/* Copyright 2016 Benjamin Vedder benjamin@vedder.se This file is part of the VESC firmware. The VESC firmware is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The VESC firmware is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "encoder.h" #include "ch.h" #include "hal.h" #include "stm32f4xx_conf.h" #include "hw.h" #include "mc_interface.h" #include "utils.h" #include "math.h" // Defines #define AS5047P_READ_ANGLECOM (0x3FFF | 0x4000 | 0x8000) // This is just ones #define AS5047_SAMPLE_RATE_HZ 20000 #define AD2S1205_SAMPLE_RATE_HZ 20000 //25MHz max spi clk #define SINCOS_SAMPLE_RATE_HZ 20000 #define SINCOS_MIN_AMPLITUDE 1.0 // sqrt(sin^2 + cos^2) has to be larger than this #define SINCOS_MAX_AMPLITUDE 1.65 // sqrt(sin^2 + cos^2) has to be smaller than this #if AS5047_USE_HW_SPI_PINS #ifdef HW_SPI_DEV #define SPI_SW_MISO_GPIO HW_SPI_PORT_MISO #define SPI_SW_MISO_PIN HW_SPI_PIN_MISO #define SPI_SW_MOSI_GPIO HW_SPI_PORT_MOSI #define SPI_SW_MOSI_PIN HW_SPI_PIN_MOSI #define SPI_SW_SCK_GPIO HW_SPI_PORT_SCK #define SPI_SW_SCK_PIN HW_SPI_PIN_SCK #define SPI_SW_CS_GPIO HW_SPI_PORT_NSS #define SPI_SW_CS_PIN HW_SPI_PIN_NSS #else // Note: These values are hardcoded. #define SPI_SW_MISO_GPIO GPIOB #define SPI_SW_MISO_PIN 4 #define SPI_SW_MOSI_GPIO GPIOB #define SPI_SW_MOSI_PIN 5 #define SPI_SW_SCK_GPIO GPIOB #define SPI_SW_SCK_PIN 3 #define SPI_SW_CS_GPIO GPIOB #define SPI_SW_CS_PIN 0 #endif #else #define SPI_SW_MISO_GPIO HW_HALL_ENC_GPIO2 #define SPI_SW_MISO_PIN HW_HALL_ENC_PIN2 #define SPI_SW_SCK_GPIO HW_HALL_ENC_GPIO1 #define SPI_SW_SCK_PIN HW_HALL_ENC_PIN1 #define SPI_SW_CS_GPIO HW_HALL_ENC_GPIO3 #define SPI_SW_CS_PIN HW_HALL_ENC_PIN3 #endif // Private types typedef enum { ENCODER_MODE_NONE = 0, ENCODER_MODE_ABI, ENCODER_MODE_AS5047P_SPI, RESOLVER_MODE_AD2S1205, ENCODER_MODE_SINCOS } encoder_mode; // Private variables static bool index_found = false; static uint32_t enc_counts = 10000; static encoder_mode mode = ENCODER_MODE_NONE; static float last_enc_angle = 0.0; uint16_t spi_val = 0; uint32_t spi_error_cnt = 0; float spi_error_rate = 0.0; float sin_gain = 0.0; float sin_offset = 0.0; float cos_gain = 0.0; float cos_offset = 0.0; float sincos_filter_constant = 0.0; uint32_t sincos_signal_below_min_error_cnt = 0; uint32_t sincos_signal_above_max_error_cnt = 0; float sincos_signal_low_error_rate = 0.0; float sincos_signal_above_max_error_rate = 0.0; // Private functions static void spi_transfer(uint16_t *in_buf, const uint16_t *out_buf, int length); static void spi_begin(void); static void spi_end(void); static void spi_delay(void); uint32_t encoder_spi_get_error_cnt(void) { return spi_error_cnt; } uint16_t encoder_spi_get_val(void) { return spi_val; } float encoder_spi_get_error_rate(void) { return spi_error_rate; } uint32_t encoder_sincos_get_signal_below_min_error_cnt(void) { return sincos_signal_below_min_error_cnt; } uint32_t encoder_sincos_get_signal_above_max_error_cnt(void) { return sincos_signal_above_max_error_cnt; } float encoder_sincos_get_signal_below_min_error_rate(void) { return sincos_signal_low_error_rate; } float encoder_sincos_get_signal_above_max_error_rate(void) { return sincos_signal_above_max_error_rate; } void encoder_deinit(void) { nvicDisableVector(HW_ENC_EXTI_CH); nvicDisableVector(HW_ENC_TIM_ISR_CH); TIM_DeInit(HW_ENC_TIM); palSetPadMode(SPI_SW_MISO_GPIO, SPI_SW_MISO_PIN, PAL_MODE_INPUT_PULLUP); palSetPadMode(SPI_SW_SCK_GPIO, SPI_SW_SCK_PIN, PAL_MODE_INPUT_PULLUP); palSetPadMode(SPI_SW_CS_GPIO, SPI_SW_CS_PIN, PAL_MODE_INPUT_PULLUP); palSetPadMode(HW_HALL_ENC_GPIO1, HW_HALL_ENC_PIN1, PAL_MODE_INPUT_PULLUP); palSetPadMode(HW_HALL_ENC_GPIO2, HW_HALL_ENC_PIN2, PAL_MODE_INPUT_PULLUP); index_found = false; mode = ENCODER_MODE_NONE; last_enc_angle = 0.0; spi_error_rate = 0.0; sincos_signal_low_error_rate = 0.0; sincos_signal_above_max_error_rate = 0.0; } void encoder_init_abi(uint32_t counts) { EXTI_InitTypeDef EXTI_InitStructure; // Initialize variables index_found = false; enc_counts = counts; palSetPadMode(HW_HALL_ENC_GPIO1, HW_HALL_ENC_PIN1, PAL_MODE_ALTERNATE(HW_ENC_TIM_AF)); palSetPadMode(HW_HALL_ENC_GPIO2, HW_HALL_ENC_PIN2, PAL_MODE_ALTERNATE(HW_ENC_TIM_AF)); // palSetPadMode(HW_HALL_ENC_GPIO3, HW_HALL_ENC_PIN3, PAL_MODE_ALTERNATE(HW_ENC_TIM_AF)); // Enable timer clock HW_ENC_TIM_CLK_EN(); // Enable SYSCFG clock RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE); TIM_EncoderInterfaceConfig (HW_ENC_TIM, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising, TIM_ICPolarity_Rising); TIM_SetAutoreload(HW_ENC_TIM, enc_counts - 1); // Filter HW_ENC_TIM->CCMR1 |= 6 << 12 | 6 << 4; HW_ENC_TIM->CCMR2 |= 6 << 4; TIM_Cmd(HW_ENC_TIM, ENABLE); // Interrupt on index pulse // Connect EXTI Line to pin SYSCFG_EXTILineConfig(HW_ENC_EXTI_PORTSRC, HW_ENC_EXTI_PINSRC); // Configure EXTI Line EXTI_InitStructure.EXTI_Line = HW_ENC_EXTI_LINE; EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising; EXTI_InitStructure.EXTI_LineCmd = ENABLE; EXTI_Init(&EXTI_InitStructure); // Enable and set EXTI Line Interrupt to the highest priority nvicEnableVector(HW_ENC_EXTI_CH, 0); mode = ENCODER_MODE_ABI; } void encoder_init_as5047p_spi(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; palSetPadMode(SPI_SW_MISO_GPIO, SPI_SW_MISO_PIN, PAL_MODE_INPUT); palSetPadMode(SPI_SW_SCK_GPIO, SPI_SW_SCK_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); palSetPadMode(SPI_SW_CS_GPIO, SPI_SW_CS_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); // Set MOSI to 1 #if AS5047_USE_HW_SPI_PINS palSetPadMode(SPI_SW_MOSI_GPIO, SPI_SW_MOSI_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); palSetPad(SPI_SW_MOSI_GPIO, SPI_SW_MOSI_PIN); #endif // Enable timer clock HW_ENC_TIM_CLK_EN(); // Time Base configuration TIM_TimeBaseStructure.TIM_Prescaler = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseStructure.TIM_Period = ((168000000 / 2 / AS5047_SAMPLE_RATE_HZ) - 1); TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_RepetitionCounter = 0; TIM_TimeBaseInit(HW_ENC_TIM, &TIM_TimeBaseStructure); // Enable overflow interrupt TIM_ITConfig(HW_ENC_TIM, TIM_IT_Update, ENABLE); // Enable timer TIM_Cmd(HW_ENC_TIM, ENABLE); nvicEnableVector(HW_ENC_TIM_ISR_CH, 6); mode = ENCODER_MODE_AS5047P_SPI; index_found = true; spi_error_rate = 0.0; } void encoder_init_ad2s1205_spi(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; palSetPadMode(SPI_SW_MISO_GPIO, SPI_SW_MISO_PIN, PAL_MODE_INPUT); palSetPadMode(SPI_SW_SCK_GPIO, SPI_SW_SCK_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); palSetPadMode(SPI_SW_CS_GPIO, SPI_SW_CS_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); // Set MOSI to 1 #if AS5047_USE_HW_SPI_PINS palSetPadMode(SPI_SW_MOSI_GPIO, SPI_SW_MOSI_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); palSetPad(SPI_SW_MOSI_GPIO, SPI_SW_MOSI_PIN); #endif // TODO: Choose pins on comm port when these are not defined #if defined(AD2S1205_SAMPLE_GPIO) && defined(AD2S1205_RDVEL_GPIO) palSetPadMode(AD2S1205_SAMPLE_GPIO, AD2S1205_SAMPLE_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); palSetPadMode(AD2S1205_RDVEL_GPIO, AD2S1205_RDVEL_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); palSetPad(AD2S1205_SAMPLE_GPIO, AD2S1205_SAMPLE_PIN); // Prepare for a falling edge SAMPLE assertion palSetPad(AD2S1205_RDVEL_GPIO, AD2S1205_RDVEL_PIN); // Will always read position #endif // Enable timer clock HW_ENC_TIM_CLK_EN(); // Time Base configuration TIM_TimeBaseStructure.TIM_Prescaler = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseStructure.TIM_Period = ((168000000 / 2 / AD2S1205_SAMPLE_RATE_HZ) - 1); TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_RepetitionCounter = 0; TIM_TimeBaseInit(HW_ENC_TIM, &TIM_TimeBaseStructure); // Enable overflow interrupt TIM_ITConfig(HW_ENC_TIM, TIM_IT_Update, ENABLE); // Enable timer TIM_Cmd(HW_ENC_TIM, ENABLE); nvicEnableVector(HW_ENC_TIM_ISR_CH, 6); mode = RESOLVER_MODE_AD2S1205; index_found = true; } void encoder_init_sincos(float s_gain, float s_offset, float c_gain, float c_offset, float filter_constant) { //ADC inputs are already initialized in hw_init_gpio() sin_gain = s_gain; sin_offset = s_offset; cos_gain = c_gain; cos_offset = c_offset; sincos_filter_constant = filter_constant; sincos_signal_below_min_error_cnt = 0; sincos_signal_above_max_error_cnt = 0; sincos_signal_low_error_rate = 0.0; sincos_signal_above_max_error_rate = 0.0; // ADC measurements needs to be in sync with motor PWM #ifdef HW_HAS_SIN_COS_ENCODER mode = ENCODER_MODE_SINCOS; index_found = true; #else mode = ENCODER_MODE_NONE; index_found = false; #endif } bool encoder_is_configured(void) { return mode != ENCODER_MODE_NONE; } /** * Read angle from configured encoder. * * @return * The current encoder angle in degrees. */ float encoder_read_deg(void) { static float angle = 0.0; switch (mode) { case ENCODER_MODE_ABI: angle = ((float)HW_ENC_TIM->CNT * 360.0) / (float)enc_counts; break; case ENCODER_MODE_AS5047P_SPI: case RESOLVER_MODE_AD2S1205: angle = last_enc_angle; break; #ifdef HW_HAS_SIN_COS_ENCODER case ENCODER_MODE_SINCOS: { float sin = ENCODER_SIN_VOLTS * sin_gain - sin_offset; float cos = ENCODER_COS_VOLTS * cos_gain - cos_offset; float module = SQ(sin) + SQ(cos); if (module > SQ(SINCOS_MAX_AMPLITUDE) ) { // signals vector outside of the valid area. Increase error count and discard measurement ++sincos_signal_above_max_error_cnt; UTILS_LP_FAST(sincos_signal_above_max_error_rate, 1.0, 1./SINCOS_SAMPLE_RATE_HZ); angle = last_enc_angle; } else { if (module < SQ(SINCOS_MIN_AMPLITUDE)) { ++sincos_signal_below_min_error_cnt; UTILS_LP_FAST(sincos_signal_low_error_rate, 1.0, 1./SINCOS_SAMPLE_RATE_HZ); angle = last_enc_angle; } else { UTILS_LP_FAST(sincos_signal_above_max_error_rate, 0.0, 1./SINCOS_SAMPLE_RATE_HZ); UTILS_LP_FAST(sincos_signal_low_error_rate, 0.0, 1./SINCOS_SAMPLE_RATE_HZ); float angle_tmp = utils_fast_atan2(sin, cos) * 180.0 / M_PI; UTILS_LP_FAST(angle, angle_tmp, sincos_filter_constant); last_enc_angle = angle; } } break; } #endif default: break; } return angle; } /** * Reset the encoder counter. Should be called from the index interrupt. */ void encoder_reset(void) { // Only reset if the pin is still high to avoid too short pulses, which // most likely are noise. __NOP(); __NOP(); __NOP(); __NOP(); if (palReadPad(HW_HALL_ENC_GPIO3, HW_HALL_ENC_PIN3)) { const unsigned int cnt = HW_ENC_TIM->CNT; static int bad_pulses = 0; const unsigned int lim = enc_counts / 20; if (index_found) { // Some plausibility filtering. if (cnt > (enc_counts - lim) || cnt < lim) { HW_ENC_TIM->CNT = 0; bad_pulses = 0; } else { bad_pulses++; if (bad_pulses > 5) { index_found = 0; } } } else { HW_ENC_TIM->CNT = 0; index_found = true; bad_pulses = 0; } } } // returns true for even number of ones (no parity error according to AS5047 datasheet bool spi_check_parity(uint16_t x) { x ^= x >> 8; x ^= x >> 4; x ^= x >> 2; x ^= x >> 1; return (~x) & 1; } /** * Timer interrupt */ void encoder_tim_isr(void) { uint16_t pos; if(mode == ENCODER_MODE_AS5047P_SPI) { spi_begin(); spi_transfer(&pos, 0, 1); spi_end(); spi_val = pos; if(spi_check_parity(pos) && pos != 0xffff) { // all ones = disconnect pos &= 0x3FFF; last_enc_angle = ((float)pos * 360.0) / 16384.0; UTILS_LP_FAST(spi_error_rate, 0.0, 1./AS5047_SAMPLE_RATE_HZ); } else { ++spi_error_cnt; UTILS_LP_FAST(spi_error_rate, 1.0, 1./AS5047_SAMPLE_RATE_HZ); } } if(mode == RESOLVER_MODE_AD2S1205) { // SAMPLE signal should have been be asserted in sync with ADC sampling #ifdef AD2S1205_RDVEL_GPIO palSetPad(AD2S1205_RDVEL_GPIO, AD2S1205_RDVEL_PIN); // Always read position #endif spi_begin(); // CS uses the same mcu pin as AS5047 spi_transfer(&pos, 0, 1); spi_end(); uint16_t RDVEL = pos & 0x08; // 1 means a position read uint16_t DOS = pos & 0x04; uint16_t LOT = pos & 0x02; // uint16_t parity = pos & 0x01; // 16 bit frame should have odd parity pos &= 0xFFF0; pos = pos >> 4; pos &= 0x0FFF; // check if needed if((RDVEL != 0) && (DOS != 0) && (LOT != 0)) { last_enc_angle = ((float)pos * 360.0) / 4096.0; } } } /** * Set the number of encoder counts. * * @param counts * The number of encoder counts */ void encoder_set_counts(uint32_t counts) { if (counts != enc_counts) { enc_counts = counts; TIM_SetAutoreload(HW_ENC_TIM, enc_counts - 1); index_found = false; } } /** * Check if the index pulse is found. * * @return * True if the index is found, false otherwise. */ bool encoder_index_found(void) { return index_found; } // Software SPI static void spi_transfer(uint16_t *in_buf, const uint16_t *out_buf, int length) { for (int i = 0;i < length;i++) { uint16_t send = out_buf ? out_buf[i] : 0xFFFF; uint16_t recieve = 0; for (int bit = 0;bit < 16;bit++) { //palWritePad(HW_SPI_PORT_MOSI, HW_SPI_PIN_MOSI, send >> 15); send <<= 1; spi_delay(); palSetPad(SPI_SW_SCK_GPIO, SPI_SW_SCK_PIN); spi_delay(); int r1, r2, r3; r1 = palReadPad(SPI_SW_MISO_GPIO, SPI_SW_MISO_PIN); __NOP(); r2 = palReadPad(SPI_SW_MISO_GPIO, SPI_SW_MISO_PIN); __NOP(); r3 = palReadPad(SPI_SW_MISO_GPIO, SPI_SW_MISO_PIN); recieve <<= 1; if (utils_middle_of_3_int(r1, r2, r3)) { recieve |= 1; } palClearPad(SPI_SW_SCK_GPIO, SPI_SW_SCK_PIN); spi_delay(); } if (in_buf) { in_buf[i] = recieve; } } } static void spi_begin(void) { palClearPad(SPI_SW_CS_GPIO, SPI_SW_CS_PIN); } static void spi_end(void) { palSetPad(SPI_SW_CS_GPIO, SPI_SW_CS_PIN); } static void spi_delay(void) { __NOP(); __NOP(); __NOP(); __NOP(); }