/* * This file is part of the Black Magic Debug project. * * Copyright (C) 2011 Black Sphere Technologies Ltd. * Written by Gareth McMullin * Copyright (C) 2017, 2018 Uwe Bonnes * * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* This file implements STM32F4 target specific functions for detecting * the device, providing the XML memory map and Flash memory programming. * * Refereces: * ST doc - RM0090 * Reference manual - STM32F405xx, STM32F407xx, STM32F415xx and STM32F417xx * advanced ARM-based 32-bit MCUs * ST doc - PM0081 * Programming manual - STM32F40xxx and STM32F41xxx Flash programming * manual */ #pragma GCC push_options #pragma GCC optimize ("Os") #include "general.h" #include "target.h" #include "target_internal.h" #include "cortexm.h" static bool stm32f4_cmd_erase_mass(target *t); static bool stm32f4_cmd_option(target *t, int argc, char *argv[]); static bool stm32f4_cmd_psize(target *t, int argc, char *argv[]); const struct command_s stm32f4_cmd_list[] = { {"erase_mass", (cmd_handler)stm32f4_cmd_erase_mass, "Erase entire flash memory"}, {"option", (cmd_handler)stm32f4_cmd_option, "Manipulate option bytes"}, {"psize", (cmd_handler)stm32f4_cmd_psize, "Configure flash write parallelism: (x8|x16|x32(default)|x64)"}, {NULL, NULL, NULL} }; static bool stm32f4_attach(target *t); static int stm32f4_flash_erase(struct target_flash *f, target_addr addr, size_t len); static int stm32f4_flash_write(struct target_flash *f, target_addr dest, const void *src, size_t len); /* Flash Program ad Erase Controller Register Map */ #define FPEC_BASE 0x40023C00 #define FLASH_ACR (FPEC_BASE+0x00) #define FLASH_KEYR (FPEC_BASE+0x04) #define FLASH_OPTKEYR (FPEC_BASE+0x08) #define FLASH_SR (FPEC_BASE+0x0C) #define FLASH_CR (FPEC_BASE+0x10) #define FLASH_OPTCR (FPEC_BASE+0x14) #define FLASH_CR_PG (1 << 0) #define FLASH_CR_SER (1 << 1) #define FLASH_CR_MER (1 << 2) #define FLASH_CR_PSIZE8 (0 << 8) #define FLASH_CR_PSIZE16 (1 << 8) #define FLASH_CR_PSIZE32 (2 << 8) #define FLASH_CR_PSIZE64 (3 << 8) #define FLASH_CR_MER1 (1 << 15) #define FLASH_CR_STRT (1 << 16) #define FLASH_CR_EOPIE (1 << 24) #define FLASH_CR_ERRIE (1 << 25) #define FLASH_CR_STRT (1 << 16) #define FLASH_CR_LOCK (1 << 31) #define FLASH_SR_BSY (1 << 16) #define FLASH_OPTCR_OPTLOCK (1 << 0) #define FLASH_OPTCR_OPTSTRT (1 << 1) #define FLASH_OPTCR_nDBANK (1 << 29) #define FLASH_OPTCR_DB1M (1 << 30) #define KEY1 0x45670123 #define KEY2 0xCDEF89AB #define OPTKEY1 0x08192A3B #define OPTKEY2 0x4C5D6E7F #define SR_ERROR_MASK 0xF2 #define SR_EOP 0x01 #define F4_FLASHSIZE 0x1FFF7A22 #define F7_FLASHSIZE 0x1FF0F442 #define F72X_FLASHSIZE 0x1FF07A22 #define DBGMCU_IDCODE 0xE0042000 #define DBGMCU_CR 0xE0042004 #define DBG_SLEEP (1 << 0) #define ARM_CPUID 0xE000ED00 #define AXIM_BASE 0x8000000 #define ITCM_BASE 0x0200000 struct stm32f4_flash { struct target_flash f; enum align psize; uint8_t base_sector; uint8_t bank_split; }; enum IDS_STM32F247 { ID_STM32F20X = 0x411, ID_STM32F40X = 0x413, ID_STM32F42X = 0x419, ID_STM32F446 = 0x421, ID_STM32F401C = 0x423, ID_STM32F411 = 0x431, ID_STM32F401E = 0x433, ID_STM32F46X = 0x434, ID_STM32F412 = 0x441, ID_STM32F74X = 0x449, ID_STM32F76X = 0x451, ID_STM32F72X = 0x452, ID_STM32F410 = 0x458, ID_STM32F413 = 0x463 }; static void stm32f4_add_flash(target *t, uint32_t addr, size_t length, size_t blocksize, unsigned int base_sector, int split) { if (length == 0) return; struct stm32f4_flash *sf = calloc(1, sizeof(*sf)); struct target_flash *f = &sf->f; f->start = addr; f->length = length; f->blocksize = blocksize; f->erase = stm32f4_flash_erase; f->write = stm32f4_flash_write; f->buf_size = 1024; f->erased = 0xff; sf->base_sector = base_sector; sf->bank_split = split; sf->psize = ALIGN_WORD; target_add_flash(t, f); } char *stm32f4_get_chip_name(uint32_t idcode) { switch(idcode){ case ID_STM32F40X: return "STM32F40x"; case ID_STM32F42X: /* 427/437 */ return "STM32F42x"; case ID_STM32F46X: /* 469/479 */ return "STM32F47x"; case ID_STM32F20X: /* F205 */ return "STM32F2"; case ID_STM32F446: /* F446 */ return "STM32F446"; case ID_STM32F401C: /* F401 B/C RM0368 Rev.3 */ return "STM32F401C"; case ID_STM32F411: /* F411 RM0383 Rev.4 */ return "STM32F411"; case ID_STM32F412: /* F412 RM0402 Rev.4, 256 kB Ram */ return "STM32F412"; case ID_STM32F401E: /* F401 D/E RM0368 Rev.3 */ return "STM32F401E"; case ID_STM32F413: /* F413 RM0430 Rev.2, 320 kB Ram, 1.5 MB flash. */ return "STM32F413"; case ID_STM32F74X: /* F74x RM0385 Rev.4 */ return "STM32F74x"; case ID_STM32F76X: /* F76x F77x RM0410 */ return "STM32F76x"; case ID_STM32F72X: /* F72x F73x RM0431 */ return "STM32F72x"; default: return NULL; } } static void stm32f7_detach(target *t) { target_mem_write32(t, DBGMCU_CR, t->target_storage); cortexm_detach(t); } bool stm32f4_probe(target *t) { ADIv5_AP_t *ap = cortexm_ap(t); uint32_t idcode; idcode = (ap->dp->targetid >> 16) & 0xfff; if (!idcode) idcode = target_mem_read32(t, DBGMCU_IDCODE) & 0xFFF; if (idcode == ID_STM32F20X) { /* F405 revision A have a wrong IDCODE, use ARM_CPUID to make the * distinction with F205. Revision is also wrong (0x2000 instead * of 0x1000). See F40x/F41x errata. */ uint32_t cpuid = target_mem_read32(t, ARM_CPUID); if ((cpuid & 0xFFF0) == 0xC240) idcode = ID_STM32F40X; } switch(idcode) { case ID_STM32F74X: /* F74x RM0385 Rev.4 */ case ID_STM32F76X: /* F76x F77x RM0410 */ case ID_STM32F72X: /* F72x F73x RM0431 */ t->detach = stm32f7_detach; /* fall through */ case ID_STM32F40X: case ID_STM32F42X: /* 427/437 */ case ID_STM32F46X: /* 469/479 */ case ID_STM32F20X: /* F205 */ case ID_STM32F446: /* F446 */ case ID_STM32F401C: /* F401 B/C RM0368 Rev.3 */ case ID_STM32F411: /* F411 RM0383 Rev.4 */ case ID_STM32F412: /* F412 RM0402 Rev.4, 256 kB Ram */ case ID_STM32F401E: /* F401 D/E RM0368 Rev.3 */ case ID_STM32F413: /* F413 RM0430 Rev.2, 320 kB Ram, 1.5 MB flash. */ t->idcode = idcode; t->driver = stm32f4_get_chip_name(idcode); t->attach = stm32f4_attach; target_add_commands(t, stm32f4_cmd_list, t->driver); return true; default: return false; } } static bool stm32f4_attach(target *t) { bool dual_bank = false; bool has_ccmram = false; bool is_f7 = false; bool large_sectors = false; uint32_t flashsize_base = F4_FLASHSIZE; if (!cortexm_attach(t)) return false; switch(t->idcode) { case ID_STM32F40X: has_ccmram = true; break; case ID_STM32F42X: /* 427/437 */ has_ccmram = true; dual_bank = true; break; case ID_STM32F46X: /* 469/479 */ has_ccmram = true; dual_bank = true; break; case ID_STM32F20X: /* F205 */ break; case ID_STM32F446: /* F446 */ break; case ID_STM32F401C: /* F401 B/C RM0368 Rev.3 */ break; case ID_STM32F411: /* F411 RM0383 Rev.4 */ break; case ID_STM32F412: /* F412 RM0402 Rev.4, 256 kB Ram */ break; case ID_STM32F401E: /* F401 D/E RM0368 Rev.3 */ break; case ID_STM32F413: /* F413 RM0430 Rev.2, 320 kB Ram, 1.5 MB flash. */ break; case ID_STM32F74X: /* F74x RM0385 Rev.4 */ is_f7 = true; large_sectors = true; flashsize_base = F7_FLASHSIZE; break; case ID_STM32F76X: /* F76x F77x RM0410 */ is_f7 = true; dual_bank = true; large_sectors = true; flashsize_base = F7_FLASHSIZE; break; case ID_STM32F72X: /* F72x F73x RM0431 */ is_f7 = true; flashsize_base = F72X_FLASHSIZE; break; default: return false; } bool use_dual_bank = false; target_mem_map_free(t); uint32_t flashsize = target_mem_read32(t, flashsize_base) & 0xffff; if (is_f7) { t->target_storage = target_mem_read32(t, DBGMCU_CR); target_mem_write32(t, DBGMCU_CR, DBG_SLEEP); target_add_ram(t, 0x00000000, 0x4000); /* 16 k ITCM Ram */ target_add_ram(t, 0x20000000, 0x20000); /* 128 k DTCM Ram */ target_add_ram(t, 0x20020000, 0x60000); /* 384 k Ram */ if (dual_bank) { uint32_t optcr; optcr = target_mem_read32(t, FLASH_OPTCR); use_dual_bank = !(optcr & FLASH_OPTCR_nDBANK); } } else { if (has_ccmram) target_add_ram(t, 0x10000000, 0x10000); /* 64 k CCM Ram*/ target_add_ram(t, 0x20000000, 0x50000); /* 320 k RAM */ if (dual_bank) { use_dual_bank = true; if (flashsize < 0x800) { /* Check Dual-bank on 1 Mbyte Flash memory devices*/ uint32_t optcr; optcr = target_mem_read32(t, FLASH_OPTCR); use_dual_bank = !(optcr & FLASH_OPTCR_DB1M); } } } int split = 0; uint32_t banksize; if (use_dual_bank) { banksize = flashsize << 9; /* flash split on two sectors. */ split = (flashsize == 0x400) ? 8 : 12; } else banksize = flashsize << 10; if (large_sectors) { uint32_t remains = banksize - 0x40000; /* 256 k in small sectors.*/ stm32f4_add_flash(t, ITCM_BASE, 0x20000, 0x8000, 0, split); stm32f4_add_flash(t, 0x0220000, 0x20000, 0x20000, 4, split); stm32f4_add_flash(t, 0x0240000, remains, 0x40000, 5, split); stm32f4_add_flash(t, AXIM_BASE, 0x20000, 0x8000, 0, split); stm32f4_add_flash(t, 0x8020000, 0x20000, 0x20000, 4, split); stm32f4_add_flash(t, 0x8040000, remains, 0x40000, 5, split); } else { uint32_t remains = 0; if (banksize > 0x20000) remains = banksize - 0x20000; /* 128 k in small sectors.*/ if (is_f7) { stm32f4_add_flash(t, ITCM_BASE, 0x10000, 0x4000, 0, split); if (banksize > 0x10000) { /* STM32F730 has only 64 kiB flash! */ stm32f4_add_flash(t, 0x0210000, 0x10000, 0x10000, 4, split); stm32f4_add_flash(t, 0x0220000, remains, 0x20000, 5, split); } } stm32f4_add_flash(t, 0x8000000, 0x10000, 0x4000, 0, split); if (banksize > 0x10000) { stm32f4_add_flash(t, 0x8010000, 0x10000, 0x10000, 4, split); stm32f4_add_flash(t, 0x8020000, remains, 0x20000, 5, split); } if (use_dual_bank) { if (is_f7) { uint32_t bk1 = ITCM_BASE + banksize; stm32f4_add_flash(t, bk1 , 0x10000, 0x4000, 0, split); stm32f4_add_flash(t, bk1 + 0x10000, 0x10000, 0x10000, 4, split); stm32f4_add_flash(t, bk1 + 0x20000, remains, 0x20000, 5, split); } uint32_t bk2 = 0x8000000 + banksize; stm32f4_add_flash(t, bk2 , 0x10000, 0x4000, 16, split); stm32f4_add_flash(t, bk2 + 0x10000, 0x10000, 0x10000, 20, split); stm32f4_add_flash(t, bk2 + 0x20000, remains, 0x20000, 21, split); } } return true; } static void stm32f4_flash_unlock(target *t) { if (target_mem_read32(t, FLASH_CR) & FLASH_CR_LOCK) { /* Enable FPEC controller access */ target_mem_write32(t, FLASH_KEYR, KEY1); target_mem_write32(t, FLASH_KEYR, KEY2); } } static int stm32f4_flash_erase(struct target_flash *f, target_addr addr, size_t len) { target *t = f->t; struct stm32f4_flash *sf = (struct stm32f4_flash *)f; uint32_t sr; /* No address translation is needed here, as we erase by sector number */ uint8_t sector = sf->base_sector + (addr - f->start)/f->blocksize; stm32f4_flash_unlock(t); enum align psize = ALIGN_WORD; for (struct target_flash *f2 = t->flash; f2; f2 = f2->next) { if (f2->write == stm32f4_flash_write) { psize = ((struct stm32f4_flash *)f2)->psize; } } while(len >= f->blocksize) { uint32_t cr = FLASH_CR_EOPIE | FLASH_CR_ERRIE | FLASH_CR_SER | (psize * FLASH_CR_PSIZE16) | (sector << 3); /* Flash page erase instruction */ target_mem_write32(t, FLASH_CR, cr); /* write address to FMA */ target_mem_write32(t, FLASH_CR, cr | FLASH_CR_STRT); /* Read FLASH_SR to poll for BSY bit */ while (target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY) { if(target_check_error(t)) { DEBUG("stm32f4 flash erase: comm error\n"); return -1; } platform_delay(1); // Don't block thread. } len -= f->blocksize; sector++; if ((sf->bank_split) && (sector == sf->bank_split)) sector = 16; } /* Check for error */ sr = target_mem_read32(t, FLASH_SR); if(sr & SR_ERROR_MASK) { DEBUG("stm32f4 flash erase: sr error: 0x%" PRIu32 "\n", sr); return -1; } return 0; } static int stm32f4_flash_write(struct target_flash *f, target_addr dest, const void *src, size_t len) { /* Translate ITCM addresses to AXIM */ if ((dest >= ITCM_BASE) && (dest < AXIM_BASE)) { dest = AXIM_BASE + (dest - ITCM_BASE); } target *t = f->t; uint32_t sr; enum align psize = ((struct stm32f4_flash *)f)->psize; target_mem_write32(t, FLASH_CR, (psize * FLASH_CR_PSIZE16) | FLASH_CR_PG); cortexm_mem_write_sized(t, dest, src, len, psize); /* Read FLASH_SR to poll for BSY bit */ /* Wait for completion or an error */ do { sr = target_mem_read32(t, FLASH_SR); if(target_check_error(t)) { DEBUG("stm32f4 flash write: comm error\n"); return -1; } platform_delay(1); // Don't block thread. } while (sr & FLASH_SR_BSY); if (sr & SR_ERROR_MASK) { DEBUG("stm32f4 flash write error 0x%" PRIx32 "\n", sr); return -1; } return 0; } static bool stm32f4_cmd_erase_mass(target *t) { // const char spinner[] = "|/-\\"; // int spinindex = 0; struct target_flash *f = t->flash; struct stm32f4_flash *sf = (struct stm32f4_flash *)f; tc_printf(t, "Erasing flash... This may take a few seconds. "); stm32f4_flash_unlock(t); /* Flash mass erase start instruction */ uint32_t cr = FLASH_CR_MER | FLASH_CR_EOPIE; if (sf->bank_split) cr |= FLASH_CR_MER1; target_mem_write32(t, FLASH_CR, cr); target_mem_write32(t, FLASH_CR, cr | FLASH_CR_STRT); /* Read FLASH_SR to poll for BSY bit */ while (target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY) { platform_delay(1); // Don't block thread. // tc_printf(t, "\b%c", spinner[spinindex++ % 4]); if(target_check_error(t)) { // tc_printf(t, "\n"); tc_printf(t, "Target Error"); return false; } } // tc_printf(t, "\n"); /* Check for error */ uint32_t sr = target_mem_read32(t, FLASH_SR); if (sr & SR_ERROR_MASK) { tc_printf(t, "Status Error, %02X", sr); return false; } if (!(sr & SR_EOP)) { tc_printf(t, "EOP not set", sr); return false; } return true; } /* Dev | DOC |Rev|ID |OPTCR |OPTCR |OPTCR1 |OPTCR1 | OPTCR2 |hex|default |reserved|default |resvd | default|resvd * F20x |pm0059|5.1|411|0FFFAAED |F0000010| * F40x |rm0090|11 |413|0FFFAAED |F0000010| * F42x |rm0090|11 |419|0FFFAAED |30000000|0FFF0000 |F000FFFF * F446 |rm0390| 2 |421|0FFFAAED |7F000010| * F401BC|rm0368| 3 |423|0FFFAAED |7FC00010| * F411 |rm0383| 2 |431|0FFFAAED |7F000010| * F401DE|rm0368| 3 |433|0FFFAAED |7F000010| * F46x |rm0386| 2 |434|0FFFAAED |30000000|0FFF0000 |F000FFFF * F412 |rm0402| 4 |441|0FFFAAED*|70000010| * F74x |rm0385| 4 |449|C0FFAAFD |3F000000|00400080*|00000000 * F76x |rm0410| 2 |451|FFFFAAFD*|00000000|00400080*|00000000 * F72x |rm0431| 1 |452|C0FFAAFD |3F000000|00400080*|00000000|00000000|800000FF * F410 |rm0401| 2 |458|0FFFAAED*|7FE00010| * F413 |rm0430| 2 |463|7FFFAAED*|00000010| * * * Documentation for F7 with OPTCR1 default = 0fff7f0080 seems wrong! * * Documentation for F412 with OPTCR default = 0ffffffed seems wrong! * * Documentation for F413 with OPTCR default = 0ffffffed seems wrong! */ bool optcr_mask(target *t, uint32_t *val) { switch (t->idcode) { case ID_STM32F20X: case ID_STM32F40X: val[0] &= ~0xF0000010; break; case ID_STM32F46X: case ID_STM32F42X: val[0] &= ~0x30000000; val[1] &= 0x0fff0000; break; case ID_STM32F401C: val[0] &= ~0x7FC00010; break; case ID_STM32F446: case ID_STM32F411: case ID_STM32F401E: val[0] &= ~0x7F000010; break; case ID_STM32F410: val[0] &= ~0x7FE00010; break; case ID_STM32F412: val[0] &= ~0x70000010; break; case ID_STM32F413: val[0] &= ~0x00000010; break; case ID_STM32F72X: val[2] &= ~0x800000ff; /* Fall through*/ case ID_STM32F74X: val[0] &= ~0x3F000000; break; case ID_STM32F76X: break; default: return false; } return true; } static bool stm32f4_option_write(target *t, uint32_t *val, int count) { target_mem_write32(t, FLASH_OPTKEYR, OPTKEY1); target_mem_write32(t, FLASH_OPTKEYR, OPTKEY2); while (target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY) if(target_check_error(t)) return -1; /* WRITE option bytes instruction */ if (((t->idcode == ID_STM32F42X) || (t->idcode == ID_STM32F46X) || (t->idcode == ID_STM32F72X) || (t->idcode == ID_STM32F74X) || (t->idcode == ID_STM32F76X)) && (count > 1)) /* Checkme: Do we need to read old value and then set it? */ target_mem_write32(t, FLASH_OPTCR + 4, val[1]); if ((t->idcode == ID_STM32F72X) && (count > 2)) target_mem_write32(t, FLASH_OPTCR + 8, val[2]); target_mem_write32(t, FLASH_OPTCR, val[0]); target_mem_write32(t, FLASH_OPTCR, val[0] | FLASH_OPTCR_OPTSTRT); /* Read FLASH_SR to poll for BSY bit */ while(target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY) if(target_check_error(t)) return false; target_mem_write32(t, FLASH_OPTCR, FLASH_OPTCR_OPTLOCK); return true; } static bool stm32f4_option_write_default(target *t) { uint32_t val[3]; switch (t->idcode) { case ID_STM32F42X: case ID_STM32F46X: val[0] = 0x0FFFAAED; val[1] = 0x0FFF0000; return stm32f4_option_write(t, val, 2); case ID_STM32F72X: val[0] = 0xC0FFAAFD; val[1] = 0x00400080; val[2] = 0; return stm32f4_option_write(t, val, 3); case ID_STM32F74X: val[0] = 0xC0FFAAFD; val[1] = 0x00400080; return stm32f4_option_write(t, val, 2); case ID_STM32F76X: val[0] = 0xFFFFAAFD; val[1] = 0x00400080; return stm32f4_option_write(t, val, 2); case ID_STM32F413: val[0] = 0x7FFFAAFD; return stm32f4_option_write(t, val, 1); default: val[0] = 0x0FFFAAED; return stm32f4_option_write(t, val, 1); } } static bool stm32f4_cmd_option(target *t, int argc, char *argv[]) { uint32_t start = 0x1FFFC000, val[3]; int count = 0, readcount = 1; switch (t->idcode) { case ID_STM32F72X: /* STM32F72|3 */ readcount++; /* fall through.*/ case ID_STM32F74X: case ID_STM32F76X: /* F7 Devices have option bytes at 0x1FFF0000. */ start = 0x1FFF0000; readcount++; break; case ID_STM32F42X: case ID_STM32F46X: readcount++; } if ((argc == 2) && !strcmp(argv[1], "erase")) { stm32f4_option_write_default(t); } else if ((argc > 1) && !strcmp(argv[1], "write")) { val[0] = strtoul(argv[2], NULL, 0); count++; if (argc > 2) { val[1] = strtoul(argv[3], NULL, 0); count ++; } if (argc > 3) { val[2] = strtoul(argv[4], NULL, 0); count ++; } if (optcr_mask(t, val)) stm32f4_option_write(t, val, count); else tc_printf(t, "error\n"); } else { tc_printf(t, "usage: monitor option erase\n"); tc_printf(t, "usage: monitor option write "); if (readcount > 1) tc_printf(t, " "); if (readcount > 2) tc_printf(t, " "); tc_printf(t, "\n"); } val[0] = (target_mem_read32(t, start + 8) & 0xffff) << 16; val[0] |= (target_mem_read32(t, start ) & 0xffff); if (readcount > 1) { if (start == 0x1FFFC000) /* F4 */ { val[1] = target_mem_read32(t, 0x1ffec008); val[1] &= 0xffff; val[1] <<= 16; } else { val[1] = (target_mem_read32(t, start + 0x18) & 0xffff) << 16; val[1] |= (target_mem_read32(t, start + 0x10) & 0xffff); } } if (readcount > 2) { val[2] = (target_mem_read32(t, start + 0x28) & 0xffff) << 16; val[2] |= (target_mem_read32(t, start + 0x20) & 0xffff); } optcr_mask(t, val); tc_printf(t, "OPTCR: 0x%08X ", val[0]); if (readcount > 1) tc_printf(t, "OPTCR1: 0x%08lx ", val[1]); if (readcount > 2) tc_printf(t, "OPTCR2: 0x%08lx" , val[2]); tc_printf(t, "\n"); return true; } static bool stm32f4_cmd_psize(target *t, int argc, char *argv[]) { if (argc == 1) { enum align psize = ALIGN_WORD; for (struct target_flash *f = t->flash; f; f = f->next) { if (f->write == stm32f4_flash_write) { psize = ((struct stm32f4_flash *)f)->psize; } } tc_printf(t, "Flash write parallelism: %s\n", psize == ALIGN_DWORD ? "x64" : psize == ALIGN_WORD ? "x32" : psize == ALIGN_HALFWORD ? "x16" : "x8"); } else { enum align psize; if (!strcmp(argv[1], "x8")) { psize = ALIGN_BYTE; } else if (!strcmp(argv[1], "x16")) { psize = ALIGN_HALFWORD; } else if (!strcmp(argv[1], "x32")) { psize = ALIGN_WORD; } else if (!strcmp(argv[1], "x64")) { psize = ALIGN_DWORD; } else { tc_printf(t, "usage: monitor psize (x8|x16|x32|x32)\n"); return false; } for (struct target_flash *f = t->flash; f; f = f->next) { if (f->write == stm32f4_flash_write) { ((struct stm32f4_flash *)f)->psize = psize; } } } return true; } #pragma GCC pop_options