bldc/blackmagic/target/stm32l4.c

646 lines
18 KiB
C
Raw Normal View History

/*
* This file is part of the Black Magic Debug project.
*
* Copyright (C) 2015, 2017, 2018 Uwe Bonnes
* Written by Uwe Bonnes <bon@elektron.ikp.physik.tu-darmstadt.de>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* This file implements STM32L4 target specific functions for detecting
* the device, providing the XML memory map and Flash memory programming.
*
* On L4, flash and options are written in DWORDs (8-Byte) only.
*
* References:
* RM0351 STM32L4x5 and STM32L4x6 advanced ARM®-based 32-bit MCUs Rev. 5
* RM0394 STM32L43xxx STM32L44xxx STM32L45xxx STM32L46xxxx advanced
* ARM®-based 32-bit MCUs Rev.3
* RM0432 STM32L4Rxxx and STM32L4Sxxx advanced Arm®-based 32-bit MCU. Rev 1
*
*
*/
#include "general.h"
#include "target.h"
#include "target_internal.h"
#include "cortexm.h"
static bool stm32l4_cmd_erase_mass(target *t);
static bool stm32l4_cmd_erase_bank1(target *t);
static bool stm32l4_cmd_erase_bank2(target *t);
static bool stm32l4_cmd_option(target *t, int argc, char *argv[]);
const struct command_s stm32l4_cmd_list[] = {
{"erase_mass", (cmd_handler)stm32l4_cmd_erase_mass, "Erase entire flash memory"},
{"erase_bank1", (cmd_handler)stm32l4_cmd_erase_bank1, "Erase entire bank1 flash memory"},
{"erase_bank2", (cmd_handler)stm32l4_cmd_erase_bank2, "Erase entire bank2 flash memory"},
{"option", (cmd_handler)stm32l4_cmd_option, "Manipulate option bytes"},
{NULL, NULL, NULL}
};
static int stm32l4_flash_erase(struct target_flash *f, target_addr addr, size_t len);
static int stm32l4_flash_write(struct target_flash *f,
target_addr dest, const void *src, size_t len);
/* Flash Program ad Erase Controller Register Map */
#define FPEC_BASE 0x40022000
#define FLASH_ACR (FPEC_BASE+0x00)
#define FLASH_KEYR (FPEC_BASE+0x08)
#define FLASH_OPTKEYR (FPEC_BASE+0x0c)
#define FLASH_SR (FPEC_BASE+0x10)
#define FLASH_CR (FPEC_BASE+0x14)
#define FLASH_OPTR (FPEC_BASE+0x20)
//#define FLASH_OPTCR (FPEC_BASE+0x14)
#define FLASH_CR_PG (1 << 0)
#define FLASH_CR_PER (1 << 1)
#define FLASH_CR_MER1 (1 << 2)
#define FLASH_CR_PAGE_SHIFT 3
#define FLASH_CR_BKER (1 << 11)
#define FLASH_CR_MER2 (1 << 15)
#define FLASH_CR_STRT (1 << 16)
#define FLASH_CR_OPTSTRT (1 << 17)
#define FLASH_CR_FSTPG (1 << 18)
#define FLASH_CR_EOPIE (1 << 24)
#define FLASH_CR_ERRIE (1 << 25)
#define FLASH_CR_OBL_LAUNCH (1 << 27)
#define FLASH_CR_OPTLOCK (1 << 30)
#define FLASH_CR_LOCK (1 << 31)
#define FLASH_SR_EOP (1 << 0)
#define FLASH_SR_OPERR (1 << 1)
#define FLASH_SR_PROGERR (1 << 3)
#define FLASH_SR_WRPERR (1 << 4)
#define FLASH_SR_PGAERR (1 << 5)
#define FLASH_SR_SIZERR (1 << 6)
#define FLASH_SR_PGSERR (1 << 7)
#define FLASH_SR_MSERR (1 << 8)
#define FLASH_SR_FASTERR (1 << 9)
#define FLASH_SR_RDERR (1 << 14)
#define FLASH_SR_OPTVERR (1 << 15)
#define FLASH_SR_ERROR_MASK 0xC3FA
#define FLASH_SR_BSY (1 << 16)
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
#define OPTKEY1 0x08192A3B
#define OPTKEY2 0x4C5D6E7F
#define SR_ERROR_MASK 0xF2
/* Used in STM32L47*/
#define OR_DUALBANK (1 << 21)
/* Used in STM32L47R*/
#define OR_DB1M (1 << 21)
#define OR_DBANK (1 << 22)
#define DBGMCU_CR(dbgmcureg) (dbgmcureg + 0x04)
#define DBGMCU_CR_DBG_SLEEP (0x1U << 0U)
#define DBGMCU_CR_DBG_STOP (0x1U << 1U)
#define DBGMCU_CR_DBG_STANDBY (0x1U << 2U)
enum {
STM32G0_DBGMCU_IDCODE_PHYS = 0x40015800,
STM32L4_DBGMCU_IDCODE_PHYS = 0xe0042000,
};
#define FLASH_SIZE_REG 0x1FFF75E0
struct stm32l4_flash {
struct target_flash f;
uint32_t bank1_start;
};
enum ID_STM32L4 {
ID_STM32L41 = 0x464u, /* RM0394, Rev.4 */
ID_STM32L43 = 0x435u, /* RM0394, Rev.4 */
ID_STM32L45 = 0x462u, /* RM0394, Rev.4 */
ID_STM32L47 = 0x415u, /* RM0351, Rev.5 */
ID_STM32L49 = 0x461u, /* RM0351, Rev.5 */
ID_STM32L4R = 0x470u, /* RM0432, Rev.5 */
ID_STM32G07 = 0x460u, /* RM0444/454, Rev.1 */
2023-11-23 09:41:07 -08:00
ID_STM32G43 = 0x468U, /* RM0440, Rev.7 §47.6.1 MCU device ID code Cat 2 */
ID_STM32G47 = 0x469U, /* RM0440, Rev.7 §47.6.1 MCU device ID code Cat 3 */
ID_STM32G49 = 0x479U, /* RM0440, Rev.7 §47.6.1 MCU device ID code Cat 4 */
};
enum FAM_STM32L4 {
FAM_STM32L4xx = 1,
FAM_STM32L4Rx = 2,
FAM_STM32G0x = 3,
FAM_STM32WBxx = 4,
2023-11-23 09:41:07 -08:00
FAM_STM32G4xx = 5,
};
#define DUAL_BANK 0x80u
#define RAM_COUNT_MSK 0x07u
struct stm32l4_info {
char designator[10];
uint16_t sram1;
uint16_t sram2;
uint16_t sram3;
enum ID_STM32L4 idcode;
enum FAM_STM32L4 family;
uint8_t flags;
};
struct stm32l4_info const L4info[] = {
2023-11-23 09:41:07 -08:00
{
.idcode = ID_STM32L41,
.family = FAM_STM32L4xx,
.designator = "STM32L41x",
.sram1 = 32,
.sram2 = 8,
.flags = 2,
},
{
.idcode = ID_STM32L43,
.family = FAM_STM32L4xx,
.designator = "STM32L43x",
.sram1 = 48,
.sram2 = 16,
.flags = 2,
},
{
.idcode = ID_STM32L45,
.family = FAM_STM32L4xx,
.designator = "STM32L45x",
.sram1 = 128,
.sram2 = 32,
.flags = 2,
},
{
.idcode = ID_STM32L47,
.family = FAM_STM32L4xx,
.designator = "STM32L47x",
.sram1 = 96,
.sram2 = 32,
.flags = 2 | DUAL_BANK,
},
{
.idcode = ID_STM32L49,
.family = FAM_STM32L4xx,
.designator = "STM32L49x",
.sram1 = 256,
.sram2 = 64,
.flags = 2 | DUAL_BANK,
},
{
.idcode = ID_STM32L4R,
.family = FAM_STM32L4Rx,
.designator = "STM32L4Rx",
.sram1 = 192,
.sram2 = 64,
.sram3 = 384,
.flags = 3 | DUAL_BANK,
},
{
.idcode = ID_STM32G07,
.family = FAM_STM32G0x,
.designator = "STM32G07",
.sram1 = 36,
.flags = 1,
},
{
.idcode = ID_STM32G43,
.family = FAM_STM32G4xx,
.designator = "STM32G43",
.sram1 = 22U,
.sram2 = 10U,
},
{
.idcode = ID_STM32G47,
.family = FAM_STM32G4xx,
.designator = "STM32G47",
.sram1 = 96U, /* SRAM1 and SRAM2 are mapped continuous */
.sram2 = 32U, /* CCM SRAM is mapped as per SRAM2 on G4 */
.flags = 2U,
},
{
.idcode = ID_STM32G49,
.family = FAM_STM32G4xx,
.designator = "STM32G49",
.sram1 = 96U, /* SRAM1 and SRAM2 are mapped continuously */
.sram2 = 16U, /* CCM SRAM is mapped as per SRAM2 on G4 */
.flags = 2U,
},
{
/* Terminator */
.idcode = 0,
},
};
/* Retrieve chip basic information, just add to the vector to extend */
static struct stm32l4_info const * stm32l4_get_chip_info(uint32_t idcode) {
struct stm32l4_info const *p = L4info;
while (p->idcode && (p->idcode != idcode))
p++;
return p;
}
static void stm32l4_add_flash(target *t,
uint32_t addr, size_t length, size_t blocksize,
uint32_t bank1_start)
{
struct stm32l4_flash *sf = calloc(1, sizeof(*sf));
struct target_flash *f = &sf->f;
f->start = addr;
f->length = length;
f->blocksize = blocksize;
f->erase = stm32l4_flash_erase;
f->write = stm32l4_flash_write;
f->buf_size = 2048;
f->erased = 0xff;
sf->bank1_start = bank1_start;
target_add_flash(t, f);
}
static bool stm32l4_attach(target *t)
{
if (!cortexm_attach(t))
return false;
/* Retrive chip information, no need to check return */
struct stm32l4_info const *chip = stm32l4_get_chip_info(t->idcode);
uint32_t idcodereg = (chip->family == FAM_STM32G0x)
? STM32G0_DBGMCU_IDCODE_PHYS
: STM32L4_DBGMCU_IDCODE_PHYS;
/* Save DBGMCU_CR to restore it when detaching*/
uint32_t dbgmcu_cr = target_mem_read32(t, DBGMCU_CR(idcodereg));
t->target_storage = dbgmcu_cr;
/* Enable debugging during all low power modes*/
target_mem_write32(t, DBGMCU_CR(idcodereg), DBGMCU_CR_DBG_SLEEP | DBGMCU_CR_DBG_STANDBY | DBGMCU_CR_DBG_STOP);
/* Free previously loaded memory map */
target_mem_map_free(t);
/* Add RAM to memory map */
if (chip->family == FAM_STM32G0x) {
target_add_ram(t, 0x20000000, chip->sram1 << 10);
} else {
target_add_ram(t, 0x10000000, chip->sram2 << 10);
/* All L4 beside L47 alias SRAM2 after SRAM1.*/
uint32_t ramsize = (t->idcode == ID_STM32L47)?
chip->sram1 : (chip->sram1 + chip->sram2 + chip->sram3);
target_add_ram(t, 0x20000000, ramsize << 10);
}
/* Add the flash to memory map. */
2023-11-23 09:41:07 -08:00
const uint32_t size = target_mem_read16(t, FLASH_SIZE_REG);
const uint32_t options = target_mem_read32(t, FLASH_OPTR);
if (chip->family == FAM_STM32L4Rx) {
/* rm0432 Rev. 2 does not mention 1 MB devices or explain DB1M.*/
if (options & OR_DBANK) {
stm32l4_add_flash(t, 0x08000000, 0x00100000, 0x1000, 0x08100000);
stm32l4_add_flash(t, 0x08100000, 0x00100000, 0x1000, 0x08100000);
} else
stm32l4_add_flash(t, 0x08000000, 0x00200000, 0x2000, -1);
2023-11-23 09:41:07 -08:00
} else if (chip->family == FAM_STM32G4xx) {
/*
* RM0440 describes G43x/G44x as Category 2, G47x/G48x as Category 3 and G49x/G4Ax as Category 4 devices
* Cat 2 is always 128kiB with 2kiB pages, single bank
* Cat 3 is dual bank with an option bit to choose single 512kiB bank with 4kiB pages or
* dual bank as 2x256kiB with 2kiB pages
* Cat 4 is single bank with up to 512kiB of 2kiB pages
*/
if (chip->idcode == ID_STM32G43) {
const uint32_t bank_len = size * 1024U;
stm32l4_add_flash(t, 0x08000000, bank_len, 0x0800, UINT32_MAX);
} else if (chip->idcode == ID_STM32G49) {
/* Announce maximum possible flash length on this device */
stm32l4_add_flash(t, 0x08000000, (512U * 1024U), 0x0800, UINT32_MAX);
} else {
if (options & OR_DBANK) {
const uint32_t bank_len = size * 512U;
stm32l4_add_flash(t, 0x08000000, bank_len, 0x0800, 0x08000000 + bank_len);
stm32l4_add_flash(
t, 0x08000000 + bank_len, bank_len, 0x0800, 0x08000000 + bank_len);
} else {
const uint32_t bank_len = size * 1024U;
stm32l4_add_flash(t, 0x08000000, bank_len, 0x1000, UINT32_MAX);
}
}
} else if (chip->flags & DUAL_BANK) {
if (options & OR_DUALBANK) {
uint32_t banksize = size << 9;
stm32l4_add_flash(t, 0x08000000 , banksize, 0x0800, 0x08000000 + banksize);
stm32l4_add_flash(t, 0x08000000 + banksize, banksize, 0x0800, 0x08000000 + banksize);
} else {
uint32_t banksize = size << 10;
stm32l4_add_flash(t, 0x08000000 , banksize, 0x0800, -1);
}
} else
stm32l4_add_flash(t, 0x08000000, size << 10, 0x800, -1);
/* Clear all errors in the status register. */
target_mem_write32(t, FLASH_SR, target_mem_read32(t, FLASH_SR));
return true;
}
static void stm32l4_detach(target *t)
{
/*reverse all changes to DBGMCU_CR*/
uint32_t idcodereg = STM32L4_DBGMCU_IDCODE_PHYS;
if (t->idcode == ID_STM32G07)
idcodereg = STM32G0_DBGMCU_IDCODE_PHYS;
target_mem_write32(t, DBGMCU_CR(idcodereg), t->target_storage);
cortexm_detach(t);
}
bool stm32l4_probe(target *t)
{
uint32_t idcode_reg = STM32L4_DBGMCU_IDCODE_PHYS;
ADIv5_AP_t *ap = cortexm_ap(t);
if (ap->dp->idcode == 0x0BC11477)
idcode_reg = STM32G0_DBGMCU_IDCODE_PHYS;
uint32_t idcode = target_mem_read32(t, idcode_reg) & 0xfff;
struct stm32l4_info const *chip = stm32l4_get_chip_info(idcode);
if( !chip->idcode ) /* Not found */
return false;
t->idcode = idcode;
t->driver = chip->designator;
t->attach = stm32l4_attach;
t->detach = stm32l4_detach;
target_add_commands(t, stm32l4_cmd_list, chip->designator);
return true;
}
static void stm32l4_flash_unlock(target *t)
{
if (target_mem_read32(t, FLASH_CR) & FLASH_CR_LOCK) {
/* Enable FPEC controller access */
target_mem_write32(t, FLASH_KEYR, KEY1);
target_mem_write32(t, FLASH_KEYR, KEY2);
}
}
static int stm32l4_flash_erase(struct target_flash *f, target_addr addr, size_t len)
{
target *t = f->t;
uint16_t sr;
uint32_t bank1_start = ((struct stm32l4_flash *)f)->bank1_start;
uint32_t page;
uint32_t blocksize = f->blocksize;
stm32l4_flash_unlock(t);
/* Read FLASH_SR to poll for BSY bit */
while(target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY)
if(target_check_error(t))
return -1;
/* Fixme: OPTVER always set after reset! Wrong option defaults?*/
target_mem_write32(t, FLASH_SR, target_mem_read32(t, FLASH_SR));
page = (addr - 0x08000000) / blocksize;
while(len) {
uint32_t cr;
cr = FLASH_CR_PER | (page << FLASH_CR_PAGE_SHIFT );
if (addr >= bank1_start)
cr |= FLASH_CR_BKER;
/* Flash page erase instruction */
target_mem_write32(t, FLASH_CR, cr);
/* write address to FMA */
cr |= FLASH_CR_STRT;
target_mem_write32(t, FLASH_CR, cr);
/* Read FLASH_SR to poll for BSY bit */
while(target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY)
if(target_check_error(t))
return -1;
len -= blocksize;
addr += blocksize;
page++;
}
/* Check for error */
sr = target_mem_read32(t, FLASH_SR);
if(sr & FLASH_SR_ERROR_MASK)
return -1;
return 0;
}
static int stm32l4_flash_write(struct target_flash *f,
target_addr dest, const void *src, size_t len)
{
target *t = f->t;
target_mem_write32(t, FLASH_CR, FLASH_CR_PG);
target_mem_write(t, dest, src, len);
/* Wait for completion or an error */
uint32_t sr;
do {
sr = target_mem_read32(t, FLASH_SR);
if (target_check_error(t)) {
DEBUG("stm32l4 flash write: comm error\n");
return -1;
}
} while (sr & FLASH_SR_BSY);
if(sr & FLASH_SR_ERROR_MASK) {
DEBUG("stm32l4 flash write error: sr 0x%" PRIu32 "\n", sr);
return -1;
}
return 0;
}
static bool stm32l4_cmd_erase(target *t, uint32_t action)
{
stm32l4_flash_unlock(t);
/* Erase time is 25 ms. No need for a spinner.*/
/* Flash erase action start instruction */
target_mem_write32(t, FLASH_CR, action);
target_mem_write32(t, FLASH_CR, action | FLASH_CR_STRT);
/* Read FLASH_SR to poll for BSY bit */
while (target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY) {
if(target_check_error(t)) {
return false;
}
}
/* Check for error */
uint16_t sr = target_mem_read32(t, FLASH_SR);
if (sr & FLASH_SR_ERROR_MASK)
return false;
return true;
}
static bool stm32l4_cmd_erase_mass(target *t)
{
return stm32l4_cmd_erase(t, FLASH_CR_MER1 | FLASH_CR_MER2);
}
static bool stm32l4_cmd_erase_bank1(target *t)
{
return stm32l4_cmd_erase(t, FLASH_CR_MER1);
}
static bool stm32l4_cmd_erase_bank2(target *t)
{
return stm32l4_cmd_erase(t, FLASH_CR_MER2);
}
static const uint8_t l4_i2offset[9] = {
0x20, 0x24, 0x28, 0x2c, 0x30, 0x44, 0x48, 0x4c, 0x50
};
static const uint8_t g0_i2offset[7] = {
0x20, 0x24, 0x28, 0x2c, 0x30, 0x34, 0x38
};
2023-11-23 09:41:07 -08:00
static const uint8_t g4_i2offset[11] = {
0x20, 0x24, 0x28, 0x2c, 0x30, 0x70, 0x44, 0x48, 0x4c, 0x50, 0x74
};
static bool stm32l4_option_write(
target *t,const uint32_t *values, int len, const uint8_t *i2offset)
{
tc_printf(t, "Device will lose connection. Rescan!\n");
stm32l4_flash_unlock(t);
target_mem_write32(t, FLASH_OPTKEYR, OPTKEY1);
target_mem_write32(t, FLASH_OPTKEYR, OPTKEY2);
while (target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY)
if(target_check_error(t))
return true;
for (int i = 0; i < len; i++)
target_mem_write32(t, FPEC_BASE + i2offset[i], values[i]);
target_mem_write32(t, FLASH_CR, FLASH_CR_OPTSTRT);
while (target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY)
if(target_check_error(t))
return true;
target_mem_write32(t, FLASH_CR, FLASH_CR_OBL_LAUNCH);
while (target_mem_read32(t, FLASH_CR) & FLASH_CR_OBL_LAUNCH)
if(target_check_error(t))
return true;
target_mem_write32(t, FLASH_CR, FLASH_CR_LOCK);
return false;
}
/* Chip L43X/mask L43x/def L47x/mask L47x/def
* L49x/mask L49x/def
* Option
* 0X1FFF7800 0x0f8f77ff 0xFFEFF8AA 0x0FDF77FF 0xFFEFF8AA
* 0X1FFF7808 0x0000FFFF 0xFFFFFFFF 0x0000FFFF 0xFFFFFFFF
* 0X1FFF7810 0x8000FFFF 0 0x8000FFFF 0
* 0X1FFF7818 0x00FF00FF 0x000000ff 0x00FF00FF 0x000000ff
* 0X1FFF7820 0x00FF00FF 0x000000ff 0x00FF00FF 0x000000ff
* 0X1FFFF808 0 0 0x8000FFFF 0xffffffff
* 0X1FFFF810 0 0 0x8000FFFF 0
* 0X1FFFF818 0 0 0x00FF00FF 0
* 0X1FFFF820 0 0 0x00FF00FF 0x000000ff
*/
static bool stm32l4_cmd_option(target *t, int argc, char *argv[])
{
2023-11-23 09:41:07 -08:00
uint32_t values_l4[11] = {
0xFFEFF8AA,
0xFFFFFFFF,
0,
0x000000ff,
0x000000ff,
0xffffffff,
0,
0xff,
0x000000ff,
0,
0,
};
uint32_t values_g4[11] = {
0xffeff8aaU,
0xffffffffU,
0x00ff0000U,
0xff00ffffU,
0xff00ffffU,
0xff00fe00U,
0xffffffffU,
0xffffffffU,
0xff00ffffU,
0xff00ffffU,
0xff00ff00U,
};
uint32_t *values = values_l4;
int len;
bool res = false;
const uint8_t *i2offset = l4_i2offset;
if (t->idcode == 0x435) {/* L43x */
len = 5;
} else if (t->idcode == ID_STM32G07) {/* G07x */
i2offset = g0_i2offset;
len = 7;
2023-11-23 09:41:07 -08:00
} else if (t->idcode == ID_STM32G43) {
i2offset = g4_i2offset;
values = values_g4;
len = 6;
} else if (t->idcode == ID_STM32G47) {
i2offset = g4_i2offset;
values = values_g4;
len = 11;
} else if (t->idcode == ID_STM32G49) {
i2offset = g4_i2offset;
values = values_g4;
len = 6;
} else {
len = 9;
}
if ((argc == 2) && !strcmp(argv[1], "erase")) {
res = stm32l4_option_write(t, values, len, i2offset);
} else if ((argc > 2) && !strcmp(argv[1], "write")) {
int i;
for (i = 2; i < argc; i++)
values[i - 2] = strtoul(argv[i], NULL, 0);
for (i = i - 2; i < len; i++) {
uint32_t addr = FPEC_BASE + i2offset[i];
values[i] = target_mem_read32(t, addr);
}
if ((values[0] & 0xff) == 0xCC) {
values[0]++;
tc_printf(t, "Changing Level 2 request to Level 1!");
}
res = stm32l4_option_write(t, values, len, i2offset);
} else {
tc_printf(t, "usage: monitor option erase\n");
tc_printf(t, "usage: monitor option write <value> ...\n");
}
if (res) {
tc_printf(t, "Writing options failed!\n");
return false;
}
for (int i = 0; i < len; i ++) {
uint32_t addr = FPEC_BASE + i2offset[i];
uint32_t val = target_mem_read32(t, FPEC_BASE + i2offset[i]);
tc_printf(t, "0x%08X: 0x%08X\n", addr, val);
}
return true;
}