Add config for A100S V4, Add A50S V23C 8S

Adds A100S V4 a 6 FET 100v for up to 200A motor, 120A battery.
Adds A50S V23C 8S, adds and 8S variant of the A50S V23C that has a higher gain for lower noise.
Also corrects the A50S V23c 3.3v reference to the correct voltage.
This commit is contained in:
Euan 2024-07-08 22:33:58 +01:00
parent 69e249ee13
commit 54b717b5d6
6 changed files with 669 additions and 1 deletions

View File

@ -0,0 +1,8 @@
#ifndef HW_A100S_V4_H_
#define HW_A100S_V4_H_
#define HW_A100S_V4
#include "hw_a100s_v4_core.h"
#endif /* HW_A100S_V4_H_ */

View File

@ -0,0 +1,408 @@
/*
Copyright 2018 Benjamin Vedder benjamin@vedder.se
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "hw.h"
#include "ch.h"
#include "hal.h"
#include "stm32f4xx_conf.h"
#include "utils.h"
#include <math.h>
#include "mc_interface.h"
#include "commands.h"
#include "terminal.h"
#include "mcpwm.h"
#include "mcpwm_foc.h"
#include "app.h"
#include "mempools.h"
#include "timeout.h"
#include "stdio.h"
#include "imu.h"
// Variables
static volatile bool i2c_running = false;
static volatile bool drv_handshake_complete = false;
// Private functions
static void terminal_cmd_doublepulse(int argc, const char** argv);
// I2C configuration
static const I2CConfig i2cfg = {
OPMODE_I2C,
100000,
STD_DUTY_CYCLE
};
void hw_init_gpio(void) {
// GPIO clock enable
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);
// LEDs
palSetPadMode(GPIOB, 5,
PAL_MODE_OUTPUT_PUSHPULL |
PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(GPIOB, 7,
PAL_MODE_OUTPUT_PUSHPULL |
PAL_STM32_OSPEED_HIGHEST);
// GPIOA Configuration: Channel 1 to 3 as alternate function push-pull
palSetPadMode(GPIOA, 8, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
palSetPadMode(GPIOA, 9, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
palSetPadMode(GPIOA, 10, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
palSetPadMode(GPIOB, 13, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
palSetPadMode(GPIOB, 14, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
palSetPadMode(GPIOB, 15, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
// Hall sensors
palSetPadMode(HW_HALL_ENC_GPIO1, HW_HALL_ENC_PIN1, PAL_MODE_INPUT_PULLUP);
palSetPadMode(HW_HALL_ENC_GPIO2, HW_HALL_ENC_PIN2, PAL_MODE_INPUT_PULLUP);
palSetPadMode(HW_HALL_ENC_GPIO3, HW_HALL_ENC_PIN3, PAL_MODE_INPUT_PULLUP);
// Phase filters
palSetPadMode(GPIOC, 9, PAL_MODE_OUTPUT_OPENDRAIN);
palSetPadMode(GPIOC, 13, PAL_MODE_OUTPUT_OPENDRAIN);
palSetPadMode(GPIOC, 14, PAL_MODE_OUTPUT_OPENDRAIN);
PHASE_FILTER_OFF();
// Current filter
palSetPadMode(GPIOB, 2, PAL_MODE_OUTPUT_OPENDRAIN);
palSetPadMode(GPIOB, 3, PAL_MODE_OUTPUT_OPENDRAIN);
palSetPadMode(GPIOB, 4, PAL_MODE_OUTPUT_OPENDRAIN);
CURRENT_FILTER_OFF();
// ADC Pins
palSetPadMode(GPIOA, 0, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOA, 1, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOA, 2, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOA, 3, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOA, 6, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOB, 0, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOB, 1, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOC, 0, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOC, 1, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOC, 2, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOC, 3, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOC, 4, PAL_MODE_INPUT_ANALOG);
//register terminal callbacks
terminal_register_command_callback(
"double_pulse",
"Start a double pulse test",
0,
terminal_cmd_doublepulse);
}
void hw_setup_adc_channels(void) {
// ADC1 regular channels
ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 1, ADC_SampleTime_15Cycles); // 0 - ADC_IND_CURR1
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 2, ADC_SampleTime_15Cycles); // 3 - ADC_IND_SENS1
ADC_RegularChannelConfig(ADC1, ADC_Channel_5, 3, ADC_SampleTime_15Cycles); // 6 - ADC_IND_EXT
ADC_RegularChannelConfig(ADC1, ADC_Channel_Vrefint, 4, ADC_SampleTime_15Cycles); // 9 - ADC_IND_VREFINT
ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 5, ADC_SampleTime_15Cycles); // 12 - unused
// ADC2 regular channels
ADC_RegularChannelConfig(ADC2, ADC_Channel_11, 1, ADC_SampleTime_15Cycles); // 1 - ADC_IND_CURR2
ADC_RegularChannelConfig(ADC2, ADC_Channel_1, 2, ADC_SampleTime_15Cycles); // 4 - ADC_IND_SENS2
ADC_RegularChannelConfig(ADC2, ADC_Channel_6, 3, ADC_SampleTime_15Cycles); // 7 - ADC_IND_EXT2
ADC_RegularChannelConfig(ADC2, ADC_Channel_14, 4, ADC_SampleTime_15Cycles); // 10 - ADC_IND_TEMP_MOTOR
ADC_RegularChannelConfig(ADC2, ADC_Channel_9, 5, ADC_SampleTime_15Cycles); // 13 - unused
// ADC3 regular channels - only a subset of channels avaliable
ADC_RegularChannelConfig(ADC3, ADC_Channel_12, 1, ADC_SampleTime_15Cycles); // 2 - ADC_IND_CURR3
ADC_RegularChannelConfig(ADC3, ADC_Channel_2, 2, ADC_SampleTime_15Cycles); // 5 - ADC_IND_SENS3
ADC_RegularChannelConfig(ADC3, ADC_Channel_13, 3, ADC_SampleTime_15Cycles); // 8 - ADC_IND_VIN_SENS
ADC_RegularChannelConfig(ADC3, ADC_Channel_3, 4, ADC_SampleTime_15Cycles); // 11 - ADC_IND_TEMP_MOS
ADC_RegularChannelConfig(ADC3, ADC_Channel_14, 5, ADC_SampleTime_15Cycles); // 14 - UNUSED
// Injected channels
ADC_InjectedChannelConfig(ADC1, ADC_Channel_10, 1, ADC_SampleTime_15Cycles); // ADC_IND_CURR1
ADC_InjectedChannelConfig(ADC2, ADC_Channel_11, 1, ADC_SampleTime_15Cycles); // ADC_IND_CURR2
ADC_InjectedChannelConfig(ADC3, ADC_Channel_12, 1, ADC_SampleTime_15Cycles); // ADC_IND_CURR3
ADC_InjectedChannelConfig(ADC1, ADC_Channel_10, 2, ADC_SampleTime_15Cycles); // ADC_IND_CURR1
ADC_InjectedChannelConfig(ADC2, ADC_Channel_11, 2, ADC_SampleTime_15Cycles); // ADC_IND_CURR2
ADC_InjectedChannelConfig(ADC3, ADC_Channel_12, 2, ADC_SampleTime_15Cycles); // ADC_IND_CURR3
ADC_InjectedChannelConfig(ADC1, ADC_Channel_10, 3, ADC_SampleTime_15Cycles); // ADC_IND_CURR1
ADC_InjectedChannelConfig(ADC2, ADC_Channel_11, 3, ADC_SampleTime_15Cycles); // ADC_IND_CURR2
ADC_InjectedChannelConfig(ADC3, ADC_Channel_12, 3, ADC_SampleTime_15Cycles); // ADC_IND_CURR3
}
void hw_start_i2c(void) {
i2cAcquireBus(&HW_I2C_DEV);
if (!i2c_running) {
palSetPadMode(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN,
PAL_MODE_ALTERNATE(HW_I2C_GPIO_AF) |
PAL_STM32_OTYPE_OPENDRAIN |
PAL_STM32_OSPEED_MID1 |
PAL_STM32_PUDR_PULLUP);
palSetPadMode(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN,
PAL_MODE_ALTERNATE(HW_I2C_GPIO_AF) |
PAL_STM32_OTYPE_OPENDRAIN |
PAL_STM32_OSPEED_MID1 |
PAL_STM32_PUDR_PULLUP);
i2cStart(&HW_I2C_DEV, &i2cfg);
i2c_running = true;
}
i2cReleaseBus(&HW_I2C_DEV);
}
void hw_stop_i2c(void) {
i2cAcquireBus(&HW_I2C_DEV);
if (i2c_running) {
palSetPadMode(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN, PAL_MODE_INPUT);
palSetPadMode(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN, PAL_MODE_INPUT);
i2cStop(&HW_I2C_DEV);
i2c_running = false;
}
i2cReleaseBus(&HW_I2C_DEV);
}
/**
* Try to restore the i2c bus
*/
void hw_try_restore_i2c(void) {
if (i2c_running) {
i2cAcquireBus(&HW_I2C_DEV);
palSetPadMode(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN,
PAL_STM32_OTYPE_OPENDRAIN |
PAL_STM32_OSPEED_MID1 |
PAL_STM32_PUDR_PULLUP);
palSetPadMode(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN,
PAL_STM32_OTYPE_OPENDRAIN |
PAL_STM32_OSPEED_MID1 |
PAL_STM32_PUDR_PULLUP);
palSetPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN);
palSetPad(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN);
chThdSleep(1);
for(int i = 0;i < 16;i++) {
palClearPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN);
chThdSleep(1);
palSetPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN);
chThdSleep(1);
}
// Generate start then stop condition
palClearPad(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN);
chThdSleep(1);
palClearPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN);
chThdSleep(1);
palSetPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN);
chThdSleep(1);
palSetPad(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN);
palSetPadMode(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN,
PAL_MODE_ALTERNATE(HW_I2C_GPIO_AF) |
PAL_STM32_OTYPE_OPENDRAIN |
PAL_STM32_OSPEED_MID1 |
PAL_STM32_PUDR_PULLUP);
palSetPadMode(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN,
PAL_MODE_ALTERNATE(HW_I2C_GPIO_AF) |
PAL_STM32_OTYPE_OPENDRAIN |
PAL_STM32_OSPEED_MID1 |
PAL_STM32_PUDR_PULLUP);
HW_I2C_DEV.state = I2C_STOP;
i2cStart(&HW_I2C_DEV, &i2cfg);
i2cReleaseBus(&HW_I2C_DEV);
}
}
static void terminal_cmd_doublepulse(int argc, const char** argv)
{
(void)argc;
(void)argv;
int preface, pulse1, breaktime, pulse2;
int utick;
int deadtime = -1;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_BDTRInitTypeDef TIM_BDTRInitStructure;
if (argc < 5) {
commands_printf("Usage: double_pulse <preface> <pulse1> <break> <pulse2> [deadtime]");
commands_printf(" preface: idle time in us");
commands_printf(" pulse1: high time of pulse 1 in us");
commands_printf(" break: break between pulses in us");
commands_printf(" pulse2: high time of pulse 2 in us");
commands_printf(" deadtime: overwrite deadtime, in ns");
return;
}
sscanf(argv[1], "%d", &preface);
sscanf(argv[2], "%d", &pulse1);
sscanf(argv[3], "%d", &breaktime);
sscanf(argv[4], "%d", &pulse2);
if (argc == 6) {
sscanf(argv[5], "%d", &deadtime);
}
timeout_configure_IWDT_slowest();
utick = (int)(SYSTEM_CORE_CLOCK / 1000000);
mcpwm_deinit();
mcpwm_foc_deinit();
TIM_Cmd(TIM1, DISABLE);
TIM_Cmd(TIM4, DISABLE);
//TIM4 als Trigger Timer
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);
TIM_TimeBaseStructure.TIM_Period = (SYSTEM_CORE_CLOCK / 20000);
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure);
TIM_SelectMasterSlaveMode(TIM4, TIM_MasterSlaveMode_Enable);
TIM_SelectOutputTrigger(TIM4, TIM_TRGOSource_Enable);
TIM4->CNT = 0;
// TIM1
// TIM1 clock enable
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
// Time Base configuration
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseStructure.TIM_Period = (preface + pulse1) * utick;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
// Channel 1, 2 and 3 Configuration in PWM mode
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_Pulse = preface * utick;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Set;
TIM_OC1Init(TIM1, &TIM_OCInitStructure);
TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);
TIM_OC2Init(TIM1, &TIM_OCInitStructure);
TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable);
TIM_OC3Init(TIM1, &TIM_OCInitStructure);
TIM_OC3PreloadConfig(TIM1, TIM_OCPreload_Enable);
TIM_SelectOCxM(TIM1, TIM_Channel_1, TIM_OCMode_PWM2);
TIM_CCxCmd(TIM1, TIM_Channel_1, TIM_CCx_Enable);
TIM_CCxNCmd(TIM1, TIM_Channel_1, TIM_CCxN_Enable);
TIM_SelectOCxM(TIM1, TIM_Channel_2, TIM_OCMode_Inactive);
TIM_CCxCmd(TIM1, TIM_Channel_2, TIM_CCx_Enable);
TIM_CCxNCmd(TIM1, TIM_Channel_2, TIM_CCxN_Enable);
TIM_SelectOCxM(TIM1, TIM_Channel_3, TIM_OCMode_Inactive);
TIM_CCxCmd(TIM1, TIM_Channel_3, TIM_CCx_Enable);
TIM_CCxNCmd(TIM1, TIM_Channel_3, TIM_CCxN_Enable);
TIM_GenerateEvent(TIM1, TIM_EventSource_COM);
// Automatic Output enable, Break, dead time and lock configuration
TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;
TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;
TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_OFF;
if (deadtime < 0) {
TIM_BDTRInitStructure.TIM_DeadTime = conf_general_calculate_deadtime(HW_DEAD_TIME_NSEC, SYSTEM_CORE_CLOCK);
} else {
TIM_BDTRInitStructure.TIM_DeadTime = conf_general_calculate_deadtime(deadtime, SYSTEM_CORE_CLOCK);
}
TIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable;
TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;
TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Disable;
TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure);
TIM_CCPreloadControl(TIM1, ENABLE);
TIM_ARRPreloadConfig(TIM1, ENABLE);
TIM1->CNT = 0;
TIM1->EGR = TIM_EGR_UG;
TIM_SelectSlaveMode(TIM1, TIM_SlaveMode_Trigger);
TIM_SelectInputTrigger(TIM1, TIM_TS_ITR3);
TIM_SelectOnePulseMode(TIM1, TIM_OPMode_Single);
TIM_CtrlPWMOutputs(TIM1, ENABLE);
TIM_Cmd(TIM1, ENABLE);
//Timer 4 triggert Timer 1
TIM_Cmd(TIM4, ENABLE);
TIM_Cmd(TIM4, DISABLE);
TIM1->ARR = (breaktime + pulse2) * utick;
TIM1->CCR1 = breaktime * utick;
while (TIM1->CNT != 0);
TIM_Cmd(TIM4, ENABLE);
chThdSleepMilliseconds(1);
TIM_CtrlPWMOutputs(TIM1, DISABLE);
mc_configuration* mcconf = mempools_alloc_mcconf();
*mcconf = *mc_interface_get_configuration();
switch (mcconf->motor_type) {
case MOTOR_TYPE_BLDC:
case MOTOR_TYPE_DC:
mcpwm_init(mcconf);
break;
case MOTOR_TYPE_FOC:
mcpwm_foc_init(mcconf, mcconf);
break;
default:
break;
}
commands_printf("Done");
mempools_free_mcconf(mcconf);
return;
}

View File

@ -0,0 +1,238 @@
/*
Copyright 2018 Benjamin Vedder benjamin@vedder.se
This file is part of the VESC firmware.
The VESC firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HW_A100S_V4_CORE_H_
#define HW_A100S_V4_CORE_H_
// HW properties
#define HW_HAS_3_SHUNTS
#define HW_HAS_PHASE_SHUNTS
//#define INVERTED_SHUNT_POLARITY
#define HW_HAS_PHASE_FILTERS
#define HW_USE_25MHZ_EXT_CLOCK
//#define HW_USE_ALTERNATIVE_DC_CAL
#define HW_ADC_CHANNELS 15
#define HW_ADC_INJ_CHANNELS 3
#define HW_ADC_NBR_CONV 5
// ADC Indexes - refer to .c for descriptions
#define ADC_IND_CURR1 0
#define ADC_IND_CURR2 1
#define ADC_IND_CURR3 2
#define ADC_IND_VIN_SENS 8
#define ADC_IND_SENS1 3
#define ADC_IND_SENS2 4
#define ADC_IND_SENS3 5
#define ADC_IND_EXT 6
#define ADC_IND_EXT2 7
//#define ADC_IND_EXT3
#define ADC_IND_TEMP_MOS 11
//#define ADC_IND_TEMP_MOS_2 12
//#define ADC_IND_TEMP_MOS_3 13
#define ADC_IND_TEMP_MOTOR 10
#define ADC_IND_VREFINT 9
// ADC macros and settings
// Component parameters (can be overridden)
#ifndef V_REG
#define V_REG 3.30
#endif
#ifndef VIN_R1
#define VIN_R1 100000.0
#endif
#ifndef VIN_R2
#define VIN_R2 3160.0
#endif
#ifndef CURRENT_AMP_GAIN
#define CURRENT_AMP_GAIN 20.0
#endif
#ifndef CURRENT_SHUNT_RES
#define CURRENT_SHUNT_RES 0.0002
#endif
// Input voltage
#define GET_INPUT_VOLTAGE() ((V_REG / 4095.0) * (float)ADC_Value[ADC_IND_VIN_SENS] * ((VIN_R1 + VIN_R2) / VIN_R2))
// NTC Termistors
#define NTC_RES(adc_val) (10000.0 / ((4095.0 / (float)adc_val) - 1.0)) // Mos temp sensor on low side
#define NTC_RES_MOTOR(adc_val) (10000.0 / ((4095.0 / (float)adc_val) - 1.0)) // Motor temp sensor on low side
#define NTC_TEMP_MOTOR(beta) (1.0 / ((logf(NTC_RES_MOTOR(ADC_Value[ADC_IND_TEMP_MOTOR]) / 10000.0) / beta) + (1.0 / 298.15)) - 273.15)
#define NTC_TEMP(adc_ind) NTC_TEMP_MOS1()
#define NTC_TEMP_MOS1() (1.0 / ((logf(NTC_RES(ADC_Value[ADC_IND_TEMP_MOS]) / 10000.0) / 3380.0) + (1.0 / 298.15)) - 273.15)
#define NTC_TEMP_MOS2() (1.0 / ((logf(NTC_RES(ADC_Value[ADC_IND_TEMP_MOS]) / 10000.0) / 3380.0) + (1.0 / 298.15)) - 273.15)
#define NTC_TEMP_MOS3() (1.0 / ((logf(NTC_RES(ADC_Value[ADC_IND_TEMP_MOS]) / 10000.0) / 3380.0) + (1.0 / 298.15)) - 273.15)
// Voltage on ADC channel
#define ADC_VOLTS(ch) ((float)ADC_Value[ch] / 4096.0 * V_REG)
#define LED_GREEN_GPIO GPIOB
#define LED_GREEN_PIN 5
#define LED_RED_GPIO GPIOB
#define LED_RED_PIN 7
#define LED_GREEN_ON() palSetPad(LED_GREEN_GPIO, LED_GREEN_PIN)
#define LED_GREEN_OFF() palClearPad(LED_GREEN_GPIO, LED_GREEN_PIN)
#define LED_RED_ON() palSetPad(LED_RED_GPIO, LED_RED_PIN)
#define LED_RED_OFF() palClearPad(LED_RED_GPIO, LED_RED_PIN)
#define AUX_GPIO GPIOC
#define AUX_PIN 15
#define AUX_ON() palSetPad(AUX_GPIO, AUX_PIN)
#define AUX_OFF() palClearPad(AUX_GPIO, AUX_PIN)
// Phase filter
#define PHASE_FILTER_OFF() palSetPad(GPIOC, 9); palSetPad(GPIOC, 13); palSetPad(GPIOC, 14)
#define PHASE_FILTER_ON() palClearPad(GPIOC, 9); palClearPad(GPIOC, 13); palClearPad(GPIOC, 14)
// Current filter
#define CURRENT_FILTER_OFF() palSetPad(GPIOB, 2); palSetPad(GPIOB, 3); palSetPad(GPIOB, 4)
#define CURRENT_FILTER_ON() palSetPad(GPIOB, 2); palSetPad(GPIOB, 3); palSetPad(GPIOB, 4)
// COMM-port ADC GPIOs
#define HW_ADC_EXT_GPIO GPIOA
#define HW_ADC_EXT_PIN 5
#define HW_ADC_EXT2_GPIO GPIOA
#define HW_ADC_EXT2_PIN 6
// UART Peripheral - Comm port
#define HW_UART_DEV SD3
#define HW_UART_GPIO_AF GPIO_AF_USART3
#define HW_UART_TX_PORT GPIOB
#define HW_UART_TX_PIN 10
#define HW_UART_RX_PORT GPIOB
#define HW_UART_RX_PIN 11
// SPI pins
#define HW_SPI_DEV SPID1
#define HW_SPI_GPIO_AF GPIO_AF_SPI1
#define HW_SPI_PORT_NSS GPIOB
#define HW_SPI_PIN_NSS 11
#define HW_SPI_PORT_SCK GPIOA
#define HW_SPI_PIN_SCK 5
#define HW_SPI_PORT_MOSI GPIOA
#define HW_SPI_PIN_MOSI 7
#define HW_SPI_PORT_MISO GPIOA
#define HW_SPI_PIN_MISO 6
// I2C Peripheral
#define HW_I2C_DEV I2CD2
#define HW_I2C_GPIO_AF GPIO_AF_I2C2
#define HW_I2C_SCL_PORT GPIOB
#define HW_I2C_SCL_PIN 10
#define HW_I2C_SDA_PORT GPIOB
#define HW_I2C_SDA_PIN 11
// Hall/encoder pins
#define HW_HALL_ENC_GPIO1 GPIOC
#define HW_HALL_ENC_PIN1 6
#define HW_HALL_ENC_GPIO2 GPIOC
#define HW_HALL_ENC_PIN2 7
#define HW_HALL_ENC_GPIO3 GPIOC
#define HW_HALL_ENC_PIN3 8
#define HW_ENC_TIM TIM3
#define HW_ENC_TIM_AF GPIO_AF_TIM3
#define HW_ENC_TIM_CLK_EN() RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE)
#define HW_ENC_EXTI_PORTSRC EXTI_PortSourceGPIOC
#define HW_ENC_EXTI_PINSRC EXTI_PinSource8
#define HW_ENC_EXTI_CH EXTI9_5_IRQn
#define HW_ENC_EXTI_LINE EXTI_Line8
#define HW_ENC_EXTI_ISR_VEC EXTI9_5_IRQHandler
#define HW_ENC_TIM_ISR_CH TIM3_IRQn
#define HW_ENC_TIM_ISR_VEC TIM3_IRQHandler
// ICU Peripheral for servo decoding
#define HW_USE_SERVO_TIM4
#define HW_ICU_TIMER TIM4
#define HW_ICU_TIM_CLK_EN() RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE)
#define HW_ICU_DEV ICUD4
#define HW_ICU_CHANNEL ICU_CHANNEL_1
#define HW_ICU_GPIO_AF GPIO_AF_TIM4
#define HW_ICU_GPIO GPIOB
#define HW_ICU_PIN 6
// Measurement macros
#define ADC_V_L1 ADC_Value[ADC_IND_SENS1]
#define ADC_V_L2 ADC_Value[ADC_IND_SENS2]
#define ADC_V_L3 ADC_Value[ADC_IND_SENS3]
#define ADC_V_ZERO (ADC_Value[ADC_IND_VIN_SENS] / 2)
// Macros
#define READ_HALL1() palReadPad(HW_HALL_ENC_GPIO1, HW_HALL_ENC_PIN1)
#define READ_HALL2() palReadPad(HW_HALL_ENC_GPIO2, HW_HALL_ENC_PIN2)
#define READ_HALL3() palReadPad(HW_HALL_ENC_GPIO3, HW_HALL_ENC_PIN3)
// Default setting overrides
#define MCCONF_L_MIN_VOLTAGE 14.0 // Minimum input voltage
#define MCCONF_DEFAULT_MOTOR_TYPE MOTOR_TYPE_FOC
#define MCCONF_FOC_F_ZV 30000.0
#define HW_LIM_FOC_CTRL_LOOP_FREQ 5000.0, 25000.0 //Limit to 50kHz max
#define MCCONF_L_MAX_ABS_CURRENT 200.0 // The maximum absolute current above which a fault is generated
#define MCCONF_FOC_SAMPLE_V0_V7 false // Run control loop in both v0 and v7 (requires phase shunts)
#define MCCONF_L_CURRENT_MAX 100.0 // Current limit in Amperes (Upper)
#define MCCONF_L_CURRENT_MIN -100.0 // Current limit in Amperes (Lower)
#define MCCONF_L_SLOW_ABS_OVERCURRENT false // Use the raw current for the overcurrent fault detection
#define MCCONF_L_IN_CURRENT_MAX 20.0 // Input current limit in Amperes (Upper)
#define MCCONF_L_IN_CURRENT_MIN -5.0 // Input current limit in Amperes (Lower)
#define MCCONF_M_MOTOR_TEMP_SENS_TYPE TEMP_SENSOR_DISABLED // Motor Temperature Sensor Type
//#define MCCONF_FOC_OFFSETS_CAL_ON_BOOT false // Don't Measure offsets every boot, it is done once at motor setup
// Setting limits
#define HW_LIM_CURRENT -200.0, 200.0
#define HW_LIM_CURRENT_IN -120.0, 120.0
#define HW_LIM_CURRENT_ABS 0.0, 400.0
#define HW_LIM_VIN -1.0, 90.0
#define HW_LIM_ERPM -200e3, 200e3
#define HW_LIM_DUTY_MIN 0.0, 0.1
#define HW_LIM_DUTY_MAX 0.0, 0.95
#define HW_LIM_TEMP_FET -40.0, 110.0
#ifndef MCCONF_L_MAX_VOLTAGE
#define MCCONF_L_MAX_VOLTAGE 20.0 * 4.2 + 5.0 // Maximum input voltage
#endif
#ifndef MCCONF_FOC_DT_US
#define MCCONF_FOC_DT_US 0.1 // Microseconds for dead time compensation
#endif
#define HW_DEAD_TIME_NSEC 500.0 // FD6288q adds 200ns
#define HW_NAME "A100S_V4"
#endif /* HW_A100S_V4_CORE_H_ */

View File

@ -0,0 +1,12 @@
#ifndef HW_A50S_V23C_8S_H_
#define HW_A50S_V23C_8S_H_
#define HW_A50S_8S
#define HW_NAME "a50s_v23c_8s"
#define CURRENT_AMP_GAIN 50.0
#include "hw_a50s_v23c_core.h"
#endif /* HW_A50S_V23C_8S_H_ */

View File

@ -70,7 +70,7 @@
#ifndef V_REG
#define V_REG 3.33
#define V_REG 3.30
#endif
#ifndef VIN_R1
#define VIN_R1 47000.0

View File

@ -59,8 +59,10 @@ package_dict["A50S_12S_HG"] = [['a50s_v22_12s_hg', default_name]]
package_dict["A50S_V23_6S"] = [['a50s_v23_6s', default_name]]
package_dict["A50S_V23_8S"] = [['a50s_v23_8s', default_name]]
package_dict["A50S_V23_12S"] = [['a50s_v23_12s', default_name]]
package_dict["A50S_V23c_8S"] = [['a50s_v23c_8s', default_name]]
package_dict["A50S_V23c_12S"] = [['a50s_v23c_12s', default_name]]
package_dict["A50S_V23_20S"] = [['a50s_v23_20s', default_name]]
package_dict["A100S_V4"] = [['a100s_v4', default_name]]
package_dict["A200S_V2.1"] = [['a200s_v2.1', default_name]]
package_dict["A200S_V2.2"] = [['a200s_v2.2', default_name]]
package_dict["A200S_V3"] = [['a200s_v3', default_name]]