bldc/hwconf/hw_stormcore_100s.c

368 lines
12 KiB
C

/*
Copyright 2019 Benjamin Vedder benjamin@vedder.se
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "hw.h"
#include "ch.h"
#include "hal.h"
#include "stm32f4xx_conf.h"
#include "utils.h"
#include "ledpwm.h"
#include "drv8323s.h"
#if defined (HW_VER_IS_100S_V2)
static THD_WORKING_AREA(switch_color_thread_wa, 128);
static THD_FUNCTION(switch_color_thread, arg);
static volatile float switch_bright = 1.0;
#endif
// I2C configuration
static const I2CConfig i2cfg = {
OPMODE_I2C,
100000,
STD_DUTY_CYCLE
};
static volatile bool i2c_running = false;
void hw_init_gpio(void) {
// GPIO clock enable
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);
#if defined (HW_VER_IS_100S_V2)
palSetPadMode(PHASE_FILTER_GPIO, PHASE_FILTER_PIN,
PAL_MODE_OUTPUT_PUSHPULL |
PAL_STM32_OSPEED_HIGHEST);
PHASE_FILTER_OFF();
palSetPadMode(SWITCH_LED_1_GPIO,SWITCH_LED_1_PIN, PAL_MODE_OUTPUT_OPENDRAIN | PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(SWITCH_LED_2_GPIO,SWITCH_LED_2_PIN, PAL_MODE_OUTPUT_OPENDRAIN | PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(SWITCH_LED_3_GPIO,SWITCH_LED_3_PIN, PAL_MODE_OUTPUT_OPENDRAIN | PAL_STM32_OSPEED_HIGHEST);
chThdCreateStatic(switch_color_thread_wa, sizeof(switch_color_thread_wa), LOWPRIO, switch_color_thread, NULL);
#endif
// LEDs
palSetPadMode(GPIOB, 0,
PAL_MODE_OUTPUT_PUSHPULL |
PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(GPIOB, 1,
PAL_MODE_OUTPUT_PUSHPULL |
PAL_STM32_OSPEED_HIGHEST);
// ENABLE_GATE
palSetPadMode(GPIOB, 5,
PAL_MODE_OUTPUT_PUSHPULL |
PAL_STM32_OSPEED_HIGHEST);
ENABLE_GATE();
// Disable BMI160
palSetPadMode(GPIOA, 15,
PAL_MODE_OUTPUT_PUSHPULL |
PAL_STM32_OSPEED_HIGHEST);
palSetPad(GPIOA, 15);
// Disable DCCAL
palSetPadMode(GPIOD, 2,
PAL_MODE_OUTPUT_PUSHPULL |
PAL_STM32_OSPEED_HIGHEST);
palClearPad(GPIOD, 2);
ENABLE_GATE();
// GPIOA Configuration: Channel 1 to 3 as alternate function push-pull
palSetPadMode(GPIOA, 8, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
palSetPadMode(GPIOA, 9, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
palSetPadMode(GPIOA, 10, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
palSetPadMode(GPIOB, 13, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
palSetPadMode(GPIOB, 14, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
palSetPadMode(GPIOB, 15, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
// Hall sensors
palSetPadMode(HW_HALL_ENC_GPIO1, HW_HALL_ENC_PIN1, PAL_MODE_INPUT_PULLUP);
palSetPadMode(HW_HALL_ENC_GPIO2, HW_HALL_ENC_PIN2, PAL_MODE_INPUT_PULLUP);
palSetPadMode(HW_HALL_ENC_GPIO3, HW_HALL_ENC_PIN3, PAL_MODE_INPUT_PULLUP);
// Fault pin
palSetPadMode(GPIOB, 7, PAL_MODE_INPUT_PULLUP);
// ADC Pins
palSetPadMode(GPIOA, 0, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOA, 1, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOA, 2, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOA, 3, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOA, 6, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOC, 0, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOC, 1, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOC, 2, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOC, 3, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOC, 4, PAL_MODE_INPUT_ANALOG);
palSetPadMode(GPIOC, 5, PAL_MODE_INPUT_ANALOG);
drv8323s_init();
}
void hw_setup_adc_channels(void) {
// ADC1 regular channels
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 2, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC1, ADC_Channel_5, 3, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 4, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC1, ADC_Channel_Vrefint, 5, ADC_SampleTime_15Cycles);
// ADC2 regular channels
ADC_RegularChannelConfig(ADC2, ADC_Channel_1, 1, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC2, ADC_Channel_11, 2, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC2, ADC_Channel_6, 3, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC2, ADC_Channel_15, 4, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC2, ADC_Channel_0, 5, ADC_SampleTime_15Cycles);
// ADC3 regular channels
ADC_RegularChannelConfig(ADC3, ADC_Channel_2, 1, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC3, ADC_Channel_12, 2, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC3, ADC_Channel_3, 3, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC3, ADC_Channel_13, 4, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC3, ADC_Channel_1, 5, ADC_SampleTime_15Cycles);
// Injected channels
ADC_InjectedChannelConfig(ADC1, ADC_Channel_10, 1, ADC_SampleTime_15Cycles);
ADC_InjectedChannelConfig(ADC2, ADC_Channel_11, 1, ADC_SampleTime_15Cycles);
ADC_InjectedChannelConfig(ADC3, ADC_Channel_12, 1, ADC_SampleTime_15Cycles);
ADC_InjectedChannelConfig(ADC1, ADC_Channel_10, 2, ADC_SampleTime_15Cycles);
ADC_InjectedChannelConfig(ADC2, ADC_Channel_11, 2, ADC_SampleTime_15Cycles);
ADC_InjectedChannelConfig(ADC3, ADC_Channel_12, 2, ADC_SampleTime_15Cycles);
ADC_InjectedChannelConfig(ADC1, ADC_Channel_10, 3, ADC_SampleTime_15Cycles);
ADC_InjectedChannelConfig(ADC2, ADC_Channel_11, 3, ADC_SampleTime_15Cycles);
ADC_InjectedChannelConfig(ADC3, ADC_Channel_12, 3, ADC_SampleTime_15Cycles);
}
void hw_start_i2c(void) {
i2cAcquireBus(&HW_I2C_DEV);
if (!i2c_running) {
palSetPadMode(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN,
PAL_MODE_ALTERNATE(HW_I2C_GPIO_AF) |
PAL_STM32_OTYPE_OPENDRAIN |
PAL_STM32_OSPEED_MID1 |
PAL_STM32_PUDR_PULLUP);
palSetPadMode(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN,
PAL_MODE_ALTERNATE(HW_I2C_GPIO_AF) |
PAL_STM32_OTYPE_OPENDRAIN |
PAL_STM32_OSPEED_MID1 |
PAL_STM32_PUDR_PULLUP);
i2cStart(&HW_I2C_DEV, &i2cfg);
i2c_running = true;
}
i2cReleaseBus(&HW_I2C_DEV);
}
void hw_stop_i2c(void) {
i2cAcquireBus(&HW_I2C_DEV);
if (i2c_running) {
palSetPadMode(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN, PAL_MODE_INPUT);
palSetPadMode(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN, PAL_MODE_INPUT);
i2cStop(&HW_I2C_DEV);
i2c_running = false;
}
i2cReleaseBus(&HW_I2C_DEV);
}
/**
* Try to restore the i2c bus
*/
void hw_try_restore_i2c(void) {
if (i2c_running) {
i2cAcquireBus(&HW_I2C_DEV);
palSetPadMode(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN,
PAL_STM32_OTYPE_OPENDRAIN |
PAL_STM32_OSPEED_MID1 |
PAL_STM32_PUDR_PULLUP);
palSetPadMode(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN,
PAL_STM32_OTYPE_OPENDRAIN |
PAL_STM32_OSPEED_MID1 |
PAL_STM32_PUDR_PULLUP);
palSetPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN);
palSetPad(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN);
chThdSleep(1);
for(int i = 0;i < 16;i++) {
palClearPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN);
chThdSleep(1);
palSetPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN);
chThdSleep(1);
}
// Generate start then stop condition
palClearPad(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN);
chThdSleep(1);
palClearPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN);
chThdSleep(1);
palSetPad(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN);
chThdSleep(1);
palSetPad(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN);
palSetPadMode(HW_I2C_SCL_PORT, HW_I2C_SCL_PIN,
PAL_MODE_ALTERNATE(HW_I2C_GPIO_AF) |
PAL_STM32_OTYPE_OPENDRAIN |
PAL_STM32_OSPEED_MID1 |
PAL_STM32_PUDR_PULLUP);
palSetPadMode(HW_I2C_SDA_PORT, HW_I2C_SDA_PIN,
PAL_MODE_ALTERNATE(HW_I2C_GPIO_AF) |
PAL_STM32_OTYPE_OPENDRAIN |
PAL_STM32_OSPEED_MID1 |
PAL_STM32_PUDR_PULLUP);
HW_I2C_DEV.state = I2C_STOP;
i2cStart(&HW_I2C_DEV, &i2cfg);
i2cReleaseBus(&HW_I2C_DEV);
}
}
#if defined (HW_VER_IS_100S_V2)
static THD_FUNCTION(switch_color_thread, arg) {
(void)arg;
chRegSetThreadName("switch_color");
float switch_red = 0.0;
float switch_green = 0.0;
float switch_blue = 0.0;
for(int i = 0; i < 400; i++) {
float angle = i*3.14/400.0;
float s,c;
utils_fast_sincos_better(angle, &s, &c);
switch_blue = 0.75* c*c;
ledpwm_set_intensity(LED_HW1,switch_bright*switch_blue);
utils_fast_sincos_better(angle + 3.14/3.0, &s, &c);
switch_green = 0.75* c*c;
ledpwm_set_intensity(LED_HW2,switch_bright*switch_green);
utils_fast_sincos_better(angle + 6.28/3.0, &s, &c);
switch_red = 0.75* c*c;
ledpwm_set_intensity(LED_HW3,switch_bright*switch_red);
chThdSleepMilliseconds(4);
}
float switch_red_old = switch_red_old;
float switch_green_old = switch_green;
float switch_blue_old = switch_blue;
float wh_left;
float left = mc_interface_get_battery_level(&wh_left);
if(left < 0.5){
float intense = utils_map(left,0.0, 0.5, 0.0, 1.0);
utils_truncate_number(&intense,0,1);
switch_blue = intense;
switch_red = 1.0-intense;
}else{
float intense = utils_map(left , 0.5, 1.0, 0.0, 1.0);
utils_truncate_number(&intense,0,1);
switch_green = intense;
switch_blue = 1.0-intense;
}
for(int i = 0; i < 100; i++) {
float red_now = utils_map((float) i,0.0, 100.0, switch_red_old, switch_red);
float blue_now = utils_map((float) i,0.0, 100.0, switch_blue_old, switch_blue);
float green_now = utils_map((float) i,0.0, 100.0, switch_green_old, switch_green);
ledpwm_set_intensity(LED_HW1, switch_bright*blue_now);
ledpwm_set_intensity(LED_HW2, switch_bright*green_now);
ledpwm_set_intensity(LED_HW3, switch_bright*red_now);
chThdSleepMilliseconds(2);
}
for (;;) {
mc_fault_code fault = mc_interface_get_fault();
mc_interface_select_motor_thread(2);
mc_fault_code fault2 = mc_interface_get_fault();
mc_interface_select_motor_thread(1);
if (fault != FAULT_CODE_NONE || fault2 != FAULT_CODE_NONE) {
ledpwm_set_intensity(LED_HW2, 0);
ledpwm_set_intensity(LED_HW1, 0);
for (int i = 0;i < (int)fault;i++) {
ledpwm_set_intensity(LED_HW3, 1.0);
chThdSleepMilliseconds(250);
ledpwm_set_intensity(LED_HW3, 0.0);
chThdSleepMilliseconds(250);
}
chThdSleepMilliseconds(500);
for (int i = 0;i < (int)fault2;i++) {
ledpwm_set_intensity(LED_HW3, 1.0);
chThdSleepMilliseconds(250);
ledpwm_set_intensity(LED_HW3, 0.0);
chThdSleepMilliseconds(250);
}
chThdSleepMilliseconds(500);
} else {
left = mc_interface_get_battery_level(&wh_left);
if(HW_SAMPLE_SHUTDOWN()){
switch_bright = 0.5;
}else{
switch_bright = 1.0;
}
if(left < 0.5){
float intense = utils_map(left,0.0, 0.5, 0.0, 1.0);
utils_truncate_number(&intense,0,1);
switch_blue = intense;
switch_red = 1.0-intense;
switch_green = 0;
}else{
float intense = utils_map(left , 0.5, 1.0, 0.0, 1.0);
utils_truncate_number(&intense,0,1);
switch_green = intense;
switch_blue = 1.0-intense;
switch_red = 0;
}
ledpwm_set_intensity(LED_HW1, switch_bright*switch_blue);
ledpwm_set_intensity(LED_HW2, switch_bright*switch_green);
ledpwm_set_intensity(LED_HW3, switch_bright*switch_red);
}
chThdSleepMilliseconds(20);
}
}
#endif