/* Copyright 2019 Benjamin Vedder benjamin@vedder.se This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "hw.h" #include "ch.h" #include "hal.h" #include "stm32f4xx_conf.h" #include "utils.h" #include "ledpwm.h" #include "drv8323s.h" #if defined (HW_VER_IS_100S_V2) static THD_WORKING_AREA(switch_color_thread_wa, 128); static THD_FUNCTION(switch_color_thread, arg); static volatile float switch_bright = 1.0; #endif // I2C configuration static const I2CConfig i2cfg = { OPMODE_I2C, 100000, STD_DUTY_CYCLE }; static volatile bool i2c_running = false; void hw_init_gpio(void) { // GPIO clock enable RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE); #if defined (HW_VER_IS_100S_V2) palSetPadMode(PHASE_FILTER_GPIO, PHASE_FILTER_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); PHASE_FILTER_OFF(); palSetPadMode(SWITCH_LED_1_GPIO,SWITCH_LED_1_PIN, PAL_MODE_OUTPUT_OPENDRAIN | PAL_STM32_OSPEED_HIGHEST); palSetPadMode(SWITCH_LED_2_GPIO,SWITCH_LED_2_PIN, PAL_MODE_OUTPUT_OPENDRAIN | PAL_STM32_OSPEED_HIGHEST); palSetPadMode(SWITCH_LED_3_GPIO,SWITCH_LED_3_PIN, PAL_MODE_OUTPUT_OPENDRAIN | PAL_STM32_OSPEED_HIGHEST); chThdCreateStatic(switch_color_thread_wa, sizeof(switch_color_thread_wa), LOWPRIO, switch_color_thread, NULL); #endif // LEDs palSetPadMode(GPIOB, 0, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); palSetPadMode(GPIOB, 1, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); // ENABLE_GATE palSetPadMode(GPIOB, 5, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); ENABLE_GATE(); // Disable BMI160 palSetPadMode(GPIOA, 15, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); palSetPad(GPIOA, 15); // Disable DCCAL palSetPadMode(GPIOD, 2, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); palClearPad(GPIOD, 2); ENABLE_GATE(); // GPIOA Configuration: Channel 1 to 3 as alternate function push-pull palSetPadMode(GPIOA, 8, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) | PAL_STM32_OSPEED_HIGHEST | PAL_STM32_PUDR_FLOATING); palSetPadMode(GPIOA, 9, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) | PAL_STM32_OSPEED_HIGHEST | PAL_STM32_PUDR_FLOATING); palSetPadMode(GPIOA, 10, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) | PAL_STM32_OSPEED_HIGHEST | PAL_STM32_PUDR_FLOATING); palSetPadMode(GPIOB, 13, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) | PAL_STM32_OSPEED_HIGHEST | PAL_STM32_PUDR_FLOATING); palSetPadMode(GPIOB, 14, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) | PAL_STM32_OSPEED_HIGHEST | PAL_STM32_PUDR_FLOATING); palSetPadMode(GPIOB, 15, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) | PAL_STM32_OSPEED_HIGHEST | PAL_STM32_PUDR_FLOATING); // Hall sensors palSetPadMode(HW_HALL_ENC_GPIO1, HW_HALL_ENC_PIN1, PAL_MODE_INPUT_PULLUP); palSetPadMode(HW_HALL_ENC_GPIO2, HW_HALL_ENC_PIN2, PAL_MODE_INPUT_PULLUP); palSetPadMode(HW_HALL_ENC_GPIO3, HW_HALL_ENC_PIN3, PAL_MODE_INPUT_PULLUP); // Fault pin palSetPadMode(GPIOB, 7, PAL_MODE_INPUT_PULLUP); // ADC Pins palSetPadMode(GPIOA, 0, PAL_MODE_INPUT_ANALOG); palSetPadMode(GPIOA, 1, PAL_MODE_INPUT_ANALOG); palSetPadMode(GPIOA, 2, PAL_MODE_INPUT_ANALOG); palSetPadMode(GPIOA, 3, PAL_MODE_INPUT_ANALOG); palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG); palSetPadMode(GPIOA, 6, PAL_MODE_INPUT_ANALOG); palSetPadMode(GPIOC, 0, PAL_MODE_INPUT_ANALOG); palSetPadMode(GPIOC, 1, PAL_MODE_INPUT_ANALOG); palSetPadMode(GPIOC, 2, PAL_MODE_INPUT_ANALOG); palSetPadMode(GPIOC, 3, PAL_MODE_INPUT_ANALOG); palSetPadMode(GPIOC, 4, PAL_MODE_INPUT_ANALOG); palSetPadMode(GPIOC, 5, PAL_MODE_INPUT_ANALOG); drv8323s_init(); } void hw_setup_adc_channels(void) { // ADC1 regular channels ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 2, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC1, ADC_Channel_5, 3, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 4, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC1, ADC_Channel_Vrefint, 5, ADC_SampleTime_15Cycles); // ADC2 regular channels ADC_RegularChannelConfig(ADC2, ADC_Channel_1, 1, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC2, ADC_Channel_11, 2, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC2, ADC_Channel_6, 3, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC2, ADC_Channel_15, 4, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC2, ADC_Channel_0, 5, ADC_SampleTime_15Cycles); // ADC3 regular channels ADC_RegularChannelConfig(ADC3, ADC_Channel_2, 1, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC3, ADC_Channel_12, 2, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC3, ADC_Channel_3, 3, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC3, ADC_Channel_13, 4, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC3, ADC_Channel_1, 5, ADC_SampleTime_15Cycles); // Injected channels ADC_InjectedChannelConfig(ADC1, ADC_Channel_10, 1, ADC_SampleTime_15Cycles); ADC_InjectedChannelConfig(ADC2, ADC_Channel_11, 1, ADC_SampleTime_15Cycles); ADC_InjectedChannelConfig(ADC3, ADC_Channel_12, 1, ADC_SampleTime_15Cycles); ADC_InjectedChannelConfig(ADC1, ADC_Channel_10, 2, ADC_SampleTime_15Cycles); ADC_InjectedChannelConfig(ADC2, ADC_Channel_11, 2, ADC_SampleTime_15Cycles); ADC_InjectedChannelConfig(ADC3, ADC_Channel_12, 2, ADC_SampleTime_15Cycles); ADC_InjectedChannelConfig(ADC1, ADC_Channel_10, 3, ADC_SampleTime_15Cycles); ADC_InjectedChannelConfig(ADC2, ADC_Channel_11, 3, ADC_SampleTime_15Cycles); ADC_InjectedChannelConfig(ADC3, ADC_Channel_12, 3, ADC_SampleTime_15Cycles); } void hw_start_i2c(void) { i2cAcquireBus(&HW_I2C_DEV); if (!i2c_running) { palSetPadMode(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN, PAL_MODE_ALTERNATE(HW_I2C_GPIO_AF) | PAL_STM32_OTYPE_OPENDRAIN | PAL_STM32_OSPEED_MID1 | PAL_STM32_PUDR_PULLUP); palSetPadMode(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN, PAL_MODE_ALTERNATE(HW_I2C_GPIO_AF) | PAL_STM32_OTYPE_OPENDRAIN | PAL_STM32_OSPEED_MID1 | PAL_STM32_PUDR_PULLUP); i2cStart(&HW_I2C_DEV, &i2cfg); i2c_running = true; } i2cReleaseBus(&HW_I2C_DEV); } void hw_stop_i2c(void) { i2cAcquireBus(&HW_I2C_DEV); if (i2c_running) { palSetPadMode(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN, PAL_MODE_INPUT); palSetPadMode(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN, PAL_MODE_INPUT); i2cStop(&HW_I2C_DEV); i2c_running = false; } i2cReleaseBus(&HW_I2C_DEV); } /** * Try to restore the i2c bus */ void hw_try_restore_i2c(void) { if (i2c_running) { i2cAcquireBus(&HW_I2C_DEV); palSetPadMode(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN, PAL_STM32_OTYPE_OPENDRAIN | PAL_STM32_OSPEED_MID1 | PAL_STM32_PUDR_PULLUP); palSetPadMode(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN, PAL_STM32_OTYPE_OPENDRAIN | PAL_STM32_OSPEED_MID1 | PAL_STM32_PUDR_PULLUP); palSetPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN); palSetPad(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN); chThdSleep(1); for(int i = 0;i < 16;i++) { palClearPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN); chThdSleep(1); palSetPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN); chThdSleep(1); } // Generate start then stop condition palClearPad(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN); chThdSleep(1); palClearPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN); chThdSleep(1); palSetPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN); chThdSleep(1); palSetPad(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN); palSetPadMode(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN, PAL_MODE_ALTERNATE(HW_I2C_GPIO_AF) | PAL_STM32_OTYPE_OPENDRAIN | PAL_STM32_OSPEED_MID1 | PAL_STM32_PUDR_PULLUP); palSetPadMode(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN, PAL_MODE_ALTERNATE(HW_I2C_GPIO_AF) | PAL_STM32_OTYPE_OPENDRAIN | PAL_STM32_OSPEED_MID1 | PAL_STM32_PUDR_PULLUP); HW_I2C_DEV.state = I2C_STOP; i2cStart(&HW_I2C_DEV, &i2cfg); i2cReleaseBus(&HW_I2C_DEV); } } #if defined (HW_VER_IS_100S_V2) static THD_FUNCTION(switch_color_thread, arg) { (void)arg; chRegSetThreadName("switch_color"); float switch_red = 0.0; float switch_green = 0.0; float switch_blue = 0.0; for(int i = 0; i < 400; i++) { float angle = i*3.14/400.0; float s,c; utils_fast_sincos_better(angle, &s, &c); switch_blue = 0.75* c*c; ledpwm_set_intensity(LED_HW1,switch_bright*switch_blue); utils_fast_sincos_better(angle + 3.14/3.0, &s, &c); switch_green = 0.75* c*c; ledpwm_set_intensity(LED_HW2,switch_bright*switch_green); utils_fast_sincos_better(angle + 6.28/3.0, &s, &c); switch_red = 0.75* c*c; ledpwm_set_intensity(LED_HW3,switch_bright*switch_red); chThdSleepMilliseconds(4); } float switch_red_old = switch_red_old; float switch_green_old = switch_green; float switch_blue_old = switch_blue; float wh_left; float left = mc_interface_get_battery_level(&wh_left); if(left < 0.5){ float intense = utils_map(left,0.0, 0.5, 0.0, 1.0); utils_truncate_number(&intense,0,1); switch_blue = intense; switch_red = 1.0-intense; }else{ float intense = utils_map(left , 0.5, 1.0, 0.0, 1.0); utils_truncate_number(&intense,0,1); switch_green = intense; switch_blue = 1.0-intense; } for(int i = 0; i < 100; i++) { float red_now = utils_map((float) i,0.0, 100.0, switch_red_old, switch_red); float blue_now = utils_map((float) i,0.0, 100.0, switch_blue_old, switch_blue); float green_now = utils_map((float) i,0.0, 100.0, switch_green_old, switch_green); ledpwm_set_intensity(LED_HW1, switch_bright*blue_now); ledpwm_set_intensity(LED_HW2, switch_bright*green_now); ledpwm_set_intensity(LED_HW3, switch_bright*red_now); chThdSleepMilliseconds(2); } for (;;) { mc_fault_code fault = mc_interface_get_fault(); mc_interface_select_motor_thread(2); mc_fault_code fault2 = mc_interface_get_fault(); mc_interface_select_motor_thread(1); if (fault != FAULT_CODE_NONE || fault2 != FAULT_CODE_NONE) { ledpwm_set_intensity(LED_HW2, 0); ledpwm_set_intensity(LED_HW1, 0); for (int i = 0;i < (int)fault;i++) { ledpwm_set_intensity(LED_HW3, 1.0); chThdSleepMilliseconds(250); ledpwm_set_intensity(LED_HW3, 0.0); chThdSleepMilliseconds(250); } chThdSleepMilliseconds(500); for (int i = 0;i < (int)fault2;i++) { ledpwm_set_intensity(LED_HW3, 1.0); chThdSleepMilliseconds(250); ledpwm_set_intensity(LED_HW3, 0.0); chThdSleepMilliseconds(250); } chThdSleepMilliseconds(500); } else { left = mc_interface_get_battery_level(&wh_left); if(HW_SAMPLE_SHUTDOWN()){ switch_bright = 0.5; }else{ switch_bright = 1.0; } if(left < 0.5){ float intense = utils_map(left,0.0, 0.5, 0.0, 1.0); utils_truncate_number(&intense,0,1); switch_blue = intense; switch_red = 1.0-intense; switch_green = 0; }else{ float intense = utils_map(left , 0.5, 1.0, 0.0, 1.0); utils_truncate_number(&intense,0,1); switch_green = intense; switch_blue = 1.0-intense; switch_red = 0; } ledpwm_set_intensity(LED_HW1, switch_bright*switch_blue); ledpwm_set_intensity(LED_HW2, switch_bright*switch_green); ledpwm_set_intensity(LED_HW3, switch_bright*switch_red); } chThdSleepMilliseconds(20); } } #endif