclination = 0.0f; // calculated at startup from config
|
|
float accVelScale;
|
|
|
|
// **************
|
|
// gyro+acc IMU
|
|
// **************
|
|
int16_t gyroData[3] = { 0, 0, 0 };
|
|
int16_t gyroZero[3] = { 0, 0, 0 };
|
|
int16_t angle[2] = { 0, 0 }; // absolute angle inclination in multiple of 0.1 degree 180 deg = 1800
|
|
|
|
static void getEstimatedAttitude(void);
|
|
|
|
void imuInit(void)
|
|
{
|
|
acc_25deg = acc_1G * 0.423f;
|
|
accVelScale = 9.80665f / acc_1G / 10000.0f;
|
|
|
|
#ifdef MAG
|
|
// if mag sensor is enabled, use it
|
|
if (sensors(SENSOR_MAG))
|
|
Mag_init();
|
|
#endif
|
|
}
|
|
|
|
|
|
void computeIMU(void)
|
|
{
|
|
uint32_t axis;
|
|
static int16_t gyroADCprevious[3] = { 0, 0, 0 };
|
|
int16_t gyroADCp[3];
|
|
int16_t gyroADCinter[3];
|
|
static uint32_t timeInterleave = 0;
|
|
static int16_t gyroYawSmooth = 0;
|
|
|
|
if (sensors(SENSOR_ACC)) {
|
|
ACC_getADC();
|
|
getEstimatedAttitude();
|
|
}
|
|
|
|
Gyro_getADC();
|
|
|
|
for (axis = 0; axis < 3; axis++)
|
|
gyroADCp[axis] = gyroADC[axis];
|
|
timeInterleave = micros();
|
|
annexCode();
|
|
|
|
if ((micros() - timeInterleave) > 650) {
|
|
annex650_overrun_count++;
|
|
} else {
|
|
while ((micros() - timeInterleave) < 650); // empirical, interleaving delay between 2 consecutive reads
|
|
}
|
|
|
|
Gyro_getADC();
|
|
for (axis = 0; axis < 3; axis++) {
|
|
gyroADCinter[axis] = gyroADC[axis] + gyroADCp[axis];
|
|
// empirical, we take a weighted value of the current and the previous values
|
|
gyroData[axis] = (gyroADCinter[axis] + gyroADCprevious[axis]) / 3;
|
|
gyroADCprevious[axis] = gyroADCinter[axis] / 2;
|
|
if (!sensors(SENSOR_ACC))
|
|
accADC[axis] = 0;
|
|
}
|
|
|
|
if (feature(FEATURE_GYRO_SMOOTHING)) {
|
|
static uint8_t Smoothing[3] = { 0, 0, 0 };
|
|
static int16_t gyroSmooth[3] = { 0, 0, 0 };
|
|
if (Smoothing[0] == 0) {
|
|
// initialize
|
|
Smoothing[ROLL] = (mcfg.gyro_smoothing_factor >> 16) & 0xff;
|
|
Smoothing[PITCH] = (mcfg.gyro_smoothing_factor >> 8) & 0xff;
|
|
Smoothing[YAW] = (mcfg.gyro_smoothing_factor) & 0xff;
|
|
}
|
|
for (axis = 0; axis < 3; axis++) {
|
|
gyroData[axis] = (int16_t)(((int32_t)((int32_t)gyroSmooth[axis] * (Smoothing[axis] - 1)) + gyroData[axis] + 1) / Smoothing[axis]);
|
|
gyroSmooth[axis] = gyroData[axis];
|
|
}
|
|
} else if (mcfg.mixerConfiguration == MULTITYPE_TRI) {
|
|
gyroData[YAW] = (gyroYawSmooth * 2 + gyroData[YAW]) / 3;
|
|
gyroYawSmooth = gyroData[YAW];
|
|
}
|
|
}
|
|
|
|
// **************************************************
|
|
// Simplified IMU based on "Complementary Filter"
|
|
// Inspired by http://starlino.com/imu_guide.html
|
|
//
|
|
// adapted by ziss_dm : http://www.multiwii.com/forum/viewtopic.php?f=8&t=198
|
|
//
|
|
// The following ideas was used in this project:
|
|
// 1) Rotation matrix: http://en.wikipedia.org/wiki/Rotation_matrix
|
|
// 2) Small-angle approximation: http://en.wikipedia.org/wiki/Small-angle_approximation
|
|
// 3) C. Hastings approximation for atan2()
|
|
// 4) Optimization tricks: http://www.hackersdelight.org/
|
|
//
|
|
// Currently Magnetometer uses separate CF which is used only
|
|
// for heading approximation.
|
|
//
|
|
// Modified: 19/04/2011 by ziss_dm
|
|
// Version: V1.1
|
|
//
|
|
// code size deduction and tmp vector intermediate step for vector rotation computation: October 2011 by Alex
|
|
// **************************************************
|
|
|
|
#define INV_GYR_CMPF_FACTOR (1.0f / ((float)mcfg.gyro_cmpf_factor + 1.0f))
|
|
#define INV_GYR_CMPFM_FACTOR (1.0f / ((float)mcfg.gyro_cmpfm_factor + 1.0f))
|
|
|
|
// #define GYRO_SCALE ((1998 * M_PI)/((32767.0f / 4.0f ) * 180.0f * 1000000.0f)) // 32767 / 16.4lsb/dps for MPU3000
|
|
|
|
typedef struct fp_vector {
|
|
float X;
|
|
float Y;
|
|
float Z;
|
|
} t_fp_vector_def;
|
|
|
|
typedef union {
|
|
float A[3];
|
|
t_fp_vector_def V;
|
|
} t_fp_vector;
|
|
|
|
t_fp_vector EstG;
|
|
|
|
// Rotate Estimated vector(s) with small angle approximation, according to the gyro data
|
|
void rotateV(struct fp_vector *v, float *delta)
|
|
{
|
|
struct fp_vector v_tmp = *v;
|
|
|
|
// This does a "proper" matrix rotation using gyro deltas without small-angle approximation
|
|
float mat[3][3];
|
|
float cosx, sinx, cosy, siny, cosz, sinz;
|
|
float coszcosx, coszcosy, sinzcosx, coszsinx, sinzsinx;
|
|
|
|
cosx = cosf(-delta[PITCH]);
|
|
sinx = sinf(-delta[PITCH]);
|
|
cosy = cosf(delta[ROLL]);
|
|
siny = sinf(delta[ROLL]);
|
|
cosz = cosf(delta[YAW]);
|
|
sinz = sinf(delta[YAW]);
|
|
|
|
coszcosx = cosz * cosx;
|
|
coszcosy = cosz * cosy;
|
|
sinzcosx = sinz * cosx;
|
|
coszsinx = sinx * cosz;
|
|
sinzsinx = sinx * sinz;
|
|
|
|
mat[0][0] = coszcosy;
|
|
mat[0][1] = sinz * cosy;
|
|
mat[0][2] = -siny;
|
|
mat[1][0] = (coszsinx * siny) - sinzcosx;
|
|
mat[1][1] = (sinzsinx * siny) + (coszcosx);
|
|
mat[1][2] = cosy * sinx;
|
|
mat[2][0] = (coszcosx * siny) + (sinzsinx);
|
|
mat[2][1] = (sinzcosx * siny) - (coszsinx);
|
|
mat[2][2] = cosy * cosx;
|
|
|
|
v->X = v_tmp.X * mat[0][0] + v_tmp.Y * mat[1][0] + v_tmp.Z * mat[2][0];
|
|
v->Y = v_tmp.X * mat[0][1] + v_tmp.Y * mat[1][1] + v_tmp.Z * mat[2][1];
|
|
v->Z = v_tmp.X * mat[0][2] + v_tmp.Y * mat[1][2] + v_tmp.Z * mat[2][2];
|
|
}
|
|
|
|
static int16_t _atan2f(float y, float x)
|
|
{
|
|
// no need for aidsy inaccurate shortcuts on a proper platform
|
|
return (int16_t)(atan2f(y, x) * (180.0f / M_PI * 10.0f));
|
|
}
|
|
|
|
int32_t applyDeadband(int32_t value, int32_t deadband)
|
|
{
|
|
if (abs(value) < deadband) {
|
|
value = 0;
|
|
} else if (value > 0) {
|
|
value -= deadband;
|
|
} else if (value < 0) {
|
|
value += deadband;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
// rotate acc into Earth frame and calculate acceleration in it
|
|
void acc_calc(uint32_t deltaT)
|
|
{
|
|
static int32_t accZoffset = 0;
|
|
float rpy[3];
|
|
t_fp_vector accel_ned;
|
|
|
|
// the accel values have to be rotated into the earth frame
|
|
rpy[0] = -(float) angle[ROLL] * RADX10;
|
|
rpy[1] = -(float) angle[PITCH] * RADX10;
|
|
rpy[2] = -(float) heading * RADX10 * 10;
|
|
|
|
accel_ned.V.X = accSmooth[0];
|
|
accel_ned.V.Y = accSmooth[1];
|
|
accel_ned.V.Z = accSmooth[2];
|
|
|
|
rotateV(&accel_ned.V, rpy);
|
|
|
|
if (cfg.acc_unarmedcal == 1) {
|
|
if (!f.ARMED) {
|
|
accZoffset -= accZoffset / 64;
|
|
accZoffset += accel_ned.V.Z;
|
|
}
|
|
accel_ned.V.Z -= accZoffset / 64; // compensate for gravitation on z-axis
|
|
} else
|
|
accel_ned.V.Z -= acc_1G;
|
|
|
|
// apply Deadband to reduce integration drift and vibration influence
|
|
accel_ned.V.Z = applyDeadband(accel_ned.V.Z, cfg.accz_deadband);
|
|
accel_ned.V.X = applyDeadband(accel_ned.V.X, cfg.accxy_deadband);
|
|
accel_ned.V.Y = applyDeadband(accel_ned.V.Y, cfg.accxy_deadband);
|
|
|
|
// sum up Values for later integration to get velocity and distance
|
|
accTimeSum += deltaT;
|
|
accSumCount++;
|
|
|
|
accSum[0] += accel_ned.V.X;
|
|
accSum[1] += accel_ned.V.Y;
|
|
accSum[2] += accel_ned.V.Z;
|
|
}
|
|
|
|
void accSum_reset(void)
|
|
{
|
|
accSum[0] = 0;
|
|
accSum[1] = 0;
|
|
accSum[2] = 0;
|
|
accSumCount = 0;
|
|
accTimeSum = 0;
|
|
}
|
|
|
|
// Use original baseflight angle calculation
|
|
// #define BASEFLIGHT_CALC
|
|
static float invG;
|
|
|
|
static void getEstimatedAttitude(void)
|
|
{
|
|
uint32_t axis;
|
|
int32_t accMag = 0;
|
|
static t_fp_vector EstM;
|
|
static float accLPF[3];
|
|
static uint32_t previousT;
|
|
uint32_t currentT = micros();
|
|
uint32_t deltaT;
|
|
float scale, deltaGyroAngle[3];
|
|
#ifndef BASEFLIGHT_CALC
|
|
float sqGZ;
|
|
float sqGX;
|
|
float sqGY;
|
|
float sqGX_sqGZ;
|
|
float invmagXZ;
|
|
#endif
|
|
deltaT = currentT - previousT;
|
|
scale = deltaT * gyro.scale;
|
|
previousT = currentT;
|
|
|
|
// Initialization
|
|
for (axis = 0; axis < 3; axis++) {
|
|
deltaGyroAngle[axis] = gyroADC[axis] * scale;
|
|
if (cfg.acc_lpf_factor > 0) {
|
|
accLPF[axis] = accLPF[axis] * (1.0f - (1.0f / cfg.acc_lpf_factor)) + accADC[axis] * (1.0f / cfg.acc_lpf_factor);
|
|
accSmooth[axis] = accLPF[axis];
|
|
} else {
|
|
accSmooth[axis] = accADC[axis];
|
|
}
|
|
accMag += (int32_t)accSmooth[axis] * accSmooth[axis];
|
|
}
|
|
accMag = accMag * 100 / ((int32_t)acc_1G * acc_1G);
|
|
|
|
rotateV(&EstG.V, deltaGyroAngle);
|
|
if (sensors(SENSOR_MAG))
|
|
rotateV(&EstM.V, deltaGyroAngle);
|
|
|
|
if (abs(accSmooth[ROLL]) < acc_25deg && abs(accSmooth[PITCH]) < acc_25deg && accSmooth[YAW] > 0)
|
|
f.SMALL_ANGLES_25 = 1;
|
|
else
|
|
f.SMALL_ANGLES_25 = 0;
|
|
|
|
// Apply complimentary filter (Gyro drift correction)
|
|
// If accel magnitude >1.15G or <0.85G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation.
|
|
// To do that, we just skip filter, as EstV already rotated by Gyro
|
|
if (72 < (uint16_t)accMag && (uint16_t)accMag < 133) {
|
|
for (axis = 0; axis < 3; axis++)
|
|
EstG.A[axis] = (EstG.A[axis] * (float)mcfg.gyro_cmpf_factor + accSmooth[axis]) * INV_GYR_CMPF_FACTOR;
|
|
}
|
|
|
|
if (sensors(SENSOR_MAG)) {
|
|
for (axis = 0; axis < 3; axis++)
|
|
EstM.A[axis] = (EstM.A[axis] * (float)mcfg.gyro_cmpfm_factor + magADC[axis]) * INV_GYR_CMPFM_FACTOR;
|
|
}
|
|
|
|
// Attitude of the estimated vector
|
|
#ifdef BASEFLIGHT_CALC
|
|
// This hack removes gimbal lock (sorta) on pitch, so rolling around doesn't make pitch jump when roll reaches 90deg
|
|
angle[ROLL] = _atan2f(EstG.V.X, EstG.V.Z);
|
|
angle[PITCH] = -asinf(EstG.V.Y / -sqrtf(EstG.V.X * EstG.V.X + EstG.V.Y * EstG.V.Y + EstG.V.Z * EstG.V.Z)) * (180.0f / M_PI * 10.0f);
|
|
#else
|
|
// MW2.2 version
|
|
sqGZ = EstG.V.Z * EstG.V.Z;
|
|
sqGX = EstG.V.X * EstG.V.X;
|
|
sqGY = EstG.V.Y * EstG.V.Y;
|
|
sqGX_sqGZ = sqGX + sqGZ;
|
|
invmagXZ = 1.0f / sqrtf(sqGX_sqGZ);
|
|
invG = 1.0f / sqrtf(sqGX_sqGZ + sqGY);
|
|
angle[ROLL] = _atan2f(EstG.V.X, EstG.V.Z);
|
|
angle[PITCH] = _atan2f(EstG.V.Y, invmagXZ * sqGX_sqGZ);
|
|
#endif
|
|
|
|
#ifdef MAG
|
|
if (sensors(SENSOR_MAG)) {
|
|
#ifdef BASEFLIGHT_CALC
|
|
// baseflight calculation
|
|
float rollRAD = (float)angle[ROLL] * RADX10;
|
|
float pitchRAD = -(float)angle[PITCH] * RADX10;
|
|
float magX = EstM.A[1]; // Swap X/Y
|
|
float magY = EstM.A[0]; // Swap X/Y
|
|
float magZ = EstM.A[2];
|
|
float cr = cosf(rollRAD);
|
|
float sr = sinf(rollRAD);
|
|
float cp = cosf(pitchRAD);
|
|
float sp = sinf(pitchRAD);
|
|
float Xh = magX * cp + magY * sr * sp + magZ * cr * sp;
|
|
float Yh = magY * cr - magZ * sr;
|
|
float hd = (atan2f(-Yh, Xh) * 1800.0f / M_PI + magneticDeclination) / 10.0f;
|
|
heading = hd;
|
|
#else
|
|
// MW 2.2 calculation
|
|
heading = _atan2f(EstM.V.Z * EstG.V.X - EstM.V.X * EstG.V.Z, EstM.V.Y * invG * sqGX_sqGZ - (EstM.V.X * EstG.V.X + EstM.V.Z * EstG.V.Z) * invG * EstG.V.Y);
|
|
heading = heading + magneticDeclination;
|
|
heading = heading / 10;
|
|
#endif
|
|
if (heading > 180)
|
|
heading = heading - 360;
|
|
else if (heading < -180)
|
|
heading = heading + 360;
|
|
}
|
|
#endif
|
|
|
|
acc_calc(deltaT); // rotate acc vector into earth frame
|
|
|
|
if (cfg.throttle_angle_correction) {
|
|
int cosZ = EstG.V.Z / acc_1G * 100.0f;
|
|
throttleAngleCorrection = cfg.throttle_angle_correction * constrain(100 - cosZ, 0, 100) / 8;
|
|
|
|
}
|
|
}
|
|
|
|
#ifdef BARO
|
|
#define UPDATE_INTERVAL 25000 // 40hz update rate (20hz LPF on acc)
|
|
|
|
int getEstimatedAltitude(void)
|
|
{
|
|
static int32_t baroGroundPressure;
|
|
static uint32_t previousT;
|
|
uint32_t currentT = micros();
|
|
uint32_t dTime;
|
|
int32_t error;
|
|
int32_t baroVel;
|
|
int32_t vel_tmp;
|
|
int32_t BaroAlt_tmp;
|
|
float vel_calc;
|
|
static float vel = 0.0f;
|
|
static float accAlt = 0.0f;
|
|
static int32_t lastBaroAlt;
|
|
|
|
dTime = currentT - previousT;
|
|
if (dTime < UPDATE_INTERVAL)
|
|
return 0;
|
|
previousT = currentT;
|
|
|
|
if (calibratingB > 0) {
|
|
baroGroundPressure = baroPressureSum / (cfg.baro_tab_size - 1);
|
|
calibratingB--;
|
|
vel = 0;
|
|
accAlt = 0;
|
|
}
|
|
|
|
// pressure relative to ground pressure with temperature compensation (fast!)
|
|
// baroGroundPressure is not supposed to be 0 here
|
|
// see: https://code.google.com/p/ardupilot-mega/source/browse/libraries/AP_Baro/AP_Baro.cpp
|
|
BaroAlt_tmp = logf(baroGroundPressure * (cfg.baro_tab_size - 1) / (float)baroPressureSum) * (baroTemperature + 27315) * 29.271267f; // in cemtimeter
|
|
BaroAlt = BaroAlt * cfg.baro_noise_lpf + BaroAlt_tmp * (1.0f - cfg.baro_noise_lpf); // additional LPF to reduce baro noise
|
|
|
|
// Integrator - velocity, cm/sec
|
|
vel_calc = (float) accSum[2] * accVelScale * (float) accTimeSum / (float) accSumCount;
|
|
vel += vel_calc;
|
|
|
|
// Integrator - Altitude in cm
|
|
accAlt += vel * ((float) accTimeSum * 0.0000005f); // integrate velocity to get distance (x= a/2 * t^2)
|
|
accAlt = accAlt * cfg.baro_cf_alt + (float) BaroAlt *(1.0f - cfg.baro_cf_alt); // complementary filter for Altitude estimation (baro & acc)
|
|
EstAlt = accAlt;
|
|
|
|
#if 0
|
|
debug[0] = accSum[2] / accSumCount; // acceleration
|
|
debug[1] = vel; // velocity
|
|
debug[2] = accAlt; // height
|
|
#endif
|
|
|
|
accSum_reset();
|
|
|
|
//P
|
|
error = constrain(AltHold - EstAlt, -300, 300);
|
|
error = applyDeadband(error, 10); // remove small P parametr to reduce noise near zero position
|
|
BaroPID = constrain((cfg.P8[PIDALT] * error / 128), -150, +150);
|
|
|
|
//I
|
|
errorAltitudeI += cfg.I8[PIDALT] * error / 64;
|
|
errorAltitudeI = constrain(errorAltitudeI, -30000, 30000);
|
|
BaroPID += errorAltitudeI / 512; // I in range +/-60
|
|
|
|
|
|
baroVel = (BaroAlt - lastBaroAlt) * 1000000.0f / dTime;
|
|
lastBaroAlt = BaroAlt;
|
|
|
|
baroVel = constrain(baroVel, -300, 300); // constrain baro velocity +/- 300cm/s
|
|
baroVel = applyDeadband(baroVel, 10); // to reduce noise near zero
|
|
|
|
// apply Complimentary Filter to keep the calculated velocity based on baro velocity (i.e. near real velocity).
|
|
// By using CF it's possible to correct the drift of integrated accZ (velocity) without loosing the phase, i.e without delay
|
|
vel = vel * cfg.baro_cf_vel + baroVel * (1 - cfg.baro_cf_vel);
|
|
|
|
// D
|
|
vel_tmp = vel;
|
|
vel_tmp = applyDeadband(vel_tmp, 5);
|
|
vario = vel_tmp;
|
|
BaroPID -= constrain(cfg.D8[PIDALT] * vel_tmp / 16, -150, 150);
|
|
|
|
return 1;
|
|
}
|
|
#endif /* BARO */
|