bldc/virtual_motor.c

445 lines
14 KiB
C
Raw Normal View History

/*
Copyright 2019 Maximiliano Cordoba mcordoba@powerdesigns.ca
This file is part of the VESC firmware.
The VESC firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "virtual_motor.h"
#include "terminal.h"
#include "mc_interface.h"
#include "mcpwm_foc.h"
#include "utils.h"
#include "math.h"
#include "stdio.h"
#include "commands.h"
#include "encoder.h"
typedef struct{
//constant variables
float Ts; //Sample Time in s
float J; //Rotor/Load Inertia in Nm*s^2
int v_max_adc; //max voltage that ADC can measure
int pole_pairs; //number of pole pairs ( pole numbers / 2)
float km; //constant = 1.5 * pole pairs
float ld; //motor inductance in D axis in uHy
float lq; //motor inductance in Q axis in uHy
//non constant variables
float id; //Current in d-Direction in Amps
float id_int; //Integral part of id in Amps
float iq; //Current in q-Direction in A
float me; //Electrical Torque in Nm
float we; //Electrical Angular Velocity in rad/s
float phi; //Electrical Rotor Angle in rad
float sin_phi;
float cos_phi;
bool connected; //true => connected; false => disconnected;
float tsj; // Ts / J;
float ml; //load torque
float v_alpha; //alpha axis voltage in Volts
float v_beta; //beta axis voltage in Volts
float va; //phase a voltage in Volts
float vb; //phase b voltage in Volts
float vc; //phase c voltage in Volts
float vd; //d axis voltage in Volts
float vq; //q axis voltage in Volts
float i_alpha; //alpha axis current in Amps
float i_beta; //beta axis current in Amps
float ia; //phase a current in Amps
float ib; //phase b current in Amps
float ic; //phase c current in Amps
}virtual_motor_t;
static volatile virtual_motor_t virtual_motor;
static volatile float m_curr0_offset_backup;
static volatile float m_curr1_offset_backup;
static volatile float m_curr2_offset_backup;
static volatile mc_configuration *m_conf;
//private functions
static void connect_virtual_motor(float ml, float J, float Vbus);
static void disconnect_virtual_motor(void);
static inline void run_virtual_motor_electrical(float v_alpha, float v_beta);
static inline void run_virtual_motor_mechanics(float ml);
static inline void run_virtual_motor(float v_alpha, float v_beta, float ml);
static inline void run_virtual_motor_park_clark_inverse( void );
static void terminal_cmd_connect_virtual_motor(int argc, const char **argv);
static void terminal_cmd_disconnect_virtual_motor(int argc, const char **argv);
//Public Functions
/**
* Virtual motor initialization
*/
void virtual_motor_init(volatile mc_configuration *conf){
virtual_motor_set_configuration(conf);
//virtual motor variables init
virtual_motor.connected = false; //disconnected
virtual_motor.me = 0.0;
virtual_motor.va = 0.0;
virtual_motor.vb = 0.0;
virtual_motor.vc = 0.0;
virtual_motor.ia = 0.0;
virtual_motor.ib = 0.0;
virtual_motor.ic = 0.0;
virtual_motor.we = 0.0;
virtual_motor.v_alpha = 0.0;
virtual_motor.v_beta = 0.0;
virtual_motor.i_alpha = 0.0;
virtual_motor.i_beta = 0.0;
virtual_motor.id_int = 0.0;
virtual_motor.iq = 0.0;
// Register terminal callbacks used for virtual motor setup
terminal_register_command_callback(
"connect_virtual_motor",
"connects virtual motor",
"[ml][J][Vbus]",
terminal_cmd_connect_virtual_motor);
terminal_register_command_callback(
"disconnect_virtual_motor",
"disconnect virtual motor",
0,
terminal_cmd_disconnect_virtual_motor);
}
void virtual_motor_set_configuration(volatile mc_configuration *conf){
m_conf = conf;
//recalculate constants that depend on m_conf
virtual_motor.pole_pairs = m_conf->si_motor_poles / 2;
virtual_motor.km = 1.5 * virtual_motor.pole_pairs;
#ifdef HW_HAS_PHASE_SHUNTS
if (m_conf->foc_sample_v0_v7) {
virtual_motor.Ts = (1.0 / m_conf->foc_f_sw) ;
} else {
virtual_motor.Ts = (1.0 / (m_conf->foc_f_sw / 2.0));
}
#else
virtual_motor.Ts = (1.0 / m_conf->foc_f_sw) ;
#endif
if(m_conf->foc_motor_ld_lq_diff > 0.0){
virtual_motor.lq = m_conf->foc_motor_l + m_conf->foc_motor_ld_lq_diff /2;
virtual_motor.ld = m_conf->foc_motor_l - m_conf->foc_motor_ld_lq_diff /2;
}else{
virtual_motor.lq = m_conf->foc_motor_l ;
virtual_motor.ld = m_conf->foc_motor_l ;
}
}
/**
* Virtual motor interrupt handler
*/
void virtual_motor_int_handler(float v_alpha, float v_beta){
if(virtual_motor.connected){
run_virtual_motor(v_alpha, v_beta, virtual_motor.ml );
mcpwm_foc_adc_int_handler( NULL, 0);
}
}
bool virtual_motor_is_connected(void){
return virtual_motor.connected;
}
float virtual_motor_get_angle_deg(void){
return (virtual_motor.phi * RAD2DEG_f);
}
//Private Functions
/**
* void connect_virtual_motor( )
*
* -disconnects TIM8 trigger to the ADC:
* mcpwm_foc_adc_int_handler() will be called from TIM8 interrupt
* while virtual motor is connected
* -sets virtual motor parameters
*
* @param ml : torque present at motor axis in Nm
* @param J: rotor inertia Nm*s^2
* @param Vbus: Bus voltage in Volts
*/
static void connect_virtual_motor(float ml , float J, float Vbus){
if(virtual_motor.connected == false){
//first we send 0.0 current command to make system stop PWM outputs
mcpwm_foc_set_current(0.0);
//first we disconnect the ADC triggering from TIM8_CC1
ADC_InitTypeDef ADC_InitStructure;
ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;
ADC_InitStructure.ADC_ExternalTrigConv = 0;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfConversion = HW_ADC_NBR_CONV;
ADC_Init(ADC1, &ADC_InitStructure);
//save current offsets
mcpwm_foc_get_current_offsets(&m_curr0_offset_backup,
&m_curr1_offset_backup,
&m_curr2_offset_backup,
false);
//set current offsets to 2048
mcpwm_foc_set_current_offsets(2048, 2048, 2048);
//sets virtual motor variables
ADC_Value[ ADC_IND_TEMP_MOS ] = 2048;
ADC_Value[ ADC_IND_TEMP_MOTOR ] = 2048;
#ifdef HW_HAS_GATE_DRIVER_SUPPLY_MONITOR
//we load 1 to get the transfer function indirectly
ADC_Value[ ADC_IND_VOUT_GATE_DRV ] = 1;
float tempVoltage = GET_GATE_DRIVER_SUPPLY_VOLTAGE();
if(tempVoltage != 0.0){
ADC_Value[ ADC_IND_VOUT_GATE_DRV ] = ( (HW_GATE_DRIVER_SUPPLY_MAX_VOLTAGE + HW_GATE_DRIVER_SUPPLY_MIN_VOLTAGE) / 2.0 ) /
GET_GATE_DRIVER_SUPPLY_VOLTAGE();
}
#endif
virtual_motor.phi = mcpwm_foc_get_phase() * DEG2RAD_f;
utils_fast_sincos_better(virtual_motor.phi, (float*)&virtual_motor.sin_phi,
(float*)&virtual_motor.cos_phi);
if(m_conf->foc_sensor_mode == FOC_SENSOR_MODE_ENCODER){
encoder_deinit();
}
}
//we load 1 to get the transfer function indirectly
ADC_Value[ ADC_IND_VIN_SENS ] = 1;
float tempVoltage = GET_INPUT_VOLTAGE();
if(tempVoltage != 0.0){
ADC_Value[ ADC_IND_VIN_SENS ] = Vbus / GET_INPUT_VOLTAGE();
}
//initialize constants
virtual_motor.v_max_adc = Vbus;
virtual_motor.J = J;
virtual_motor.tsj = virtual_motor.Ts / virtual_motor.J;
virtual_motor.ml = ml;
virtual_motor.connected = true;
}
/**
* void disconnect_virtual_motor( )
*
* if motor is connected:
* -stop motor
* -disconnect virtual motor
* -connects TIM8 back to the trigger of the ADC peripheral
*/
static void disconnect_virtual_motor( void ){
if(virtual_motor.connected){
mcpwm_foc_set_current( 0.0 );
//disconnect virtual motor
virtual_motor.connected = false;
//set current offsets back
mcpwm_foc_set_current_offsets(m_curr0_offset_backup, m_curr1_offset_backup,
m_curr2_offset_backup);
//then we reconnect the ADC triggering to TIM8_CC1
ADC_InitTypeDef ADC_InitStructure;
ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Falling;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T8_CC1;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfConversion = HW_ADC_NBR_CONV;
ADC_Init(ADC1, &ADC_InitStructure);
if(m_conf->foc_sensor_mode == FOC_SENSOR_MODE_ENCODER){
switch (m_conf->m_sensor_port_mode) {
case SENSOR_PORT_MODE_ABI:
encoder_init_abi(m_conf->m_encoder_counts);
break;
case SENSOR_PORT_MODE_AS5047_SPI:
encoder_init_as5047p_spi();
break;
case SENSOR_PORT_MODE_AD2S1205:
encoder_init_ad2s1205_spi();
break;
case SENSOR_PORT_MODE_SINCOS:
encoder_init_sincos(m_conf->foc_encoder_sin_gain, m_conf->foc_encoder_sin_offset,
m_conf->foc_encoder_cos_gain, m_conf->foc_encoder_cos_offset,
m_conf->foc_encoder_sincos_filter_constant);
break;
default:
break;
}
}
}
}
/*
* Run complete Motor Model
* @param ml externally applied load torque in Nm (adidionally to the Inertia)
*/
static inline void run_virtual_motor(float v_alpha, float v_beta, float ml){
run_virtual_motor_electrical(v_alpha, v_beta);
run_virtual_motor_mechanics(ml);
run_virtual_motor_park_clark_inverse();
}
/**
* Run electrical model of the machine
*
* Takes as parameters v_alpha and v_beta,
* which are outputs from the mcpwm_foc system,
* representing which voltages the controller tried to set at last step
*
* @param v_alpha alpha axis Voltage in V
* @param v_beta beta axis Voltage in V
*/
static inline void run_virtual_motor_electrical(float v_alpha, float v_beta){
virtual_motor.vd = virtual_motor.cos_phi * v_alpha + virtual_motor.sin_phi * v_beta;
virtual_motor.vq = virtual_motor.cos_phi * v_beta - virtual_motor.sin_phi * v_alpha;
// d axis current
virtual_motor.id_int += ((virtual_motor.vd +
virtual_motor.we *
virtual_motor.pole_pairs *
virtual_motor.lq * virtual_motor.iq -
m_conf->foc_motor_r * virtual_motor.id )
* virtual_motor.Ts ) / virtual_motor.ld;
virtual_motor.id = virtual_motor.id_int - m_conf->foc_motor_flux_linkage / virtual_motor.ld;
// q axis current
virtual_motor.iq += (virtual_motor.vq -
virtual_motor.we *
virtual_motor.pole_pairs *
(virtual_motor.ld * virtual_motor.id + m_conf->foc_motor_flux_linkage) -
m_conf->foc_motor_r * virtual_motor.iq )
* virtual_motor.Ts / virtual_motor.lq;
// // limit current maximum values
utils_truncate_number_abs((float *) &(virtual_motor.iq) , (2048 * FAC_CURRENT) );
utils_truncate_number_abs((float *) &(virtual_motor.id) , (2048 * FAC_CURRENT) );
}
/**
* Run mechanical side of the machine
* @param ml externally applied load torque in Nm
*/
static inline void run_virtual_motor_mechanics(float ml){
virtual_motor.me = virtual_motor.km * (m_conf->foc_motor_flux_linkage +
(virtual_motor.ld - virtual_motor.lq) *
virtual_motor.id ) * virtual_motor.iq;
// omega
virtual_motor.we += virtual_motor.tsj * (virtual_motor.me - ml);
// phi
virtual_motor.phi += virtual_motor.we * virtual_motor.Ts;
// phi limits
while( virtual_motor.phi > M_PI ){
virtual_motor.phi -= ( 2 * M_PI);
}
while( virtual_motor.phi < -1.0 * M_PI ){
virtual_motor.phi += ( 2 * M_PI);
}
}
/**
* Take the id and iq calculated values and translate them into ADC_Values
*/
static inline void run_virtual_motor_park_clark_inverse( void ){
utils_fast_sincos_better( virtual_motor.phi , (float*)&virtual_motor.sin_phi,
(float*)&virtual_motor.cos_phi );
// Park Inverse
virtual_motor.i_alpha = virtual_motor.cos_phi * virtual_motor.id -
virtual_motor.sin_phi * virtual_motor.iq;
virtual_motor.i_beta = virtual_motor.cos_phi * virtual_motor.iq +
virtual_motor.sin_phi * virtual_motor.id;
virtual_motor.v_alpha = virtual_motor.cos_phi * virtual_motor.vd -
virtual_motor.sin_phi * virtual_motor.vq;
virtual_motor.v_beta = virtual_motor.cos_phi * virtual_motor.vq +
virtual_motor.sin_phi * virtual_motor.vd;
// Clark Inverse
virtual_motor.ia = virtual_motor.i_alpha;
virtual_motor.ib = -0.5 * virtual_motor.i_alpha + SQRT3_BY_2 * virtual_motor.i_beta;
virtual_motor.ic = -0.5 * virtual_motor.i_alpha - SQRT3_BY_2 * virtual_motor.i_beta;
virtual_motor.va = virtual_motor.v_alpha;
virtual_motor.vb = -0.5 * virtual_motor.v_alpha + SQRT3_BY_2 * virtual_motor.v_beta;
virtual_motor.vc = -0.5 * virtual_motor.v_alpha - SQRT3_BY_2 * virtual_motor.v_beta;
// simulate current samples
ADC_Value[ ADC_IND_CURR1 ] = virtual_motor.ia / FAC_CURRENT + 2048;
ADC_Value[ ADC_IND_CURR2 ] = virtual_motor.ib / FAC_CURRENT + 2048;
#ifdef HW_HAS_3_SHUNTS
ADC_Value[ ADC_IND_CURR3 ] = virtual_motor.ic / FAC_CURRENT + 2048;
#endif
// simulate voltage samples
ADC_Value[ ADC_IND_SENS1 ] = virtual_motor.va * VOLTAGE_TO_ADC_FACTOR + 2048;
ADC_Value[ ADC_IND_SENS2 ] = virtual_motor.vb * VOLTAGE_TO_ADC_FACTOR + 2048;
ADC_Value[ ADC_IND_SENS3 ] = virtual_motor.vc * VOLTAGE_TO_ADC_FACTOR + 2048;
}
/**
* connect_virtual_motor command
*/
static void terminal_cmd_connect_virtual_motor(int argc, const char **argv) {
if( argc == 4 ){
float ml; //torque load in motor axis
float J; //rotor inertia
float Vbus;//Bus voltage
sscanf(argv[1], "%f", &ml);
sscanf(argv[2], "%f", &J);
sscanf(argv[3], "%f", &Vbus);
connect_virtual_motor( ml , J, Vbus);
commands_printf("virtual motor connected");
}
else{
commands_printf("arguments should be 3" );
}
}
/**
* disconnect_virtual_motor command
*/
static void terminal_cmd_disconnect_virtual_motor(int argc, const char **argv) {
(void)argc;
(void)argv;
disconnect_virtual_motor();
commands_printf("virtual motor disconnected");
commands_printf(" ");
}