Merge pull request #741 from Fajdiga/master

JetFleetF6 Firmware added
This commit is contained in:
Benjamin Vedder 2024-07-12 01:08:15 +02:00 committed by GitHub
commit 2968dff4fe
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 713 additions and 0 deletions

View File

@ -0,0 +1,27 @@
/*
Copyright 2022 Benjamin Vedder benjamin@vedder.se
This file is part of the VESC firmware.
The VESC firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HW_JetFleetF6_H_
#define HW_JetFleetF6_H_
#define HW_NAME "JetFleetF6"
#include "hw_JetFleetF6_core.h"
#endif

View File

@ -0,0 +1,427 @@
/*
Copyright 2022 Benjamin Vedder benjamin@vedder.se
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "hw.h"
#include "ch.h"
#include "hal.h"
#include "stm32f4xx_conf.h"
#include "utils_math.h"
#include <math.h>
#include "terminal.h"
#include "commands.h"
#include "mc_interface.h"
// Variables
static volatile bool i2c_running = false;
static mutex_t shutdown_mutex;
static float bt_diff = 0.0;
static float bt_lastval = 0.0;
static float bt_unpressed = 0.0;
static bool will_poweroff = false;
static bool force_poweroff = false;
static unsigned int bt_hold_counter = 0;
// I2C configuration
static const I2CConfig i2cfg = {
OPMODE_I2C,
100000,
STD_DUTY_CYCLE
};
#define EXT_BUZZER_ON() palSetPad(HW_ICU_GPIO, HW_ICU_PIN)
#define EXT_BUZZER_OFF() palClearPad(HW_ICU_GPIO, HW_ICU_PIN)
void buzzer_init(void) {
// External Buzzer (using servo pin!)
palSetPadMode(HW_ICU_GPIO, HW_ICU_PIN,
PAL_MODE_OUTPUT_PUSHPULL |
PAL_STM32_OSPEED_HIGHEST);
EXT_BUZZER_ON();
chThdSleepMilliseconds(30);
EXT_BUZZER_OFF();
}
static void beep_off(void)
{
EXT_BUZZER_OFF();
}
static void beep_on(void)
{
EXT_BUZZER_ON();
}
// Private functions
static void terminal_button_test(int argc, const char **argv);
void hw_init_gpio(void) {
chMtxObjectInit(&shutdown_mutex);
// GPIO clock enable
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);
// LEDs
palSetPadMode(LED_GREEN_GPIO, LED_GREEN_PIN,
PAL_MODE_OUTPUT_PUSHPULL |
PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(LED_RED_GPIO, LED_RED_PIN,
PAL_MODE_OUTPUT_PUSHPULL |
PAL_STM32_OSPEED_HIGHEST);
// On-board Buzzer (using servo pin!)
palSetPadMode(HW_ICU_GPIO, HW_ICU_PIN,
PAL_MODE_OUTPUT_PUSHPULL |
PAL_STM32_OSPEED_HIGHEST);
EXT_BUZZER_OFF();
// GPIOA Configuration: Channel 1 to 3 as alternate function push-pull
palSetPadMode(GPIOA, 8, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
palSetPadMode(GPIOA, 9, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
palSetPadMode(GPIOA, 10, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
palSetPadMode(GPIOB, 13, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
palSetPadMode(GPIOB, 14, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
palSetPadMode(GPIOB, 15, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
// Hall sensors
palSetPadMode(HW_HALL_ENC_GPIO1, HW_HALL_ENC_PIN1, PAL_MODE_INPUT_PULLUP);
palSetPadMode(HW_HALL_ENC_GPIO2, HW_HALL_ENC_PIN2, PAL_MODE_INPUT_PULLUP);
palSetPadMode(HW_HALL_ENC_GPIO3, HW_HALL_ENC_PIN3, PAL_MODE_INPUT_PULLUP);
// Phase filters
palSetPadMode(GPIOC, 15, PAL_MODE_OUTPUT_OPENDRAIN);
palSetPadMode(GPIOC, 14, PAL_MODE_OUTPUT_OPENDRAIN);
palSetPadMode(GPIOC, 13, PAL_MODE_OUTPUT_OPENDRAIN);
PHASE_FILTER_OFF();
// ShutDown
palSetPadMode(HW_SHUTDOWN_GPIO, HW_SHUTDOWN_PIN, PAL_MODE_OUTPUT_OPENDRAIN);
palSetPadMode(HW_SHUTDOWN_SENSE_GPIO, HW_SHUTDOWN_SENSE_PIN, PAL_MODE_INPUT_ANALOG);
// ADC Pins
palSetPadMode(GPIOA, 0, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOA, 1, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOA, 2, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOA, 3, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOA, 6, PAL_MODE_INPUT_ANALOG);
//palSetPadMode(GPIOB, 0, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOB, 1, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOC, 0, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOC, 1, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOC, 2, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOC, 3, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOC, 4, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOC, 5, PAL_MODE_INPUT_ANALOG);
terminal_register_command_callback(
"test_button",
"Try sampling the shutdown button",
0,
terminal_button_test);
}
void hw_setup_adc_channels(void) {
// ADC1 regular channels
ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 1, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 2, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC1, ADC_Channel_5, 3, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 4, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC1, ADC_Channel_Vrefint, 5, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 6, ADC_SampleTime_15Cycles);
// ADC2 regular channels
ADC_RegularChannelConfig(ADC2, ADC_Channel_11, 1, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC2, ADC_Channel_1, 2, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC2, ADC_Channel_6, 3, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC2, ADC_Channel_15, 4, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC2, ADC_Channel_0, 5, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC2, ADC_Channel_9, 6, ADC_SampleTime_15Cycles);
// ADC3 regular channels
ADC_RegularChannelConfig(ADC3, ADC_Channel_12, 1, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC3, ADC_Channel_2, 2, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC3, ADC_Channel_3, 3, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC3, ADC_Channel_13, 4, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC3, ADC_Channel_1, 5, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC3, ADC_Channel_2, 6, ADC_SampleTime_15Cycles);
// Injected channels
ADC_InjectedChannelConfig(ADC1, ADC_Channel_10, 1, ADC_SampleTime_15Cycles);
ADC_InjectedChannelConfig(ADC2, ADC_Channel_11, 1, ADC_SampleTime_15Cycles);
ADC_InjectedChannelConfig(ADC3, ADC_Channel_12, 1, ADC_SampleTime_15Cycles);
ADC_InjectedChannelConfig(ADC1, ADC_Channel_10, 2, ADC_SampleTime_15Cycles);
ADC_InjectedChannelConfig(ADC2, ADC_Channel_11, 2, ADC_SampleTime_15Cycles);
ADC_InjectedChannelConfig(ADC3, ADC_Channel_12, 2, ADC_SampleTime_15Cycles);
ADC_InjectedChannelConfig(ADC1, ADC_Channel_10, 3, ADC_SampleTime_15Cycles);
ADC_InjectedChannelConfig(ADC2, ADC_Channel_11, 3, ADC_SampleTime_15Cycles);
ADC_InjectedChannelConfig(ADC3, ADC_Channel_12, 3, ADC_SampleTime_15Cycles);
}
void hw_start_i2c(void) {
i2cAcquireBus(&HW_I2C_DEV);
if (!i2c_running) {
palSetPadMode(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN,
PAL_MODE_ALTERNATE(HW_I2C_GPIO_AF) |
PAL_STM32_OTYPE_OPENDRAIN |
PAL_STM32_OSPEED_MID1 |
PAL_STM32_PUDR_PULLUP);
palSetPadMode(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN,
PAL_MODE_ALTERNATE(HW_I2C_GPIO_AF) |
PAL_STM32_OTYPE_OPENDRAIN |
PAL_STM32_OSPEED_MID1 |
PAL_STM32_PUDR_PULLUP);
i2cStart(&HW_I2C_DEV, &i2cfg);
i2c_running = true;
}
i2cReleaseBus(&HW_I2C_DEV);
}
void hw_stop_i2c(void) {
i2cAcquireBus(&HW_I2C_DEV);
if (i2c_running) {
palSetPadMode(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN, PAL_MODE_INPUT);
palSetPadMode(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN, PAL_MODE_INPUT);
i2cStop(&HW_I2C_DEV);
i2c_running = false;
}
i2cReleaseBus(&HW_I2C_DEV);
}
/**
* Try to restore the i2c bus
*/
void hw_try_restore_i2c(void) {
if (i2c_running) {
i2cAcquireBus(&HW_I2C_DEV);
palSetPadMode(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN,
PAL_STM32_OTYPE_OPENDRAIN |
PAL_STM32_OSPEED_MID1 |
PAL_STM32_PUDR_PULLUP);
palSetPadMode(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN,
PAL_STM32_OTYPE_OPENDRAIN |
PAL_STM32_OSPEED_MID1 |
PAL_STM32_PUDR_PULLUP);
palSetPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN);
palSetPad(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN);
chThdSleep(1);
for(int i = 0;i < 16;i++) {
palClearPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN);
chThdSleep(1);
palSetPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN);
chThdSleep(1);
}
// Generate start then stop condition
palClearPad(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN);
chThdSleep(1);
palClearPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN);
chThdSleep(1);
palSetPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN);
chThdSleep(1);
palSetPad(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN);
palSetPadMode(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN,
PAL_MODE_ALTERNATE(HW_I2C_GPIO_AF) |
PAL_STM32_OTYPE_OPENDRAIN |
PAL_STM32_OSPEED_MID1 |
PAL_STM32_PUDR_PULLUP);
palSetPadMode(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN,
PAL_MODE_ALTERNATE(HW_I2C_GPIO_AF) |
PAL_STM32_OTYPE_OPENDRAIN |
PAL_STM32_OSPEED_MID1 |
PAL_STM32_PUDR_PULLUP);
HW_I2C_DEV.state = I2C_STOP;
i2cStart(&HW_I2C_DEV, &i2cfg);
i2cReleaseBus(&HW_I2C_DEV);
}
}
#define RISING_EDGE_THRESHOLD 0.09
#define TIME_500MS 50
#define TIME_3S 300
#define ERPM_THRESHOLD 100
/**
* hw_sample_shutdown_button - return false if shutdown is requested, true otherwise
*
* Behavior: after determining the unpressed level, look for rising edges or values
* that are clearly above the unpressed level (2 x Threshold higher), triggering a counter.
*
* Once triggered, the counter keeps incrementing as long as the level is 2 x Threshold higher
* than the normal/unpressed value, otherwise it gets reset to zero.
*
* Once the counter reaches the threshold the button is considered pressed, provided that
* the erpm is below 100. A very short (20ms) beep will go off.
* Shutdown actually happens on the falling edge when the press is over.
*
* If the motor is spinning faster, then a 3s press is required. Buzzer will beep once the
* time has been reached. Again, shutdown happens on the falling edge.
*
* Normal shutdown time: 0.5s
* Emergency shutdown time: 3.0s
*/
bool hw_sample_shutdown_button(void) {
chMtxLock(&shutdown_mutex);
float newval = ADC_VOLTS(ADC_IND_SHUTDOWN);
chMtxUnlock(&shutdown_mutex);
if (bt_lastval == 0) {
bt_lastval = newval;
return true;
}
bt_diff = (newval - bt_lastval);
bool is_steady = fabsf(bt_diff) < 0.02; // filter out noise above 20mV
bool is_rising_edge = (bt_diff > RISING_EDGE_THRESHOLD);
bt_lastval = newval;
if (bt_unpressed == 0.0) {
// initializing bt_unpressed
if (is_steady) {
bt_unpressed = newval;
}
// return true regardless (this happens only after boot)
return true;
}
if (will_poweroff) {
if (!force_poweroff && (fabsf(mc_interface_get_rpm()) > ERPM_THRESHOLD)) {
will_poweroff = false;
bt_hold_counter = 0;
beep_off();
return true;
}
// Now we look for a falling edge to shut down
if ((bt_diff < -RISING_EDGE_THRESHOLD) || (newval < bt_unpressed + RISING_EDGE_THRESHOLD / 2)) {
bt_hold_counter++;
beep_off();
return false;
}
return true;
}
if (bt_hold_counter == 0) {
if (is_rising_edge) {
// trigger by edge and by level!
bt_hold_counter = 1;
}
else {
if (is_steady && (newval < bt_unpressed + RISING_EDGE_THRESHOLD / 2)) {
// pickup drifts due to temperature
bt_unpressed = bt_unpressed * 0.9 + newval * 0.1;
}
}
}
else {
// we've had a rising edge and are now checking for a steady hold
if (newval > bt_unpressed + RISING_EDGE_THRESHOLD * 1.5) {
bt_hold_counter++;
if (bt_hold_counter > TIME_500MS) {
if (fabsf(mc_interface_get_rpm()) < ERPM_THRESHOLD) {
// after 150ms, power-down is triggered by the falling edge (releasing the button)
will_poweroff = true;
bt_hold_counter = 0;
// super short beep to let the user know they can let go of the button now
beep_on();
chThdSleepMilliseconds(20);
beep_off();
}
else {
if (bt_hold_counter > TIME_3S) {
// Emergency Power-Down - beep to let the user know it's ready
beep_on();
will_poweroff = true;
force_poweroff = true;
bt_hold_counter = 0;
return true;
}
}
}
}
else {
// press is too short, abort
bt_hold_counter = 0;
beep_off();
}
}
return true;
}
float hw_JetFleet_get_temp(void) {
float t1 = (1.0 / ((logf(NTC_RES(ADC_Value[ADC_IND_TEMP_MOS]) / 10000.0) / 3380.0) + (1.0 / 298.15)) - 273.15);
float t3 = (1.0 / ((logf(NTC_RES(ADC_Value[ADC_IND_TEMP_MOS_3]) / 10000.0) / 3380.0) + (1.0 / 298.15)) - 273.15);
float res = 0.0;
if (t1 >= t3) {
res = t1;
} else {
res = t3;
}
return res;
}
static void terminal_button_test(int argc, const char **argv) {
(void)argc;
(void)argv;
for (int i = 0;i < 40;i++) {
commands_printf("BT: %d:%d [%.2fV], %.2fV, %.2fV, OFF=%d", HW_SAMPLE_SHUTDOWN(), bt_hold_counter,
(double)bt_diff, (double)bt_unpressed, (double)bt_lastval, (int)will_poweroff);
chThdSleepMilliseconds(100);
}
}

View File

@ -0,0 +1,258 @@
/*
Copyright 2022 Benjamin Vedder benjamin@vedder.se
This file is part of the VESC firmware.
The VESC firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HW_JetFleetF6_Core_H_
#define HW_JetFleetF6_Core_H_
// HW properties
#define HW_HAS_3_SHUNTS
#define HW_HAS_PHASE_FILTERS
#define INVERTED_SHUNT_POLARITY
#define SERVO_BUZZER
// Macros
#define LED_GREEN_GPIO GPIOB
#define LED_GREEN_PIN 2
#define LED_RED_GPIO GPIOA
#define LED_RED_PIN 15
#define LED_GREEN_ON() palSetPad(LED_GREEN_GPIO, LED_GREEN_PIN)
#define LED_GREEN_OFF() palClearPad(LED_GREEN_GPIO, LED_GREEN_PIN)
#define LED_RED_ON() palSetPad(LED_RED_GPIO, LED_RED_PIN)
#define LED_RED_OFF() palClearPad(LED_RED_GPIO, LED_RED_PIN)
// Phase filter
#define PHASE_FILTER_OFF() palSetPad(GPIOC, 15); palSetPad(GPIOC, 14); palSetPad(GPIOC, 13)
#define PHASE_FILTER_ON() palClearPad(GPIOC, 15); palClearPad(GPIOC, 14); palClearPad(GPIOC, 13)
// Shutdown pin
#define HW_SHUTDOWN_GPIO GPIOB
#define HW_SHUTDOWN_PIN 0
#define HW_SHUTDOWN_SENSE_GPIO GPIOC
#define HW_SHUTDOWN_SENSE_PIN 5
#define HW_SHUTDOWN_HOLD_ON() palSetPad(HW_SHUTDOWN_GPIO, HW_SHUTDOWN_PIN)
#define HW_SHUTDOWN_HOLD_OFF() palClearPad(HW_SHUTDOWN_GPIO, HW_SHUTDOWN_PIN)
#define HW_SAMPLE_SHUTDOWN() hw_sample_shutdown_button()
// ADC Config
#define HW_ADC_CHANNELS 18
#define HW_ADC_INJ_CHANNELS 3
#define HW_ADC_NBR_CONV 6
// ADC Indexes
#define ADC_IND_SENS1 3
#define ADC_IND_SENS2 4
#define ADC_IND_SENS3 5
#define ADC_IND_CURR1 0
#define ADC_IND_CURR2 1
#define ADC_IND_CURR3 2
#define ADC_IND_VIN_SENS 11
#define ADC_IND_EXT 6
#define ADC_IND_EXT2 7
#define ADC_IND_SHUTDOWN 10
#define ADC_IND_TEMP_MOS 8
//#define ADC_IND_TEMP_MOS_2 15
#define ADC_IND_TEMP_MOS_3 16
#define ADC_IND_TEMP_MOTOR 9
#define ADC_IND_VREFINT 12
// ADC macros and settings
// Component parameters (can be overridden)
#ifndef V_REG
#define V_REG 3.3
#endif
#ifndef VIN_R1
#define VIN_R1 150000.0
#endif
#ifndef VIN_R2
#define VIN_R2 3300.0
#endif
#ifndef CURRENT_AMP_GAIN
#define CURRENT_AMP_GAIN 20.0
#endif
#ifndef CURRENT_SHUNT_RES
#define CURRENT_SHUNT_RES (0.0005 / 2.0)
#endif
// Input voltage
#define GET_INPUT_VOLTAGE() ((V_REG / 4095.0) * (float)ADC_Value[ADC_IND_VIN_SENS] * ((VIN_R1 + VIN_R2) / VIN_R2))
// NTC Termistors
#define NTC_RES(adc_val) (10000.0 / ((4095.0 / (float)adc_val) - 1.0))
#define NTC_TEMP(adc_ind) hw_JetFleet_get_temp()
#define NTC_RES_MOTOR(adc_val) (10000.0 / ((4095.0 / (float)adc_val) - 1.0))
#define NTC_TEMP_MOTOR(beta) (1.0 / ((logf(NTC_RES_MOTOR(ADC_Value[ADC_IND_TEMP_MOTOR]) / 10000.0) / beta) + (1.0 / 298.15)) - 273.15)
#define NTC_TEMP_MOS1() (1.0 / ((logf(NTC_RES(ADC_Value[ADC_IND_TEMP_MOS]) / 10000.0) / 3380.0) + (1.0 / 298.15)) - 273.15)
//#define NTC_TEMP_MOS2() (1.0 / ((logf(NTC_RES(ADC_Value[ADC_IND_TEMP_MOS_2]) / 10000.0) / 3380.0) + (1.0 / 298.15)) - 273.15)
#define NTC_TEMP_MOS3() (1.0 / ((logf(NTC_RES(ADC_Value[ADC_IND_TEMP_MOS_3]) / 10000.0) / 3380.0) + (1.0 / 298.15)) - 273.15)
// Voltage on ADC channel
#define ADC_VOLTS(ch) ((float)ADC_Value[ch] / 4096.0 * V_REG)
// Double samples in beginning and end for positive current measurement.
// Useful when the shunt sense traces have noise that causes offset.
#ifndef CURR1_DOUBLE_SAMPLE
#define CURR1_DOUBLE_SAMPLE 0
#endif
#ifndef CURR2_DOUBLE_SAMPLE
#define CURR2_DOUBLE_SAMPLE 0
#endif
#ifndef CURR3_DOUBLE_SAMPLE
#define CURR3_DOUBLE_SAMPLE 0
#endif
// COMM-port ADC GPIOs
#define HW_ADC_EXT_GPIO GPIOA
#define HW_ADC_EXT_PIN 5
#define HW_ADC_EXT2_GPIO GPIOA
#define HW_ADC_EXT2_PIN 6
// ICU Peripheral for servo decoding
#define HW_USE_SERVO_TIM4
#define HW_ICU_TIMER TIM4
#define HW_ICU_TIM_CLK_EN() RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE)
#define HW_ICU_DEV ICUD4
#define HW_ICU_CHANNEL ICU_CHANNEL_1
#define HW_ICU_GPIO_AF GPIO_AF_TIM4
#define HW_ICU_GPIO GPIOB
#define HW_ICU_PIN 6
// I2C Peripheral
#define HW_I2C_DEV I2CD2
#define HW_I2C_GPIO_AF GPIO_AF_I2C2
#define HW_I2C_SCL_PORT GPIOB
#define HW_I2C_SCL_PIN 12
#define HW_I2C_SDA_PORT GPIOC
#define HW_I2C_SDA_PIN 5
// Hall/encoder pins
#define HW_HALL_ENC_GPIO1 GPIOC
#define HW_HALL_ENC_PIN1 6
#define HW_HALL_ENC_GPIO2 GPIOC
#define HW_HALL_ENC_PIN2 7
#define HW_HALL_ENC_GPIO3 GPIOC
#define HW_HALL_ENC_PIN3 8
#define HW_ENC_TIM TIM3
#define HW_ENC_TIM_AF GPIO_AF_TIM3
#define HW_ENC_TIM_CLK_EN() RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE)
#define HW_ENC_EXTI_PORTSRC EXTI_PortSourceGPIOC
#define HW_ENC_EXTI_PINSRC EXTI_PinSource8
#define HW_ENC_EXTI_CH EXTI9_5_IRQn
#define HW_ENC_EXTI_LINE EXTI_Line8
#define HW_ENC_EXTI_ISR_VEC EXTI9_5_IRQHandler
#define HW_ENC_TIM_ISR_CH TIM3_IRQn
#define HW_ENC_TIM_ISR_VEC TIM3_IRQHandler
// SPI pins
#define HW_SPI_DEV SPID3
#define HW_SPI_GPIO_AF GPIO_AF_SPI3
#define HW_SPI_PORT_NSS GPIOA
#define HW_SPI_PIN_NSS 4
#define HW_SPI_PORT_SCK GPIOC
#define HW_SPI_PIN_SCK 10
#define HW_SPI_PORT_MOSI GPIOC
#define HW_SPI_PIN_MOSI 12
#define HW_SPI_PORT_MISO GPIOC
#define HW_SPI_PIN_MISO 11
// I2C for IMU
#define LSM6DS3_SDA_GPIO GPIOB
#define LSM6DS3_SDA_PIN 4
#define LSM6DS3_SCL_GPIO GPIOB
#define LSM6DS3_SCL_PIN 5
// UART Peripheral
#define HW_UART_DEV SD4
#define HW_UART_GPIO_AF GPIO_AF_UART4
#define HW_UART_TX_PORT GPIOC
#define HW_UART_TX_PIN 10
#define HW_UART_RX_PORT GPIOC
#define HW_UART_RX_PIN 11
// Permanent UART Peripheral (for NRF52)
#define HW_UART_P_BAUD 115200
#define HW_UART_P_DEV SD3
#define HW_UART_P_GPIO_AF GPIO_AF_USART3
#define HW_UART_P_TX_PORT GPIOB
#define HW_UART_P_TX_PIN 10
#define HW_UART_P_RX_PORT GPIOB
#define HW_UART_P_RX_PIN 11
// Measurement macros
#define ADC_V_L1 ADC_Value[ADC_IND_SENS1]
#define ADC_V_L2 ADC_Value[ADC_IND_SENS2]
#define ADC_V_L3 ADC_Value[ADC_IND_SENS3]
#define ADC_V_ZERO (ADC_Value[ADC_IND_VIN_SENS] / 2)
// Macros
#define READ_HALL1() palReadPad(HW_HALL_ENC_GPIO1, HW_HALL_ENC_PIN1)
#define READ_HALL2() palReadPad(HW_HALL_ENC_GPIO2, HW_HALL_ENC_PIN2)
#define READ_HALL3() palReadPad(HW_HALL_ENC_GPIO3, HW_HALL_ENC_PIN3)
// Override dead time. See the stm32f4 reference manual for calculating this value.
#define HW_DEAD_TIME_NSEC 450.0
// Default setting overrides
#ifndef MCCONF_L_MIN_VOLTAGE
#define MCCONF_L_MIN_VOLTAGE 20.0 // Minimum input voltage
#endif
#ifndef MCCONF_L_MAX_VOLTAGE
#define MCCONF_L_MAX_VOLTAGE 140.0 // Maximum input voltage
#endif
#ifndef MCCONF_DEFAULT_MOTOR_TYPE
#define MCCONF_DEFAULT_MOTOR_TYPE MOTOR_TYPE_FOC
#endif
#ifndef MCCONF_FOC_F_ZV
#define MCCONF_FOC_F_ZV 30000.0
#endif
#ifndef MCCONF_L_MAX_ABS_CURRENT
#define MCCONF_L_MAX_ABS_CURRENT 220.0 // The maximum absolute current above which a fault is generated
#endif
#ifndef MCCONF_FOC_SAMPLE_V0_V7
#define MCCONF_FOC_SAMPLE_V0_V7 false // Run control loop in both v0 and v7 (requires phase shunts)
#endif
#ifndef MCCONF_L_IN_CURRENT_MAX
#define MCCONF_L_IN_CURRENT_MAX 100.0 // Input current limit in Amperes (Upper)
#endif
#ifndef MCCONF_L_IN_CURRENT_MIN
#define MCCONF_L_IN_CURRENT_MIN -50.0 // Input current limit in Amperes (Lower)
#endif
// Setting limits
#define HW_LIM_CURRENT -200.0, 200.0
#define HW_LIM_CURRENT_IN -150.0, 150.0
#define HW_LIM_CURRENT_ABS 0.0, 300.0
#define HW_LIM_VIN 18.0, 140.0
#define HW_LIM_ERPM -200e3, 200e3
#define HW_LIM_DUTY_MIN 0.0, 0.1
#define HW_LIM_DUTY_MAX 0.0, 0.95
#define HW_LIM_TEMP_FET -40.0, 100.0
// Functions
float hw_JetFleet_get_temp(void);
bool hw_sample_shutdown_button(void);
void buzzer_init(void);
#define HW_EARLY_INIT() buzzer_init()
#endif /* HW_JetFleetF6_Core_H_ */

View File

@ -101,6 +101,7 @@ package_dict["Little_FOCer"] = [['Little_FOCer', default_name]]
package_dict["Little_FOCer_V3"] = [['Little_FOCer_V3', default_name]] package_dict["Little_FOCer_V3"] = [['Little_FOCer_V3', default_name]]
package_dict["Little_FOCer_V3_1"] = [['Little_FOCer_V3_1', default_name]] package_dict["Little_FOCer_V3_1"] = [['Little_FOCer_V3_1', default_name]]
package_dict["Thor300"] = [['Thor_300_20s', default_name]] package_dict["Thor300"] = [['Thor_300_20s', default_name]]
package_dict["JetFleetF6"] = [['JetFleetF6', default_name]]
package_dict["UXV_SR"] = [['uxv_sr', default_name]] package_dict["UXV_SR"] = [['uxv_sr', default_name]]
package_dict["GESC"] = [['gesc', default_name]] package_dict["GESC"] = [['gesc', default_name]]
package_dict["Warrior6"] = [['warrior6', default_name]] package_dict["Warrior6"] = [['warrior6', default_name]]