/* Copyright 2016 - 2019 Benjamin Vedder benjamin@vedder.se This file is part of the VESC firmware. The VESC firmware is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The VESC firmware is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "commands.h" #include "ch.h" #include "hal.h" #include "mc_interface.h" #include "stm32f4xx_conf.h" #include "servo_simple.h" #include "buffer.h" #include "terminal.h" #include "hw.h" #include "mcpwm.h" #include "mcpwm_foc.h" #include "mc_interface.h" #include "app.h" #include "timeout.h" #include "servo_dec.h" #include "comm_can.h" #include "flash_helper.h" #include "utils.h" #include "packet.h" #include "encoder.h" #include "nrf_driver.h" #include "gpdrive.h" #include "confgenerator.h" #include "imu.h" #if HAS_BLACKMAGIC #include "bm_if.h" #endif #include #include #include #include // Threads static THD_FUNCTION(blocking_thread, arg); static THD_WORKING_AREA(blocking_thread_wa, 2048); static thread_t *blocking_tp; // Private variables static uint8_t send_buffer_global[PACKET_MAX_PL_LEN]; static uint8_t blocking_thread_cmd_buffer[PACKET_MAX_PL_LEN]; static volatile unsigned int blocking_thread_cmd_len = 0; static volatile bool is_blocking = false; static void(* volatile send_func)(unsigned char *data, unsigned int len) = 0; static void(* volatile send_func_blocking)(unsigned char *data, unsigned int len) = 0; static void(* volatile send_func_nrf)(unsigned char *data, unsigned int len) = 0; static void(* volatile appdata_func)(unsigned char *data, unsigned int len) = 0; static disp_pos_mode display_position_mode; static mutex_t print_mutex; static mutex_t send_buffer_mutex; static mutex_t terminal_mutex; void commands_init(void) { chMtxObjectInit(&print_mutex); chMtxObjectInit(&send_buffer_mutex); chMtxObjectInit(&terminal_mutex); chThdCreateStatic(blocking_thread_wa, sizeof(blocking_thread_wa), NORMALPRIO, blocking_thread, NULL); } /** * Send a packet using the set send function. * * @param data * The packet data. * * @param len * The data length. */ void commands_send_packet(unsigned char *data, unsigned int len) { if (send_func) { send_func(data, len); } } /** * Send a packet using the set NRF51 send function. The NRF51 send function * is set when the COMM_EXT_NRF_PRESENT and COMM_EXT_NRF_ESB_RX_DATA commands * are received, at which point the previous send function is restored. The * intention behind that is to make the NRF51-related communication only with * the interface that has an NRF51, and prevent the NRF51 communication from * interfering with other communication. * * @param data * The packet data. * * @param len * The data length. */ void commands_send_packet_nrf(unsigned char *data, unsigned int len) { if (send_func_nrf) { send_func_nrf(data, len); } } /** * Send data using the function last used by the blocking thread. * * @param data * The packet data. * * @param len * The data length. */ void commands_send_packet_last_blocking(unsigned char *data, unsigned int len) { if (send_func_blocking) { send_func_blocking(data, len); } } /** * Process a received buffer with commands and data. * * @param data * The buffer to process. * * @param len * The length of the buffer. */ void commands_process_packet(unsigned char *data, unsigned int len, void(*reply_func)(unsigned char *data, unsigned int len)) { if (!len) { return; } COMM_PACKET_ID packet_id; // Static to save some stack space static mc_configuration mcconf; static app_configuration appconf; packet_id = data[0]; data++; len--; // The NRF51 ESB implementation is treated like it has its own // independent communication interface. if (packet_id == COMM_EXT_NRF_PRESENT || packet_id == COMM_EXT_NRF_ESB_RX_DATA) { send_func_nrf = reply_func; } else { send_func = reply_func; } // Avoid calling invalid function pointer if it is null. // commands_send_packet will make the check. if (!reply_func) { reply_func = commands_send_packet; } switch (packet_id) { case COMM_FW_VERSION: { int32_t ind = 0; uint8_t send_buffer[50]; send_buffer[ind++] = COMM_FW_VERSION; send_buffer[ind++] = FW_VERSION_MAJOR; send_buffer[ind++] = FW_VERSION_MINOR; strcpy((char*)(send_buffer + ind), HW_NAME); ind += strlen(HW_NAME) + 1; memcpy(send_buffer + ind, STM32_UUID_8, 12); ind += 12; send_buffer[ind++] = app_get_configuration()->pairing_done; reply_func(send_buffer, ind); } break; case COMM_JUMP_TO_BOOTLOADER_ALL_CAN: data[-1] = COMM_JUMP_TO_BOOTLOADER; comm_can_send_buffer(255, data - 1, len + 1, 2); chThdSleepMilliseconds(100); /* Falls through. */ /* no break */ case COMM_JUMP_TO_BOOTLOADER: flash_helper_jump_to_bootloader(); break; case COMM_ERASE_NEW_APP_ALL_CAN: if (nrf_driver_ext_nrf_running()) { nrf_driver_pause(6000); } data[-1] = COMM_ERASE_NEW_APP; comm_can_send_buffer(255, data - 1, len + 1, 2); chThdSleepMilliseconds(1500); /* Falls through. */ /* no break */ case COMM_ERASE_NEW_APP: { int32_t ind = 0; if (nrf_driver_ext_nrf_running()) { nrf_driver_pause(6000); } uint16_t flash_res = flash_helper_erase_new_app(buffer_get_uint32(data, &ind)); ind = 0; uint8_t send_buffer[50]; send_buffer[ind++] = COMM_ERASE_NEW_APP; send_buffer[ind++] = flash_res == FLASH_COMPLETE ? 1 : 0; reply_func(send_buffer, ind); } break; case COMM_WRITE_NEW_APP_DATA_ALL_CAN: if (nrf_driver_ext_nrf_running()) { nrf_driver_pause(2000); } data[-1] = COMM_WRITE_NEW_APP_DATA; comm_can_send_buffer(255, data - 1, len + 1, 2); /* Falls through. */ /* no break */ case COMM_WRITE_NEW_APP_DATA: { int32_t ind = 0; uint32_t new_app_offset = buffer_get_uint32(data, &ind); if (nrf_driver_ext_nrf_running()) { nrf_driver_pause(2000); } uint16_t flash_res = flash_helper_write_new_app_data(new_app_offset, data + ind, len - ind); ind = 0; uint8_t send_buffer[50]; send_buffer[ind++] = COMM_WRITE_NEW_APP_DATA; send_buffer[ind++] = flash_res == FLASH_COMPLETE ? 1 : 0; reply_func(send_buffer, ind); } break; case COMM_GET_VALUES: case COMM_GET_VALUES_SELECTIVE: { int32_t ind = 0; chMtxLock(&send_buffer_mutex); uint8_t *send_buffer = send_buffer_global; send_buffer[ind++] = packet_id; uint32_t mask = 0xFFFFFFFF; if (packet_id == COMM_GET_VALUES_SELECTIVE) { int32_t ind2 = 0; mask = buffer_get_uint32(data, &ind2); buffer_append_uint32(send_buffer, mask, &ind); } if (mask & ((uint32_t)1 << 0)) { buffer_append_float16(send_buffer, mc_interface_temp_fet_filtered(), 1e1, &ind); } if (mask & ((uint32_t)1 << 1)) { buffer_append_float16(send_buffer, mc_interface_temp_motor_filtered(), 1e1, &ind); } if (mask & ((uint32_t)1 << 2)) { buffer_append_float32(send_buffer, mc_interface_read_reset_avg_motor_current(), 1e2, &ind); } if (mask & ((uint32_t)1 << 3)) { buffer_append_float32(send_buffer, mc_interface_read_reset_avg_input_current(), 1e2, &ind); } if (mask & ((uint32_t)1 << 4)) { buffer_append_float32(send_buffer, mc_interface_read_reset_avg_id(), 1e2, &ind); } if (mask & ((uint32_t)1 << 5)) { buffer_append_float32(send_buffer, mc_interface_read_reset_avg_iq(), 1e2, &ind); } if (mask & ((uint32_t)1 << 6)) { buffer_append_float16(send_buffer, mc_interface_get_duty_cycle_now(), 1e3, &ind); } if (mask & ((uint32_t)1 << 7)) { buffer_append_float32(send_buffer, mc_interface_get_rpm(), 1e0, &ind); } if (mask & ((uint32_t)1 << 8)) { buffer_append_float16(send_buffer, GET_INPUT_VOLTAGE(), 1e1, &ind); } if (mask & ((uint32_t)1 << 9)) { buffer_append_float32(send_buffer, mc_interface_get_amp_hours(false), 1e4, &ind); } if (mask & ((uint32_t)1 << 10)) { buffer_append_float32(send_buffer, mc_interface_get_amp_hours_charged(false), 1e4, &ind); } if (mask & ((uint32_t)1 << 11)) { buffer_append_float32(send_buffer, mc_interface_get_watt_hours(false), 1e4, &ind); } if (mask & ((uint32_t)1 << 12)) { buffer_append_float32(send_buffer, mc_interface_get_watt_hours_charged(false), 1e4, &ind); } if (mask & ((uint32_t)1 << 13)) { buffer_append_int32(send_buffer, mc_interface_get_tachometer_value(false), &ind); } if (mask && ((uint32_t)1 << 14)) { buffer_append_int32(send_buffer, mc_interface_get_tachometer_abs_value(false), &ind); } if (mask & ((uint32_t)1 << 15)) { send_buffer[ind++] = mc_interface_get_fault(); } if (mask & ((uint32_t)1 << 16)) { buffer_append_float32(send_buffer, mc_interface_get_pid_pos_now(), 1e6, &ind); } if (mask & ((uint32_t)1 << 17)) { send_buffer[ind++] = app_get_configuration()->controller_id; } if (mask & ((uint32_t)1 << 18)) { buffer_append_float16(send_buffer, NTC_TEMP_MOS1(), 1e1, &ind); buffer_append_float16(send_buffer, NTC_TEMP_MOS2(), 1e1, &ind); buffer_append_float16(send_buffer, NTC_TEMP_MOS3(), 1e1, &ind); } reply_func(send_buffer, ind); chMtxUnlock(&send_buffer_mutex); } break; case COMM_SET_DUTY: { int32_t ind = 0; mc_interface_set_duty((float)buffer_get_int32(data, &ind) / 100000.0); timeout_reset(); } break; case COMM_SET_CURRENT: { int32_t ind = 0; mc_interface_set_current((float)buffer_get_int32(data, &ind) / 1000.0); timeout_reset(); } break; case COMM_SET_CURRENT_BRAKE: { int32_t ind = 0; mc_interface_set_brake_current((float)buffer_get_int32(data, &ind) / 1000.0); timeout_reset(); } break; case COMM_SET_RPM: { int32_t ind = 0; mc_interface_set_pid_speed((float)buffer_get_int32(data, &ind)); timeout_reset(); } break; case COMM_SET_POS: { int32_t ind = 0; mc_interface_set_pid_pos((float)buffer_get_int32(data, &ind) / 1000000.0); timeout_reset(); } break; case COMM_SET_HANDBRAKE: { int32_t ind = 0; mc_interface_set_handbrake(buffer_get_float32(data, 1e3, &ind)); timeout_reset(); } break; case COMM_SET_DETECT: { mcconf = *mc_interface_get_configuration(); int32_t ind = 0; display_position_mode = data[ind++]; if (mcconf.motor_type == MOTOR_TYPE_BLDC) { if (display_position_mode == DISP_POS_MODE_NONE) { mc_interface_release_motor(); } else if (display_position_mode == DISP_POS_MODE_INDUCTANCE) { mcpwm_set_detect(); } } timeout_reset(); } break; case COMM_SET_SERVO_POS: { #if SERVO_OUT_ENABLE int32_t ind = 0; servo_simple_set_output(buffer_get_float16(data, 1000.0, &ind)); #endif } break; case COMM_SET_MCCONF: mcconf = *mc_interface_get_configuration(); if (confgenerator_deserialize_mcconf(data, &mcconf)) { utils_truncate_number(&mcconf.l_current_max_scale , 0.0, 1.0); utils_truncate_number(&mcconf.l_current_min_scale , 0.0, 1.0); mcconf.lo_current_max = mcconf.l_current_max * mcconf.l_current_max_scale; mcconf.lo_current_min = mcconf.l_current_min * mcconf.l_current_min_scale; mcconf.lo_in_current_max = mcconf.l_in_current_max; mcconf.lo_in_current_min = mcconf.l_in_current_min; mcconf.lo_current_motor_max_now = mcconf.lo_current_max; mcconf.lo_current_motor_min_now = mcconf.lo_current_min; commands_apply_mcconf_hw_limits(&mcconf); conf_general_store_mc_configuration(&mcconf); mc_interface_set_configuration(&mcconf); chThdSleepMilliseconds(200); int32_t ind = 0; uint8_t send_buffer[50]; send_buffer[ind++] = packet_id; reply_func(send_buffer, ind); } else { commands_printf("Warning: Could not set mcconf due to wrong signature"); } break; case COMM_GET_MCCONF: case COMM_GET_MCCONF_DEFAULT: if (packet_id == COMM_GET_MCCONF) { mcconf = *mc_interface_get_configuration(); } else { confgenerator_set_defaults_mcconf(&mcconf); } commands_send_mcconf(packet_id, &mcconf); break; case COMM_SET_APPCONF: appconf = *app_get_configuration(); if (confgenerator_deserialize_appconf(data, &appconf)) { conf_general_store_app_configuration(&appconf); app_set_configuration(&appconf); timeout_configure(appconf.timeout_msec, appconf.timeout_brake_current); chThdSleepMilliseconds(200); int32_t ind = 0; uint8_t send_buffer[50]; send_buffer[ind++] = packet_id; reply_func(send_buffer, ind); } else { commands_printf("Warning: Could not set appconf due to wrong signature"); } break; case COMM_GET_APPCONF: case COMM_GET_APPCONF_DEFAULT: if (packet_id == COMM_GET_APPCONF) { appconf = *app_get_configuration(); } else { confgenerator_set_defaults_appconf(&appconf); } commands_send_appconf(packet_id, &appconf); break; case COMM_SAMPLE_PRINT: { uint16_t sample_len; uint8_t decimation; debug_sampling_mode mode; int32_t ind = 0; mode = data[ind++]; sample_len = buffer_get_uint16(data, &ind); decimation = data[ind++]; mc_interface_sample_print_data(mode, sample_len, decimation); } break; case COMM_REBOOT: // Lock the system and enter an infinite loop. The watchdog will reboot. __disable_irq(); for(;;){}; break; case COMM_ALIVE: timeout_reset(); break; case COMM_GET_DECODED_PPM: { int32_t ind = 0; uint8_t send_buffer[50]; send_buffer[ind++] = COMM_GET_DECODED_PPM; buffer_append_int32(send_buffer, (int32_t)(app_ppm_get_decoded_level() * 1000000.0), &ind); buffer_append_int32(send_buffer, (int32_t)(servodec_get_last_pulse_len(0) * 1000000.0), &ind); reply_func(send_buffer, ind); } break; case COMM_GET_DECODED_ADC: { int32_t ind = 0; uint8_t send_buffer[50]; send_buffer[ind++] = COMM_GET_DECODED_ADC; buffer_append_int32(send_buffer, (int32_t)(app_adc_get_decoded_level() * 1000000.0), &ind); buffer_append_int32(send_buffer, (int32_t)(app_adc_get_voltage() * 1000000.0), &ind); buffer_append_int32(send_buffer, (int32_t)(app_adc_get_decoded_level2() * 1000000.0), &ind); buffer_append_int32(send_buffer, (int32_t)(app_adc_get_voltage2() * 1000000.0), &ind); reply_func(send_buffer, ind); } break; case COMM_GET_DECODED_CHUK: { int32_t ind = 0; uint8_t send_buffer[50]; send_buffer[ind++] = COMM_GET_DECODED_CHUK; buffer_append_int32(send_buffer, (int32_t)(app_nunchuk_get_decoded_chuk() * 1000000.0), &ind); reply_func(send_buffer, ind); } break; case COMM_FORWARD_CAN: comm_can_send_buffer(data[0], data + 1, len - 1, 0); break; case COMM_SET_CHUCK_DATA: { chuck_data chuck_d_tmp; int32_t ind = 0; chuck_d_tmp.js_x = data[ind++]; chuck_d_tmp.js_y = data[ind++]; chuck_d_tmp.bt_c = data[ind++]; chuck_d_tmp.bt_z = data[ind++]; chuck_d_tmp.acc_x = buffer_get_int16(data, &ind); chuck_d_tmp.acc_y = buffer_get_int16(data, &ind); chuck_d_tmp.acc_z = buffer_get_int16(data, &ind); if (len >= (unsigned int)ind + 2) { chuck_d_tmp.rev_has_state = data[ind++]; chuck_d_tmp.is_rev = data[ind++]; } else { chuck_d_tmp.rev_has_state = false; chuck_d_tmp.is_rev = false; } app_nunchuk_update_output(&chuck_d_tmp); } break; case COMM_CUSTOM_APP_DATA: if (appdata_func) { appdata_func(data, len); } break; case COMM_NRF_START_PAIRING: { int32_t ind = 0; nrf_driver_start_pairing(buffer_get_int32(data, &ind)); ind = 0; uint8_t send_buffer[50]; send_buffer[ind++] = packet_id; send_buffer[ind++] = NRF_PAIR_STARTED; reply_func(send_buffer, ind); } break; case COMM_GPD_SET_FSW: { timeout_reset(); int32_t ind = 0; gpdrive_set_switching_frequency((float)buffer_get_int32(data, &ind)); } break; case COMM_GPD_BUFFER_SIZE_LEFT: { int32_t ind = 0; uint8_t send_buffer[50]; send_buffer[ind++] = COMM_GPD_BUFFER_SIZE_LEFT; buffer_append_int32(send_buffer, gpdrive_buffer_size_left(), &ind); reply_func(send_buffer, ind); } break; case COMM_GPD_FILL_BUFFER: { timeout_reset(); int32_t ind = 0; while (ind < (int)len) { gpdrive_add_buffer_sample(buffer_get_float32_auto(data, &ind)); } } break; case COMM_GPD_OUTPUT_SAMPLE: { timeout_reset(); int32_t ind = 0; gpdrive_add_buffer_sample(buffer_get_float32_auto(data, &ind)); } break; case COMM_GPD_SET_MODE: { timeout_reset(); int32_t ind = 0; gpdrive_set_mode(data[ind++]); } break; case COMM_GPD_FILL_BUFFER_INT8: { timeout_reset(); int32_t ind = 0; while (ind < (int)len) { gpdrive_add_buffer_sample_int((int8_t)data[ind++]); } } break; case COMM_GPD_FILL_BUFFER_INT16: { timeout_reset(); int32_t ind = 0; while (ind < (int)len) { gpdrive_add_buffer_sample_int(buffer_get_int16(data, &ind)); } } break; case COMM_GPD_SET_BUFFER_INT_SCALE: { int32_t ind = 0; gpdrive_set_buffer_int_scale(buffer_get_float32_auto(data, &ind)); } break; case COMM_GET_VALUES_SETUP: case COMM_GET_VALUES_SETUP_SELECTIVE: { float ah_tot = 0.0; float ah_charge_tot = 0.0; float wh_tot = 0.0; float wh_charge_tot = 0.0; float current_tot = 0.0; float current_in_tot = 0.0; uint8_t num_vescs = 1; ah_tot += mc_interface_get_amp_hours(false); ah_charge_tot += mc_interface_get_amp_hours_charged(false); wh_tot += mc_interface_get_watt_hours(false); wh_charge_tot += mc_interface_get_watt_hours_charged(false); current_tot += mc_interface_get_tot_current_filtered(); current_in_tot += mc_interface_get_tot_current_in_filtered(); for (int i = 0;i < CAN_STATUS_MSGS_TO_STORE;i++) { can_status_msg *msg = comm_can_get_status_msg_index(i); if (msg->id >= 0 && UTILS_AGE_S(msg->rx_time) < 0.1) { current_tot += msg->current; num_vescs++; } can_status_msg_2 *msg2 = comm_can_get_status_msg_2_index(i); if (msg2->id >= 0 && UTILS_AGE_S(msg2->rx_time) < 0.1) { ah_tot += msg2->amp_hours; ah_charge_tot += msg2->amp_hours_charged; } can_status_msg_3 *msg3 = comm_can_get_status_msg_3_index(i); if (msg3->id >= 0 && UTILS_AGE_S(msg3->rx_time) < 0.1) { wh_tot += msg3->watt_hours; wh_charge_tot += msg3->watt_hours_charged; } can_status_msg_4 *msg4 = comm_can_get_status_msg_4_index(i); if (msg4->id >= 0 && UTILS_AGE_S(msg4->rx_time) < 0.1) { current_in_tot += msg4->current_in; } } float wh_batt_left = 0.0; float battery_level = mc_interface_get_battery_level(&wh_batt_left); int32_t ind = 0; chMtxLock(&send_buffer_mutex); uint8_t *send_buffer = send_buffer_global; send_buffer[ind++] = packet_id; uint32_t mask = 0xFFFFFFFF; if (packet_id == COMM_GET_VALUES_SETUP_SELECTIVE) { int32_t ind2 = 0; mask = buffer_get_uint32(data, &ind2); buffer_append_uint32(send_buffer, mask, &ind); } if (mask & ((uint32_t)1 << 0)) { buffer_append_float16(send_buffer, mc_interface_temp_fet_filtered(), 1e1, &ind); } if (mask & ((uint32_t)1 << 1)) { buffer_append_float16(send_buffer, mc_interface_temp_motor_filtered(), 1e1, &ind); } if (mask & ((uint32_t)1 << 2)) { buffer_append_float32(send_buffer, current_tot, 1e2, &ind); } if (mask & ((uint32_t)1 << 3)) { buffer_append_float32(send_buffer, current_in_tot, 1e2, &ind); } if (mask & ((uint32_t)1 << 4)) { buffer_append_float16(send_buffer, mc_interface_get_duty_cycle_now(), 1e3, &ind); } if (mask & ((uint32_t)1 << 5)) { buffer_append_float32(send_buffer, mc_interface_get_rpm(), 1e0, &ind); } if (mask & ((uint32_t)1 << 6)) { buffer_append_float32(send_buffer, mc_interface_get_speed(), 1e3, &ind); } if (mask & ((uint32_t)1 << 7)) { buffer_append_float16(send_buffer, GET_INPUT_VOLTAGE(), 1e1, &ind); } if (mask & ((uint32_t)1 << 8)) { buffer_append_float16(send_buffer, battery_level, 1e3, &ind); } if (mask & ((uint32_t)1 << 9)) { buffer_append_float32(send_buffer, ah_tot, 1e4, &ind); } if (mask & ((uint32_t)1 << 10)) { buffer_append_float32(send_buffer, ah_charge_tot, 1e4, &ind); } if (mask & ((uint32_t)1 << 11)) { buffer_append_float32(send_buffer, wh_tot, 1e4, &ind); } if (mask & ((uint32_t)1 << 12)) { buffer_append_float32(send_buffer, wh_charge_tot, 1e4, &ind); } if (mask & ((uint32_t)1 << 13)) { buffer_append_float32(send_buffer, mc_interface_get_distance(), 1e3, &ind); } if (mask & ((uint32_t)1 << 14)) { buffer_append_float32(send_buffer, mc_interface_get_distance_abs(), 1e3, &ind); } if (mask & ((uint32_t)1 << 15)) { buffer_append_float32(send_buffer, mc_interface_get_pid_pos_now(), 1e6, &ind); } if (mask & ((uint32_t)1 << 16)) { send_buffer[ind++] = mc_interface_get_fault(); } if (mask & ((uint32_t)1 << 17)) { send_buffer[ind++] = app_get_configuration()->controller_id; } if (mask & ((uint32_t)1 << 18)) { send_buffer[ind++] = num_vescs; } if (mask & ((uint32_t)1 << 19)) { buffer_append_float32(send_buffer, wh_batt_left, 1e3, &ind); } reply_func(send_buffer, ind); chMtxUnlock(&send_buffer_mutex); } break; case COMM_SET_MCCONF_TEMP: case COMM_SET_MCCONF_TEMP_SETUP: { mcconf = *mc_interface_get_configuration(); int32_t ind = 0; bool store = data[ind++]; bool forward_can = data[ind++]; bool ack = data[ind++]; bool divide_by_controllers = data[ind++]; float controller_num = 1.0; if (divide_by_controllers) { for (int i = 0;i < CAN_STATUS_MSGS_TO_STORE;i++) { can_status_msg *msg = comm_can_get_status_msg_index(i); if (msg->id >= 0 && UTILS_AGE_S(msg->rx_time) < 0.1) { controller_num += 1.0; } } } mcconf.l_current_min_scale = buffer_get_float32_auto(data, &ind); mcconf.l_current_max_scale = buffer_get_float32_auto(data, &ind); if (packet_id == COMM_SET_MCCONF_TEMP_SETUP) { const float fact = ((mcconf.si_motor_poles / 2.0) * 60.0 * mcconf.si_gear_ratio) / (mcconf.si_wheel_diameter * M_PI); mcconf.l_min_erpm = buffer_get_float32_auto(data, &ind) * fact; mcconf.l_max_erpm = buffer_get_float32_auto(data, &ind) * fact; // Write computed RPM back and change forwarded packet id to // COMM_SET_MCCONF_TEMP. This way only the master has to be // aware of the setup information. ind -= 8; buffer_append_float32_auto(data, mcconf.l_min_erpm, &ind); buffer_append_float32_auto(data, mcconf.l_max_erpm, &ind); } else { mcconf.l_min_erpm = buffer_get_float32_auto(data, &ind); mcconf.l_max_erpm = buffer_get_float32_auto(data, &ind); } mcconf.l_min_duty = buffer_get_float32_auto(data, &ind); mcconf.l_max_duty = buffer_get_float32_auto(data, &ind); mcconf.l_watt_min = buffer_get_float32_auto(data, &ind) / controller_num; mcconf.l_watt_max = buffer_get_float32_auto(data, &ind) / controller_num; // Write divided data back to the buffer, as the other controllers have no way to tell // how many controllers are on the bus and thus need pre-divided data. // We set divide by controllers to false before forwarding. ind -= 8; buffer_append_float32_auto(data, mcconf.l_watt_min, &ind); buffer_append_float32_auto(data, mcconf.l_watt_max, &ind); mcconf.lo_current_min = mcconf.l_current_min * mcconf.l_current_min_scale; mcconf.lo_current_max = mcconf.l_current_max * mcconf.l_current_max_scale; mcconf.lo_current_motor_min_now = mcconf.lo_current_min; mcconf.lo_current_motor_max_now = mcconf.lo_current_max; commands_apply_mcconf_hw_limits(&mcconf); if (store) { conf_general_store_mc_configuration(&mcconf); } mc_interface_set_configuration(&mcconf); if (forward_can) { data[-1] = COMM_SET_MCCONF_TEMP; data[1] = 0; // No more forward data[2] = 0; // No ack data[3] = 0; // No dividing, see comment above // TODO: Maybe broadcast on CAN-bus? for (int i = 0;i < CAN_STATUS_MSGS_TO_STORE;i++) { can_status_msg *msg = comm_can_get_status_msg_index(i); if (msg->id >= 0 && UTILS_AGE_S(msg->rx_time) < 0.1) { comm_can_send_buffer(msg->id, data - 1, len + 1, 0); } } } if (ack) { ind = 0; uint8_t send_buffer[50]; send_buffer[ind++] = packet_id; reply_func(send_buffer, ind); } } break; case COMM_EXT_NRF_PRESENT: { if (!conf_general_permanent_nrf_found) { nrf_driver_init_ext_nrf(); if (!nrf_driver_is_pairing()) { const app_configuration *appconf_ptr = app_get_configuration(); uint8_t send_buffer[50]; send_buffer[0] = COMM_EXT_NRF_ESB_SET_CH_ADDR; send_buffer[1] = appconf_ptr->app_nrf_conf.channel; send_buffer[2] = appconf_ptr->app_nrf_conf.address[0]; send_buffer[3] = appconf_ptr->app_nrf_conf.address[1]; send_buffer[4] = appconf_ptr->app_nrf_conf.address[2]; commands_send_packet_nrf(send_buffer, 5); } } } break; case COMM_EXT_NRF_ESB_RX_DATA: { nrf_driver_process_packet(data, len); } break; case COMM_APP_DISABLE_OUTPUT: { int32_t ind = 0; bool fwd_can = data[ind++]; int time = buffer_get_int32(data, &ind); app_disable_output(time); if (fwd_can) { data[0] = 0; // Don't continue forwarding comm_can_send_buffer(255, data - 1, len + 1, 0); } } break; case COMM_TERMINAL_CMD_SYNC: data[len] = '\0'; chMtxLock(&terminal_mutex); terminal_process_string((char*)data); chMtxUnlock(&terminal_mutex); break; case COMM_GET_IMU_DATA: { int32_t ind = 0; uint8_t send_buffer[70]; send_buffer[ind++] = packet_id; int32_t ind2 = 0; uint32_t mask = buffer_get_uint16(data, &ind2); float rpy[3], acc[3], gyro[3], mag[3], q[4]; imu_get_rpy(rpy); imu_get_accel(acc); imu_get_gyro(gyro); imu_get_mag(mag); imu_get_quaternions(q); buffer_append_uint16(send_buffer, mask, &ind); if (mask & ((uint32_t)1 << 0)) { buffer_append_float32_auto(send_buffer, rpy[0], &ind); } if (mask & ((uint32_t)1 << 1)) { buffer_append_float32_auto(send_buffer, rpy[1], &ind); } if (mask & ((uint32_t)1 << 2)) { buffer_append_float32_auto(send_buffer, rpy[2], &ind); } if (mask & ((uint32_t)1 << 3)) { buffer_append_float32_auto(send_buffer, acc[0], &ind); } if (mask & ((uint32_t)1 << 4)) { buffer_append_float32_auto(send_buffer, acc[1], &ind); } if (mask & ((uint32_t)1 << 5)) { buffer_append_float32_auto(send_buffer, acc[2], &ind); } if (mask & ((uint32_t)1 << 6)) { buffer_append_float32_auto(send_buffer, gyro[0], &ind); } if (mask & ((uint32_t)1 << 7)) { buffer_append_float32_auto(send_buffer, gyro[1], &ind); } if (mask & ((uint32_t)1 << 8)) { buffer_append_float32_auto(send_buffer, gyro[2], &ind); } if (mask & ((uint32_t)1 << 9)) { buffer_append_float32_auto(send_buffer, mag[0], &ind); } if (mask & ((uint32_t)1 << 10)) { buffer_append_float32_auto(send_buffer, mag[1], &ind); } if (mask & ((uint32_t)1 << 11)) { buffer_append_float32_auto(send_buffer, mag[2], &ind); } if (mask & ((uint32_t)1 << 12)) { buffer_append_float32_auto(send_buffer, q[0], &ind); } if (mask & ((uint32_t)1 << 13)) { buffer_append_float32_auto(send_buffer, q[1], &ind); } if (mask & ((uint32_t)1 << 14)) { buffer_append_float32_auto(send_buffer, q[2], &ind); } if (mask & ((uint32_t)1 << 15)) { buffer_append_float32_auto(send_buffer, q[3], &ind); } reply_func(send_buffer, ind); } break; // Blocking commands. Only one of them runs at any given time, in their // own thread. If other blocking commands come before the previous one has // finished, they are discarded. case COMM_TERMINAL_CMD: case COMM_DETECT_MOTOR_PARAM: case COMM_DETECT_MOTOR_R_L: case COMM_DETECT_MOTOR_FLUX_LINKAGE: case COMM_DETECT_ENCODER: case COMM_DETECT_HALL_FOC: case COMM_DETECT_MOTOR_FLUX_LINKAGE_OPENLOOP: case COMM_DETECT_APPLY_ALL_FOC: case COMM_PING_CAN: case COMM_BM_CONNECT: case COMM_BM_ERASE_FLASH_ALL: case COMM_BM_WRITE_FLASH: case COMM_BM_REBOOT: case COMM_BM_DISCONNECT: if (!is_blocking) { memcpy(blocking_thread_cmd_buffer, data - 1, len + 1); blocking_thread_cmd_len = len; is_blocking = true; send_func_blocking = reply_func; chEvtSignal(blocking_tp, (eventmask_t)1); } break; default: break; } } void commands_printf(const char* format, ...) { chMtxLock(&print_mutex); va_list arg; va_start (arg, format); int len; static char print_buffer[255]; print_buffer[0] = COMM_PRINT; len = vsnprintf(print_buffer + 1, 254, format, arg); va_end (arg); if(len > 0) { commands_send_packet_last_blocking((unsigned char*)print_buffer, (len < 254) ? len + 1 : 255); } chMtxUnlock(&print_mutex); } void commands_send_rotor_pos(float rotor_pos) { uint8_t buffer[5]; int32_t index = 0; buffer[index++] = COMM_ROTOR_POSITION; buffer_append_int32(buffer, (int32_t)(rotor_pos * 100000.0), &index); commands_send_packet(buffer, index); } void commands_send_experiment_samples(float *samples, int len) { if ((len * 4 + 1) > 256) { return; } uint8_t buffer[len * 4 + 1]; int32_t index = 0; buffer[index++] = COMM_EXPERIMENT_SAMPLE; for (int i = 0;i < len;i++) { buffer_append_int32(buffer, (int32_t)(samples[i] * 10000.0), &index); } commands_send_packet(buffer, index); } disp_pos_mode commands_get_disp_pos_mode(void) { return display_position_mode; } void commands_set_app_data_handler(void(*func)(unsigned char *data, unsigned int len)) { appdata_func = func; } void commands_send_app_data(unsigned char *data, unsigned int len) { int32_t index = 0; chMtxLock(&send_buffer_mutex); send_buffer_global[index++] = COMM_CUSTOM_APP_DATA; memcpy(send_buffer_global + index, data, len); index += len; commands_send_packet(send_buffer_global, index); chMtxUnlock(&send_buffer_mutex); } void commands_send_gpd_buffer_notify(void) { int32_t index = 0; uint8_t buffer[1]; buffer[index++] = COMM_GPD_BUFFER_NOTIFY; commands_send_packet(buffer, index); } void commands_send_mcconf(COMM_PACKET_ID packet_id, mc_configuration *mcconf) { chMtxLock(&send_buffer_mutex); send_buffer_global[0] = packet_id; int32_t len = confgenerator_serialize_mcconf(send_buffer_global + 1, mcconf); commands_send_packet(send_buffer_global, len + 1); chMtxUnlock(&send_buffer_mutex); } void commands_send_appconf(COMM_PACKET_ID packet_id, app_configuration *appconf) { chMtxLock(&send_buffer_mutex); send_buffer_global[0] = packet_id; int32_t len = confgenerator_serialize_appconf(send_buffer_global + 1, appconf); commands_send_packet(send_buffer_global, len + 1); chMtxUnlock(&send_buffer_mutex); } void commands_apply_mcconf_hw_limits(mc_configuration *mcconf) { utils_truncate_number(&mcconf->l_current_max_scale, 0.0, 1.0); utils_truncate_number(&mcconf->l_current_min_scale, 0.0, 1.0); // This limit should always be active, as starving the threads never // makes sense. #ifdef HW_LIM_FOC_CTRL_LOOP_FREQ if (mcconf->foc_sample_v0_v7 == true) { //control loop executes twice per pwm cycle when sampling in v0 and v7 utils_truncate_number(&mcconf->foc_f_sw, HW_LIM_FOC_CTRL_LOOP_FREQ); } else { utils_truncate_number(&mcconf->foc_f_sw, HW_LIM_FOC_CTRL_LOOP_FREQ * 2.0); } #endif #ifndef DISABLE_HW_LIMITS #ifdef HW_LIM_CURRENT utils_truncate_number(&mcconf->l_current_max, HW_LIM_CURRENT); utils_truncate_number(&mcconf->l_current_min, HW_LIM_CURRENT); #endif #ifdef HW_LIM_CURRENT_IN utils_truncate_number(&mcconf->l_in_current_max, HW_LIM_CURRENT_IN); utils_truncate_number(&mcconf->l_in_current_min, HW_LIM_CURRENT); #endif #ifdef HW_LIM_CURRENT_ABS utils_truncate_number(&mcconf->l_abs_current_max, HW_LIM_CURRENT_ABS); #endif #ifdef HW_LIM_VIN utils_truncate_number(&mcconf->l_max_vin, HW_LIM_VIN); utils_truncate_number(&mcconf->l_min_vin, HW_LIM_VIN); #endif #ifdef HW_LIM_ERPM utils_truncate_number(&mcconf->l_max_erpm, HW_LIM_ERPM); utils_truncate_number(&mcconf->l_min_erpm, HW_LIM_ERPM); #endif #ifdef HW_LIM_DUTY_MIN utils_truncate_number(&mcconf->l_min_duty, HW_LIM_DUTY_MIN); #endif #ifdef HW_LIM_DUTY_MAX utils_truncate_number(&mcconf->l_max_duty, HW_LIM_DUTY_MAX); #endif #ifdef HW_LIM_TEMP_FET utils_truncate_number(&mcconf->l_temp_fet_start, HW_LIM_TEMP_FET); utils_truncate_number(&mcconf->l_temp_fet_end, HW_LIM_TEMP_FET); #endif #ifdef HW_FOC_CURRENT_FILTER_LIM utils_truncate_number(&mcconf->foc_current_filter_const, HW_FOC_CURRENT_FILTER_LIM); #endif #endif } static THD_FUNCTION(blocking_thread, arg) { (void)arg; chRegSetThreadName("comm_block"); blocking_tp = chThdGetSelfX(); for(;;) { chEvtWaitAny((eventmask_t) 1); uint8_t *data = blocking_thread_cmd_buffer; unsigned int len = blocking_thread_cmd_len; COMM_PACKET_ID packet_id; static mc_configuration mcconf, mcconf_old; static uint8_t send_buffer[256]; packet_id = data[0]; data++; switch (packet_id) { case COMM_DETECT_MOTOR_PARAM: { int32_t ind = 0; float detect_current = buffer_get_float32(data, 1e3, &ind); float detect_min_rpm = buffer_get_float32(data, 1e3, &ind); float detect_low_duty = buffer_get_float32(data, 1e3, &ind); float detect_cycle_int_limit; float detect_coupling_k; int8_t detect_hall_table[8]; int detect_hall_res; if (!conf_general_detect_motor_param(detect_current, detect_min_rpm, detect_low_duty, &detect_cycle_int_limit, &detect_coupling_k, detect_hall_table, &detect_hall_res)) { detect_cycle_int_limit = 0.0; detect_coupling_k = 0.0; } ind = 0; send_buffer[ind++] = COMM_DETECT_MOTOR_PARAM; buffer_append_int32(send_buffer, (int32_t)(detect_cycle_int_limit * 1000.0), &ind); buffer_append_int32(send_buffer, (int32_t)(detect_coupling_k * 1000.0), &ind); memcpy(send_buffer + ind, detect_hall_table, 8); ind += 8; send_buffer[ind++] = detect_hall_res; if (send_func_blocking) { send_func_blocking(send_buffer, ind); } } break; case COMM_DETECT_MOTOR_R_L: { mcconf = *mc_interface_get_configuration(); mcconf_old = mcconf; mcconf.motor_type = MOTOR_TYPE_FOC; mc_interface_set_configuration(&mcconf); float r = 0.0; float l = 0.0; bool res = mcpwm_foc_measure_res_ind(&r, &l); mc_interface_set_configuration(&mcconf_old); if (!res) { r = 0.0; l = 0.0; } int32_t ind = 0; send_buffer[ind++] = COMM_DETECT_MOTOR_R_L; buffer_append_float32(send_buffer, r, 1e6, &ind); buffer_append_float32(send_buffer, l, 1e3, &ind); if (send_func_blocking) { send_func_blocking(send_buffer, ind); } } break; case COMM_DETECT_MOTOR_FLUX_LINKAGE: { int32_t ind = 0; float current = buffer_get_float32(data, 1e3, &ind); float min_rpm = buffer_get_float32(data, 1e3, &ind); float duty = buffer_get_float32(data, 1e3, &ind); float resistance = buffer_get_float32(data, 1e6, &ind); float linkage; bool res = conf_general_measure_flux_linkage(current, duty, min_rpm, resistance, &linkage); if (!res) { linkage = 0.0; } ind = 0; send_buffer[ind++] = COMM_DETECT_MOTOR_FLUX_LINKAGE; buffer_append_float32(send_buffer, linkage, 1e7, &ind); if (send_func_blocking) { send_func_blocking(send_buffer, ind); } } break; case COMM_DETECT_ENCODER: { if (encoder_is_configured()) { mcconf = *mc_interface_get_configuration(); mcconf_old = mcconf; int32_t ind = 0; float current = buffer_get_float32(data, 1e3, &ind); mcconf.motor_type = MOTOR_TYPE_FOC; mcconf.foc_f_sw = 10000.0; mcconf.foc_current_kp = 0.01; mcconf.foc_current_ki = 10.0; mc_interface_set_configuration(&mcconf); float offset = 0.0; float ratio = 0.0; bool inverted = false; mcpwm_foc_encoder_detect(current, false, &offset, &ratio, &inverted); mc_interface_set_configuration(&mcconf_old); ind = 0; send_buffer[ind++] = COMM_DETECT_ENCODER; buffer_append_float32(send_buffer, offset, 1e6, &ind); buffer_append_float32(send_buffer, ratio, 1e6, &ind); send_buffer[ind++] = inverted; if (send_func_blocking) { send_func_blocking(send_buffer, ind); } } else { int32_t ind = 0; send_buffer[ind++] = COMM_DETECT_ENCODER; buffer_append_float32(send_buffer, 1001.0, 1e6, &ind); buffer_append_float32(send_buffer, 0.0, 1e6, &ind); send_buffer[ind++] = false; if (send_func_blocking) { send_func_blocking(send_buffer, ind); } } } break; case COMM_DETECT_HALL_FOC: { mcconf = *mc_interface_get_configuration(); if (mcconf.m_sensor_port_mode == SENSOR_PORT_MODE_HALL) { mcconf_old = mcconf; int32_t ind = 0; float current = buffer_get_float32(data, 1e3, &ind); mcconf.motor_type = MOTOR_TYPE_FOC; mcconf.foc_f_sw = 10000.0; mcconf.foc_current_kp = 0.01; mcconf.foc_current_ki = 10.0; mc_interface_set_configuration(&mcconf); uint8_t hall_tab[8]; bool res = mcpwm_foc_hall_detect(current, hall_tab); mc_interface_set_configuration(&mcconf_old); ind = 0; send_buffer[ind++] = COMM_DETECT_HALL_FOC; memcpy(send_buffer + ind, hall_tab, 8); ind += 8; send_buffer[ind++] = res ? 0 : 1; if (send_func_blocking) { send_func_blocking(send_buffer, ind); } } else { int32_t ind = 0; send_buffer[ind++] = COMM_DETECT_HALL_FOC; memset(send_buffer, 255, 8); ind += 8; send_buffer[ind++] = 0; if (send_func_blocking) { send_func_blocking(send_buffer, ind); } } } break; case COMM_DETECT_MOTOR_FLUX_LINKAGE_OPENLOOP: { int32_t ind = 0; float current = buffer_get_float32(data, 1e3, &ind); float erpm_per_sec = buffer_get_float32(data, 1e3, &ind); float duty = buffer_get_float32(data, 1e3, &ind); float resistance = buffer_get_float32(data, 1e6, &ind); float linkage; bool res = conf_general_measure_flux_linkage_openloop(current, duty, erpm_per_sec, resistance, &linkage); if (!res) { linkage = 0.0; } ind = 0; send_buffer[ind++] = COMM_DETECT_MOTOR_FLUX_LINKAGE_OPENLOOP; buffer_append_float32(send_buffer, linkage, 1e7, &ind); if (send_func_blocking) { send_func_blocking(send_buffer, ind); } } break; case COMM_DETECT_APPLY_ALL_FOC: { int32_t ind = 0; bool detect_can = data[ind++]; float max_power_loss = buffer_get_float32(data, 1e3, &ind); float min_current_in = buffer_get_float32(data, 1e3, &ind); float max_current_in = buffer_get_float32(data, 1e3, &ind); float openloop_rpm = buffer_get_float32(data, 1e3, &ind); float sl_erpm = buffer_get_float32(data, 1e3, &ind); int res = conf_general_detect_apply_all_foc_can(detect_can, max_power_loss, min_current_in, max_current_in, openloop_rpm, sl_erpm); ind = 0; send_buffer[ind++] = COMM_DETECT_APPLY_ALL_FOC; buffer_append_int16(send_buffer, res, &ind); if (send_func_blocking) { send_func_blocking(send_buffer, ind); } } break; case COMM_TERMINAL_CMD: data[len] = '\0'; chMtxLock(&terminal_mutex); terminal_process_string((char*)data); chMtxUnlock(&terminal_mutex); break; case COMM_PING_CAN: { int32_t ind = 0; send_buffer[ind++] = COMM_PING_CAN; for (uint8_t i = 0;i < 255;i++) { if (comm_can_ping(i)) { send_buffer[ind++] = i; } } if (send_func_blocking) { send_func_blocking(send_buffer, ind); } } break; #if HAS_BLACKMAGIC case COMM_BM_CONNECT: { int32_t ind = 0; send_buffer[ind++] = packet_id; buffer_append_int16(send_buffer, bm_connect(), &ind); if (send_func_blocking) { send_func_blocking(send_buffer, ind); } } break; case COMM_BM_ERASE_FLASH_ALL: { int32_t ind = 0; send_buffer[ind++] = packet_id; buffer_append_int16(send_buffer, bm_erase_flash_all(), &ind); if (send_func_blocking) { send_func_blocking(send_buffer, ind); } } break; case COMM_BM_WRITE_FLASH: { int32_t ind = 0; uint32_t addr = buffer_get_uint32(data, &ind); int res = bm_write_flash(addr, data + ind, len - ind); ind = 0; send_buffer[ind++] = packet_id; buffer_append_int16(send_buffer, res, &ind); if (send_func_blocking) { send_func_blocking(send_buffer, ind); } } break; case COMM_BM_REBOOT: { int32_t ind = 0; send_buffer[ind++] = packet_id; buffer_append_int16(send_buffer, bm_reboot(), &ind); if (send_func_blocking) { send_func_blocking(send_buffer, ind); } } break; case COMM_BM_DISCONNECT: { bm_disconnect(); int32_t ind = 0; send_buffer[ind++] = packet_id; if (send_func_blocking) { send_func_blocking(send_buffer, ind); } } break; #endif default: break; } is_blocking = false; } }