/* Copyright 2016 - 2017 Benjamin Vedder benjamin@vedder.se This file is part of the VESC firmware. The VESC firmware is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The VESC firmware is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "ch.h" #include "hal.h" #include "terminal.h" #include "mcpwm.h" #include "mcpwm_foc.h" #include "mc_interface.h" #include "commands.h" #include "hw.h" #include "comm_can.h" #include "utils.h" #include "timeout.h" #include "encoder.h" #include "drv8301.h" #include "drv8305.h" #include "drv8320.h" #include #include #include // Settings #define FAULT_VEC_LEN 25 #define CALLBACK_LEN 25 // Private types typedef struct _terminal_callback_struct { const char *command; const char *help; const char *arg_names; void(*cbf)(int argc, const char **argv); } terminal_callback_struct; // Private variables static volatile fault_data fault_vec[FAULT_VEC_LEN]; static volatile int fault_vec_write = 0; static terminal_callback_struct callbacks[CALLBACK_LEN]; static int callback_write = 0; void terminal_process_string(char *str) { enum { kMaxArgs = 64 }; int argc = 0; char *argv[kMaxArgs]; char *p2 = strtok(str, " "); while (p2 && argc < kMaxArgs) { argv[argc++] = p2; p2 = strtok(0, " "); } if (argc == 0) { commands_printf("No command received\n"); return; } static mc_configuration mcconf; // static to save some stack static mc_configuration mcconf_old; // static to save some stack mcconf = *mc_interface_get_configuration(); mcconf_old = mcconf; if (strcmp(argv[0], "ping") == 0) { commands_printf("pong\n"); } else if (strcmp(argv[0], "stop") == 0) { mc_interface_set_duty(0); commands_printf("Motor stopped\n"); } else if (strcmp(argv[0], "last_adc_duration") == 0) { commands_printf("Latest ADC duration: %.4f ms", (double)(mcpwm_get_last_adc_isr_duration() * 1000.0)); commands_printf("Latest injected ADC duration: %.4f ms", (double)(mc_interface_get_last_inj_adc_isr_duration() * 1000.0)); commands_printf("Latest sample ADC duration: %.4f ms\n", (double)(mc_interface_get_last_sample_adc_isr_duration() * 1000.0)); } else if (strcmp(argv[0], "kv") == 0) { commands_printf("Calculated KV: %.2f rpm/volt\n", (double)mcpwm_get_kv_filtered()); } else if (strcmp(argv[0], "mem") == 0) { size_t n, size; n = chHeapStatus(NULL, &size); commands_printf("core free memory : %u bytes", chCoreGetStatusX()); commands_printf("heap fragments : %u", n); commands_printf("heap free total : %u bytes\n", size); } else if (strcmp(argv[0], "threads") == 0) { thread_t *tp; static const char *states[] = {CH_STATE_NAMES}; commands_printf(" addr stack prio refs state name time "); commands_printf("-------------------------------------------------------------"); tp = chRegFirstThread(); do { commands_printf("%.8lx %.8lx %4lu %4lu %9s %14s %lu", (uint32_t)tp, (uint32_t)tp->p_ctx.r13, (uint32_t)tp->p_prio, (uint32_t)(tp->p_refs - 1), states[tp->p_state], tp->p_name, (uint32_t)tp->p_time); tp = chRegNextThread(tp); } while (tp != NULL); commands_printf(""); } else if (strcmp(argv[0], "fault") == 0) { commands_printf("%s\n", mc_interface_fault_to_string(mc_interface_get_fault())); } else if (strcmp(argv[0], "faults") == 0) { if (fault_vec_write == 0) { commands_printf("No faults registered since startup\n"); } else { commands_printf("The following faults were registered since start:\n"); for (int i = 0;i < fault_vec_write;i++) { commands_printf("Fault : %s", mc_interface_fault_to_string(fault_vec[i].fault)); commands_printf("Current : %.1f", (double)fault_vec[i].current); commands_printf("Current filtered : %.1f", (double)fault_vec[i].current_filtered); commands_printf("Voltage : %.2f", (double)fault_vec[i].voltage); commands_printf("Duty : %.3f", (double)fault_vec[i].duty); commands_printf("RPM : %.1f", (double)fault_vec[i].rpm); commands_printf("Tacho : %d", fault_vec[i].tacho); commands_printf("Cycles running : %d", fault_vec[i].cycles_running); commands_printf("TIM duty : %d", (int)((float)fault_vec[i].tim_top * fault_vec[i].duty)); commands_printf("TIM val samp : %d", fault_vec[i].tim_val_samp); commands_printf("TIM current samp : %d", fault_vec[i].tim_current_samp); commands_printf("TIM top : %d", fault_vec[i].tim_top); commands_printf("Comm step : %d", fault_vec[i].comm_step); commands_printf("Temperature : %.2f", (double)fault_vec[i].temperature); #ifdef HW_HAS_DRV8301 if (fault_vec[i].fault == FAULT_CODE_DRV) { commands_printf("DRV8301_FAULTS : %s", drv8301_faults_to_string(fault_vec[i].drv8301_faults)); } #endif #ifdef HW_HAS_DRV8320 if (fault_vec[i].fault == FAULT_CODE_DRV) { commands_printf("DRV8320_FAULTS : %s", drv8320_faults_to_string(fault_vec[i].drv8301_faults)); } #endif commands_printf(" "); } } } else if (strcmp(argv[0], "rpm") == 0) { commands_printf("Electrical RPM: %.2f rpm\n", (double)mc_interface_get_rpm()); } else if (strcmp(argv[0], "tacho") == 0) { commands_printf("Tachometer counts: %i\n", mc_interface_get_tachometer_value(0)); } else if (strcmp(argv[0], "tim") == 0) { chSysLock(); volatile int t1_cnt = TIM1->CNT; volatile int t8_cnt = TIM8->CNT; volatile int dir1 = !!(TIM1->CR1 & (1 << 4)); volatile int dir8 = !!(TIM8->CR1 & (1 << 4)); chSysUnlock(); int duty1 = TIM1->CCR1; int duty2 = TIM1->CCR2; int duty3 = TIM1->CCR3; int top = TIM1->ARR; int voltage_samp = TIM8->CCR1; int current1_samp = TIM1->CCR4; int current2_samp = TIM8->CCR2; commands_printf("Tim1 CNT: %i", t1_cnt); commands_printf("Tim8 CNT: %u", t8_cnt); commands_printf("Duty cycle1: %u", duty1); commands_printf("Duty cycle2: %u", duty2); commands_printf("Duty cycle3: %u", duty3); commands_printf("Top: %u", top); commands_printf("Dir1: %u", dir1); commands_printf("Dir8: %u", dir8); commands_printf("Voltage sample: %u", voltage_samp); commands_printf("Current 1 sample: %u", current1_samp); commands_printf("Current 2 sample: %u\n", current2_samp); } else if (strcmp(argv[0], "volt") == 0) { commands_printf("Input voltage: %.2f\n", (double)GET_INPUT_VOLTAGE()); } else if (strcmp(argv[0], "param_detect") == 0) { // Use COMM_MODE_DELAY and try to figure out the motor parameters. if (argc == 4) { float current = -1.0; float min_rpm = -1.0; float low_duty = -1.0; sscanf(argv[1], "%f", ¤t); sscanf(argv[2], "%f", &min_rpm); sscanf(argv[3], "%f", &low_duty); if (current > 0.0 && current < mcconf.l_current_max && min_rpm > 10.0 && min_rpm < 3000.0 && low_duty > 0.02 && low_duty < 0.8) { float cycle_integrator; float coupling_k; int8_t hall_table[8]; int hall_res; if (conf_general_detect_motor_param(current, min_rpm, low_duty, &cycle_integrator, &coupling_k, hall_table, &hall_res)) { commands_printf("Cycle integrator limit: %.2f", (double)cycle_integrator); commands_printf("Coupling factor: %.2f", (double)coupling_k); if (hall_res == 0) { commands_printf("Detected hall sensor table:"); commands_printf("%i, %i, %i, %i, %i, %i, %i, %i\n", hall_table[0], hall_table[1], hall_table[2], hall_table[3], hall_table[4], hall_table[5], hall_table[6], hall_table[7]); } else if (hall_res == -1) { commands_printf("Hall sensor detection failed:"); commands_printf("%i, %i, %i, %i, %i, %i, %i, %i\n", hall_table[0], hall_table[1], hall_table[2], hall_table[3], hall_table[4], hall_table[5], hall_table[6], hall_table[7]); } else if (hall_res == -2) { commands_printf("WS2811 enabled. Hall sensors cannot be used.\n"); } else if (hall_res == -3) { commands_printf("Encoder enabled. Hall sensors cannot be used.\n"); } } else { commands_printf("Detection failed. Try again with different parameters.\n"); } } else { commands_printf("Invalid argument(s).\n"); } } else { commands_printf("This command requires three arguments.\n"); } } else if (strcmp(argv[0], "rpm_dep") == 0) { mc_rpm_dep_struct rpm_dep = mcpwm_get_rpm_dep(); commands_printf("Cycle int limit: %.2f", (double)rpm_dep.cycle_int_limit); commands_printf("Cycle int limit running: %.2f", (double)rpm_dep.cycle_int_limit_running); commands_printf("Cycle int limit max: %.2f\n", (double)rpm_dep.cycle_int_limit_max); } else if (strcmp(argv[0], "can_devs") == 0) { commands_printf("CAN devices seen on the bus the past second:\n"); for (int i = 0;i < CAN_STATUS_MSGS_TO_STORE;i++) { can_status_msg *msg = comm_can_get_status_msg_index(i); if (msg->id >= 0 && UTILS_AGE_S(msg->rx_time) < 1.0) { commands_printf("ID : %i", msg->id); commands_printf("RX Time : %i", msg->rx_time); commands_printf("Age (milliseconds) : %.2f", (double)(UTILS_AGE_S(msg->rx_time) * 1000.0)); commands_printf("RPM : %.2f", (double)msg->rpm); commands_printf("Current : %.2f", (double)msg->current); commands_printf("Duty : %.2f\n", (double)msg->duty); } } } else if (strcmp(argv[0], "foc_encoder_detect") == 0) { if (argc == 2) { float current = -1.0; sscanf(argv[1], "%f", ¤t); if (current > 0.0 && current <= mcconf.l_current_max) { if (encoder_is_configured()) { mc_motor_type type_old = mcconf.motor_type; mcconf.motor_type = MOTOR_TYPE_FOC; mc_interface_set_configuration(&mcconf); float offset = 0.0; float ratio = 0.0; bool inverted = false; mcpwm_foc_encoder_detect(current, true, &offset, &ratio, &inverted); mcconf.motor_type = type_old; mc_interface_set_configuration(&mcconf); commands_printf("Offset : %.2f", (double)offset); commands_printf("Ratio : %.2f", (double)ratio); commands_printf("Inverted : %s\n", inverted ? "true" : "false"); } else { commands_printf("Encoder not enabled.\n"); } } else { commands_printf("Invalid argument(s).\n"); } } else { commands_printf("This command requires one argument.\n"); } } else if (strcmp(argv[0], "measure_res") == 0) { if (argc == 2) { float current = -1.0; sscanf(argv[1], "%f", ¤t); if (current > 0.0 && current <= mcconf.l_current_max) { mcconf.motor_type = MOTOR_TYPE_FOC; mc_interface_set_configuration(&mcconf); commands_printf("Resistance: %.6f ohm\n", (double)mcpwm_foc_measure_resistance(current, 2000)); mc_interface_set_configuration(&mcconf_old); } else { commands_printf("Invalid argument(s).\n"); } } else { commands_printf("This command requires one argument.\n"); } } else if (strcmp(argv[0], "measure_ind") == 0) { if (argc == 2) { float duty = -1.0; sscanf(argv[1], "%f", &duty); if (duty > 0.0 && duty < 0.9) { mcconf.motor_type = MOTOR_TYPE_FOC; mcconf.foc_f_sw = 3000.0; mc_interface_set_configuration(&mcconf); float curr; float ind = mcpwm_foc_measure_inductance(duty, 200, &curr); commands_printf("Inductance: %.2f microhenry (%.2f A)\n", (double)ind, (double)curr); mc_interface_set_configuration(&mcconf_old); } else { commands_printf("Invalid argument(s).\n"); } } else { commands_printf("This command requires one argument.\n"); } } else if (strcmp(argv[0], "measure_linkage") == 0) { if (argc == 5) { float current = -1.0; float duty = -1.0; float min_erpm = -1.0; float res = -1.0; sscanf(argv[1], "%f", ¤t); sscanf(argv[2], "%f", &duty); sscanf(argv[3], "%f", &min_erpm); sscanf(argv[4], "%f", &res); if (current > 0.0 && current <= mcconf.l_current_max && min_erpm > 0.0 && duty > 0.02 && res >= 0.0) { float linkage; conf_general_measure_flux_linkage(current, duty, min_erpm, res, &linkage); commands_printf("Flux linkage: %.7f\n", (double)linkage); } else { commands_printf("Invalid argument(s).\n"); } } else { commands_printf("This command requires one argument.\n"); } } else if (strcmp(argv[0], "measure_res_ind") == 0) { mcconf.motor_type = MOTOR_TYPE_FOC; mc_interface_set_configuration(&mcconf); float res = 0.0; float ind = 0.0; mcpwm_foc_measure_res_ind(&res, &ind); commands_printf("Resistance: %.6f ohm", (double)res); commands_printf("Inductance: %.2f microhenry\n", (double)ind); mc_interface_set_configuration(&mcconf_old); } else if (strcmp(argv[0], "measure_linkage_foc") == 0) { if (argc == 2) { float duty = -1.0; sscanf(argv[1], "%f", &duty); if (duty > 0.0) { mcconf.motor_type = MOTOR_TYPE_FOC; mc_interface_set_configuration(&mcconf); const float res = (3.0 / 2.0) * mcconf.foc_motor_r; // Disable timeout systime_t tout = timeout_get_timeout_msec(); float tout_c = timeout_get_brake_current(); timeout_reset(); timeout_configure(60000, 0.0); for (int i = 0;i < 100;i++) { mc_interface_set_duty(((float)i / 100.0) * duty); chThdSleepMilliseconds(20); } float vq_avg = 0.0; float rpm_avg = 0.0; float samples = 0.0; float iq_avg = 0.0; for (int i = 0;i < 1000;i++) { vq_avg += mcpwm_foc_get_vq(); rpm_avg += mc_interface_get_rpm(); iq_avg += mc_interface_get_tot_current_directional(); samples += 1.0; chThdSleepMilliseconds(1); } mc_interface_release_motor(); mc_interface_set_configuration(&mcconf_old); // Enable timeout timeout_configure(tout, tout_c); vq_avg /= samples; rpm_avg /= samples; iq_avg /= samples; float linkage = (vq_avg - res * iq_avg) / (rpm_avg * ((2.0 * M_PI) / 60.0)); commands_printf("Flux linkage: %.7f\n", (double)linkage); } else { commands_printf("Invalid argument(s).\n"); } } else { commands_printf("This command requires one argument.\n"); } } else if (strcmp(argv[0], "foc_state") == 0) { mcpwm_foc_print_state(); commands_printf(" "); } else if (strcmp(argv[0], "hw_status") == 0) { commands_printf("Firmware: %d.%d", FW_VERSION_MAJOR, FW_VERSION_MINOR); #ifdef HW_NAME commands_printf("Hardware: %s", HW_NAME); #endif commands_printf("UUID: %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X", STM32_UUID_8[0], STM32_UUID_8[1], STM32_UUID_8[2], STM32_UUID_8[3], STM32_UUID_8[4], STM32_UUID_8[5], STM32_UUID_8[6], STM32_UUID_8[7], STM32_UUID_8[8], STM32_UUID_8[9], STM32_UUID_8[10], STM32_UUID_8[11]); commands_printf("Permanent NRF found: %s", conf_general_permanent_nrf_found ? "Yes" : "No"); commands_printf(" "); } else if (strcmp(argv[0], "drv8301_read_reg") == 0) { #ifdef HW_HAS_DRV8301 if (argc == 2) { int reg = -1; sscanf(argv[1], "%d", ®); if (reg >= 0) { unsigned int res = drv8301_read_reg(reg); char bl[9]; char bh[9]; utils_byte_to_binary((res >> 8) & 0xFF, bh); utils_byte_to_binary(res & 0xFF, bl); commands_printf("Reg 0x%02x: %s %s (0x%04x)\n", reg, bh, bl, res); } else { commands_printf("Invalid argument(s).\n"); } } else { commands_printf("This command requires one argument.\n"); } #else commands_printf("This hardware does not have a DRV8301.\n"); #endif } else if (strcmp(argv[0], "drv8301_write_reg") == 0) { #ifdef HW_HAS_DRV8301 if (argc == 3) { int reg = -1; int val = -1; sscanf(argv[1], "%d", ®); sscanf(argv[2], "%x", &val); if (reg >= 0 && val >= 0) { drv8301_write_reg(reg, val); unsigned int res = drv8301_read_reg(reg); char bl[9]; char bh[9]; utils_byte_to_binary((res >> 8) & 0xFF, bh); utils_byte_to_binary(res & 0xFF, bl); commands_printf("New reg value 0x%02x: %s %s (0x%04x)\n", reg, bh, bl, res); } else { commands_printf("Invalid argument(s).\n"); } } else { commands_printf("This command requires two arguments.\n"); } #else commands_printf("This hardware does not have a DRV8301.\n"); #endif } else if (strcmp(argv[0], "drv8301_set_oc_adj") == 0) { #ifdef HW_HAS_DRV8301 if (argc == 2) { int val = -1; sscanf(argv[1], "%d", &val); if (val >= 0 && val < 32) { drv8301_set_oc_adj(val); unsigned int res = drv8301_read_reg(2); char bl[9]; char bh[9]; utils_byte_to_binary((res >> 8) & 0xFF, bh); utils_byte_to_binary(res & 0xFF, bl); commands_printf("New reg value 0x%02x: %s %s (0x%04x)\n", 2, bh, bl, res); } else { commands_printf("Invalid argument(s).\n"); } } else { commands_printf("This command requires one argument.\n"); } #else commands_printf("This hardware does not have a DRV8301.\n"); #endif } else if (strcmp(argv[0], "drv8301_print_faults") == 0) { #ifdef HW_HAS_DRV8301 commands_printf(drv8301_faults_to_string(drv8301_read_faults())); #else commands_printf("This hardware does not have a DRV8301.\n"); #endif } else if (strcmp(argv[0], "drv8301_reset_faults") == 0) { #ifdef HW_HAS_DRV8301 drv8301_reset_faults(); #else commands_printf("This hardware does not have a DRV8301.\n"); #endif } else if (strcmp(argv[0], "drv8305_read_reg") == 0) { #ifdef HW_HAS_DRV8305 if (argc == 2) { int reg = -1; sscanf(argv[1], "%d", ®); if (reg >= 0) { unsigned int res = drv8305_read_reg(reg); char bl[9]; char bh[9]; utils_byte_to_binary((res >> 8) & 0xFF, bh); utils_byte_to_binary(res & 0xFF, bl); commands_printf("Reg 0x%02x: %s %s (0x%04x)\n", reg, bh, bl, res); } else { commands_printf("Invalid argument(s).\n"); } } else { commands_printf("This command requires one argument.\n"); } #else commands_printf("This hardware does not have a DRV8305.\n"); #endif } else if (strcmp(argv[0], "drv8305_write_reg") == 0) { #ifdef HW_HAS_DRV8305 if (argc == 3) { int reg = -1; int val = -1; sscanf(argv[1], "%d", ®); sscanf(argv[2], "%x", &val); if (reg >= 0 && val >= 0) { drv8305_write_reg(reg, val); unsigned int res = drv8305_read_reg(reg); char bl[9]; char bh[9]; utils_byte_to_binary((res >> 8) & 0xFF, bh); utils_byte_to_binary(res & 0xFF, bl); commands_printf("New reg value 0x%02x: %s %s (0x%04x)\n", reg, bh, bl, res); } else { commands_printf("Invalid argument(s).\n"); } } else { commands_printf("This command requires two arguments.\n"); } #else commands_printf("This hardware does not have a DRV8305.\n"); #endif } else if (strcmp(argv[0], "drv8320_print_faults") == 0) { #ifdef HW_HAS_DRV8320 commands_printf(drv8320_faults_to_string(drv8320_read_faults())); #else commands_printf("This hardware does not have a DRV8320.\n"); #endif } else if (strcmp(argv[0], "drv8320_reset_faults") == 0) { #ifdef HW_HAS_DRV8320 drv8320_reset_faults(); #else commands_printf("This hardware does not have a DRV8320.\n"); #endif } else if (strcmp(argv[0], "drv8320_read_reg") == 0) { #ifdef HW_HAS_DRV8320 if (argc == 2) { int reg = -1; sscanf(argv[1], "%d", ®); if (reg >= 0) { unsigned int res = drv8320_read_reg(reg); char bl[9]; char bh[9]; utils_byte_to_binary((res >> 8) & 0xFF, bh); utils_byte_to_binary(res & 0xFF, bl); commands_printf("Reg 0x%02x: %s %s (0x%04x)\n", reg, bh, bl, res); } else { commands_printf("Invalid argument(s).\n"); } } else { commands_printf("This command requires one argument.\n"); } #else commands_printf("This hardware does not have a DRV8320.\n"); #endif } else if (strcmp(argv[0], "drv8320_write_reg") == 0) { #ifdef HW_HAS_DRV8320 if (argc == 3) { int reg = -1; int val = -1; sscanf(argv[1], "%d", ®); sscanf(argv[2], "%x", &val); if (reg >= 0 && val >= 0) { drv8320_write_reg(reg, val); unsigned int res = drv8320_read_reg(reg); char bl[9]; char bh[9]; utils_byte_to_binary((res >> 8) & 0xFF, bh); utils_byte_to_binary(res & 0xFF, bl); commands_printf("New reg value 0x%02x: %s %s (0x%04x)\n", reg, bh, bl, res); } else { commands_printf("Invalid argument(s).\n"); } } else { commands_printf("This command requires two arguments.\n"); } #else commands_printf("This hardware does not have a DRV8320.\n"); #endif } else if (strcmp(argv[0], "foc_openloop") == 0) { if (argc == 3) { float current = -1.0; float erpm = -1.0; sscanf(argv[1], "%f", ¤t); sscanf(argv[2], "%f", &erpm); if (current >= 0.0 && erpm >= 0.0) { mcpwm_foc_set_openloop(current, erpm); } else { commands_printf("Invalid argument(s).\n"); } } else { commands_printf("This command requires two arguments.\n"); } } // The help command else if (strcmp(argv[0], "help") == 0) { commands_printf("Valid commands are:"); commands_printf("help"); commands_printf(" Show this help"); commands_printf("ping"); commands_printf(" Print pong here to see if the reply works"); commands_printf("stop"); commands_printf(" Stop the motor"); commands_printf("last_adc_duration"); commands_printf(" The time the latest ADC interrupt consumed"); commands_printf("kv"); commands_printf(" The calculated kv of the motor"); commands_printf("mem"); commands_printf(" Show memory usage"); commands_printf("threads"); commands_printf(" List all threads"); commands_printf("fault"); commands_printf(" Prints the current fault code"); commands_printf("faults"); commands_printf(" Prints all stored fault codes and conditions when they arrived"); commands_printf("rpm"); commands_printf(" Prints the current electrical RPM"); commands_printf("tacho"); commands_printf(" Prints tachometer value"); commands_printf("tim"); commands_printf(" Prints tim1 and tim8 settings"); commands_printf("volt"); commands_printf(" Prints different voltages"); commands_printf("param_detect [current] [min_rpm] [low_duty]"); commands_printf(" Spin up the motor in COMM_MODE_DELAY and compute its parameters."); commands_printf(" This test should be performed without load on the motor."); commands_printf(" Example: param_detect 5.0 600 0.06"); commands_printf("rpm_dep"); commands_printf(" Prints some rpm-dep values"); commands_printf("can_devs"); commands_printf(" Prints all CAN devices seen on the bus the past second"); commands_printf("foc_encoder_detect [current]"); commands_printf(" Run the motor at 1Hz on open loop and compute encoder settings"); commands_printf("measure_res [current]"); commands_printf(" Lock the motor with a current and calculate its resistance"); commands_printf("measure_ind [duty]"); commands_printf(" Send short voltage pulses, measure the current and calculate the motor inductance"); commands_printf("measure_linkage [current] [duty] [min_rpm] [motor_res]"); commands_printf(" Run the motor in BLDC delay mode and measure the flux linkage"); commands_printf(" example measure_linkage 5 0.5 700 0.076"); commands_printf(" tip: measure the resistance with measure_res first"); commands_printf("measure_res_ind"); commands_printf(" Measure the motor resistance and inductance with an incremental adaptive algorithm."); commands_printf("measure_linkage_foc [duty]"); commands_printf(" Run the motor with FOC and measure the flux linkage."); commands_printf("foc_state"); commands_printf(" Print some FOC state variables."); commands_printf("hw_status"); commands_printf(" Print some hardware status information."); #ifdef HW_HAS_DRV8301 commands_printf("drv8301_read_reg [reg]"); commands_printf(" Read a register from the DRV8301 and print it."); commands_printf("drv8301_write_reg [reg] [hexvalue]"); commands_printf(" Write to a DRV8301 register."); commands_printf("drv8301_set_oc_adj [value]"); commands_printf(" Set the DRV8301 OC ADJ register."); commands_printf("drv8301_print_faults"); commands_printf(" Print all current DRV8301 faults."); commands_printf("drv8301_reset_faults"); commands_printf(" Reset all latched DRV8301 faults."); #endif #ifdef HW_HAS_DRV8305 commands_printf("drv8305_read_reg [reg]"); commands_printf(" Read a register from the DRV8305 and print it."); commands_printf("drv8305_write_reg [reg] [hexvalue]"); commands_printf(" Write to a DRV8305 register."); #endif #ifdef HW_HAS_DRV8320 commands_printf("drv8320_read_reg [reg]"); commands_printf(" Read a register from the DRV8320 and print it."); commands_printf("drv8320_write_reg [reg] [hexvalue]"); commands_printf(" Write to a DRV8320 register."); commands_printf("drv8320_set_oc_adj [value]"); commands_printf(" Set the DRV8320 OC ADJ register."); commands_printf("drv8320_print_faults"); commands_printf(" Print all current DRV8320 faults."); commands_printf("drv8320_reset_faults"); commands_printf(" Reset all latched DRV8320 faults."); #endif commands_printf("foc_openloop [current] [erpm]"); commands_printf(" Create an open loop rotating current vector."); for (int i = 0;i < callback_write;i++) { if (callbacks[i].arg_names) { commands_printf("%s %s", callbacks[i].command, callbacks[i].arg_names); } else { commands_printf(callbacks[i].command); } if (callbacks[i].help) { commands_printf(" %s", callbacks[i].help); } else { commands_printf(" There is no help available for this command."); } } commands_printf(" "); } else { bool found = false; for (int i = 0;i < callback_write;i++) { if (strcmp(argv[0], callbacks[i].command) == 0) { callbacks[i].cbf(argc, (const char**)argv); found = true; break; } } if (!found) { commands_printf("Invalid command: %s\n" "type help to list all available commands\n", argv[0]); } } } void terminal_add_fault_data(fault_data *data) { fault_vec[fault_vec_write++] = *data; if (fault_vec_write >= FAULT_VEC_LEN) { fault_vec_write = 0; } } /** * Register a custom command callback to the terminal. If the command * is already registered the old command callback will be replaced. * * @param command * The command name. * * @param help * A help text for the command. Can be NULL. * * @param arg_names * The argument names for the command, e.g. [arg_a] [arg_b] * Can be NULL. * * @param cbf * The callback function for the command. */ void terminal_register_command_callback( const char* command, const char *help, const char *arg_names, void(*cbf)(int argc, const char **argv)) { int callback_num = callback_write; for (int i = 0;i < callback_write;i++) { // First check the address in case the same callback is registered more than once. if (callbacks[i].command == command) { callback_num = i; break; } // Check by string comparison. if (strcmp(callbacks[i].command, command) == 0) { callback_num = i; break; } } callbacks[callback_num].command = command; callbacks[callback_num].help = help; callbacks[callback_num].arg_names = arg_names; callbacks[callback_num].cbf = cbf; if (callback_num == callback_write) { callback_write++; if (callback_write >= CALLBACK_LEN) { callback_write = 0; } } }