bldc/terminal.c

274 lines
9.8 KiB
C

/*
Copyright 2012-2014 Benjamin Vedder benjamin@vedder.se
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* terminal.c
*
* Created on: 26 dec 2013
* Author: benjamin
*/
#include "ch.h"
#include "hal.h"
#include "terminal.h"
#include "commands.h"
#include "main.h"
#include "hw.h"
#include "comm_can.h"
#include "utils.h"
#include <string.h>
#include <stdio.h>
// Private variables
#define FAULT_VEC_LEN 30
static volatile fault_data fault_vec[FAULT_VEC_LEN];
static volatile int fault_vec_write = 0;
void terminal_process_string(char *str) {
enum { kMaxArgs = 64 };
int argc = 0;
char *argv[kMaxArgs];
char *p2 = strtok(str, " ");
while (p2 && argc < kMaxArgs) {
argv[argc++] = p2;
p2 = strtok(0, " ");
}
if (argc == 0) {
commands_printf("No command received\n");
return;
}
if (strcmp(argv[0], "ping") == 0) {
commands_printf("pong\n");
} else if (strcmp(argv[0], "stop") == 0) {
mcpwm_set_duty(0);
commands_printf("Motor stopped\n");
} else if (strcmp(argv[0], "last_adc_duration") == 0) {
commands_printf("Latest ADC duration: %.4f ms", (double)(mcpwm_get_last_adc_isr_duration() * 1000.0));
commands_printf("Latest injected ADC duration: %.4f ms", (double)(mcpwm_get_last_inj_adc_isr_duration() * 1000.0));
commands_printf("Latest main ADC duration: %.4f ms\n", (double)(main_get_last_adc_isr_duration() * 1000.0));
} else if (strcmp(argv[0], "kv") == 0) {
commands_printf("Calculated KV: %.2f rpm/volt\n", (double)mcpwm_get_kv_filtered());
} else if (strcmp(argv[0], "mem") == 0) {
size_t n, size;
n = chHeapStatus(NULL, &size);
commands_printf("core free memory : %u bytes", chCoreStatus());
commands_printf("heap fragments : %u", n);
commands_printf("heap free total : %u bytes\n", size);
} else if (strcmp(argv[0], "threads") == 0) {
Thread *tp;
static const char *states[] = {THD_STATE_NAMES};
commands_printf(" addr stack prio refs state name time ");
commands_printf("-------------------------------------------------------------");
tp = chRegFirstThread();
do {
commands_printf("%.8lx %.8lx %4lu %4lu %9s %14s %lu",
(uint32_t)tp, (uint32_t)tp->p_ctx.r13,
(uint32_t)tp->p_prio, (uint32_t)(tp->p_refs - 1),
states[tp->p_state], tp->p_name, (uint32_t)tp->p_time);
tp = chRegNextThread(tp);
} while (tp != NULL);
commands_printf("");
} else if (strcmp(argv[0], "fault") == 0) {
commands_printf("%s\n", mcpwm_fault_to_string(mcpwm_get_fault()));
} else if (strcmp(argv[0], "faults") == 0) {
if (fault_vec_write == 0) {
commands_printf("No faults registered since startup\n");
} else {
commands_printf("The following faults were registered since start:\n");
for (int i = 0;i < fault_vec_write;i++) {
commands_printf("Fault : %s", mcpwm_fault_to_string(fault_vec[i].fault));
commands_printf("Current : %.1f", (double)fault_vec[i].current);
commands_printf("Current filtered : %.1f", (double)fault_vec[i].current_filtered);
commands_printf("Voltage : %.2f", (double)fault_vec[i].voltage);
commands_printf("Duty : %.2f", (double)fault_vec[i].duty);
commands_printf("RPM : %.1f", (double)fault_vec[i].rpm);
commands_printf("Tacho : %d", fault_vec[i].tacho);
commands_printf("TIM PWM CNT : %d", fault_vec[i].tim_pwm_cnt);
commands_printf("TIM Samp CNT : %d", fault_vec[i].tim_samp_cnt);
commands_printf("Comm step : %d", fault_vec[i].comm_step);
commands_printf("Temperature : %.2f\n", (double)fault_vec[i].temperature);
}
}
} else if (strcmp(argv[0], "rpm") == 0) {
commands_printf("Electrical RPM: %.2f rpm\n", (double)mcpwm_get_rpm());
} else if (strcmp(argv[0], "tacho") == 0) {
commands_printf("Tachometer counts: %i\n", mcpwm_get_tachometer_value(0));
} else if (strcmp(argv[0], "tim") == 0) {
chSysLock();
volatile int t1_cnt = TIM1->CNT;
volatile int t8_cnt = TIM8->CNT;
chSysUnlock();
int duty = TIM1->CCR1;
int top = TIM1->ARR;
int voltage_samp = TIM8->CCR1;
int current1_samp = TIM1->CCR4;
int current2_samp = TIM8->CCR2;
commands_printf("Tim1 CNT: %i", t1_cnt);
commands_printf("Tim8 CNT: %u", t8_cnt);
commands_printf("Duty cycle: %u", duty);
commands_printf("Top: %u", top);
commands_printf("Voltage sample: %u", voltage_samp);
commands_printf("Current 1 sample: %u", current1_samp);
commands_printf("Current 2 sample: %u\n", current2_samp);
} else if (strcmp(argv[0], "volt") == 0) {
commands_printf("Input voltage: %.2f\n", (double)GET_INPUT_VOLTAGE());
} else if (strcmp(argv[0], "param_detect") == 0) {
// Use COMM_MODE_DELAY and try to figure out the motor parameters.
if (argc == 4) {
float current = -1.0;
float min_rpm = -1.0;
float low_duty = -1.0;
sscanf(argv[1], "%f", &current);
sscanf(argv[2], "%f", &min_rpm);
sscanf(argv[3], "%f", &low_duty);
const volatile mc_configuration *mcconf = mcpwm_get_configuration();
if (current > 0.0 && current < mcconf->l_current_max &&
min_rpm > 10.0 && min_rpm < 3000.0 &&
low_duty > 0.02 && low_duty < 0.8) {
float cycle_integrator;
float coupling_k;
if (conf_general_detect_motor_param(current, min_rpm, low_duty, &cycle_integrator, &coupling_k)) {
commands_printf("Cycle integrator limit: %.2f", (double)cycle_integrator);
commands_printf("Coupling factor: %.2f\n", (double)coupling_k);
} else {
commands_printf("Detection failed. Try again with different parameters.\n");
}
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires three arguments.\n");
}
} else if (strcmp(argv[0], "rpm_dep") == 0) {
mc_rpm_dep_struct rpm_dep = mcpwm_get_rpm_dep();
commands_printf("Cycle int limit: %.2f", (double)rpm_dep.cycle_int_limit);
commands_printf("Cycle int limit running: %.2f", (double)rpm_dep.cycle_int_limit_running);
commands_printf("Cycle int limit max: %.2f\n", (double)rpm_dep.cycle_int_limit_max);
} else if (strcmp(argv[0], "can_devs") == 0) {
commands_printf("CAN devices seen on the bus the past second:\n");
for (int i = 0;i < CAN_STATUS_MSGS_TO_STORE;i++) {
can_status_msg *msg = comm_can_get_status_msg_index(i);
if (msg->id >= 0 && UTILS_AGE_S(msg->rx_time) < 1.0) {
commands_printf("ID : %i", msg->id);
commands_printf("RX Time : %i", msg->rx_time);
commands_printf("Age (milliseconds) : %.2f", (double)(UTILS_AGE_S(msg->rx_time) * 1000.0));
commands_printf("RPM : %.2f", (double)msg->rpm);
commands_printf("Current : %.2f", (double)msg->current);
commands_printf("Duty : %.2f\n", (double)msg->duty);
}
}
}
// Setters
else if (strcmp(argv[0], "set_hall_table") == 0) {
if (argc == 4) {
int dir = -1;
int fwd_add = -1;
int rev_add = -1;
sscanf(argv[1], "%i", &dir);
sscanf(argv[2], "%i", &fwd_add);
sscanf(argv[3], "%i", &rev_add);
if (dir >= 0 && fwd_add >= 0 && rev_add >= 0) {
mcpwm_init_hall_table(dir, fwd_add, rev_add);
commands_printf("New hall sensor dir: %i fwd_add %i rev_add %i\n",
dir, fwd_add, rev_add);
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires three arguments.\n");
}
}
// The help command
else if (strcmp(argv[0], "help") == 0) {
commands_printf("Valid commands are:");
commands_printf("help");
commands_printf(" Show this help");
commands_printf("ping");
commands_printf(" Print pong here to see if the reply works");
commands_printf("stop");
commands_printf(" Stop the motor");
commands_printf("last_adc_duration");
commands_printf(" The time the latest ADC interrupt consumed");
commands_printf("kv");
commands_printf(" The calculated kv of the motor");
commands_printf("mem");
commands_printf(" Show memory usage");
commands_printf("threads");
commands_printf(" List all threads");
commands_printf("fault");
commands_printf(" Prints the current fault code");
commands_printf("faults");
commands_printf(" Prints all stored fault codes and conditions when they arrived");
commands_printf("rpm");
commands_printf(" Prints the current electrical RPM");
commands_printf("tacho");
commands_printf(" Prints tachometer value");
commands_printf("tim");
commands_printf(" Prints tim1 and tim8 settings");
commands_printf("set_hall_table [dir] [fwd_add] [rev_add]");
commands_printf(" Update the hall sensor lookup table");
commands_printf("volt");
commands_printf(" Prints different voltages");
commands_printf("param_detect [current] [min_rpm] [low_duty]");
commands_printf(" Spin up the motor in COMM_MODE_DELAY and compute its parameters.");
commands_printf(" This test should be performed without load on the motor.");
commands_printf(" Example: param_detect 5.0 600 0.06");
commands_printf("rpm_dep");
commands_printf(" Prints some rpm-dep values");
commands_printf("can_devs");
commands_printf(" Prints all CAN devices seen on the bus the past second\n");
} else {
commands_printf("Invalid command: %s\n"
"type help to list all available commands\n", argv[0]);
}
}
void terminal_add_fault_data(fault_data *data) {
fault_vec[fault_vec_write++] = *data;
if (fault_vec_write >= FAULT_VEC_LEN) {
fault_vec_write = 0;
}
}