bldc/applications/app_balance.c

477 lines
13 KiB
C

/*
Copyright 2019 Mitch Lustig
This file is part of the VESC firmware.
The VESC firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "conf_general.h"
#include "ch.h" // ChibiOS
#include "hal.h" // ChibiOS HAL
#include "mc_interface.h" // Motor control functions
#include "hw.h" // Pin mapping on this hardware
#include "timeout.h" // To reset the timeout
#include "commands.h"
#include "imu/imu.h"
#include "imu/ahrs.h"
#include "utils.h"
#include "datatypes.h"
#include "comm_can.h"
#include <math.h>
// Can
#define MAX_CAN_AGE 0.1
// Data type
typedef enum {
STARTUP = 0,
RUNNING,
FAULT,
DEAD
} BalanceState;
typedef enum {
CENTERING = 0,
TILTBACK
} SetpointAdjustmentType;
typedef enum {
OFF = 0,
HALF,
ON
} SwitchState;
// Balance thread
static THD_FUNCTION(balance_thread, arg);
static THD_WORKING_AREA(balance_thread_wa, 2048); // 2kb stack for this thread
static volatile balance_config balance_conf;
static volatile imu_config imu_conf;
static thread_t *app_thread;
// Values used in loop
static BalanceState state;
static float pitch_angle, roll_angle;
static float gyro[3];
static float duty_cycle, abs_duty_cycle;
static float erpm, abs_erpm, avg_erpm;
static float proportional, integral, derivative;
static float last_proportional;
static float pid_value;
static float yaw_proportional, yaw_integral, yaw_derivative, yaw_last_proportional, yaw_pid_value, yaw_setpoint;
static float setpoint, setpoint_target, setpoint_target_interpolated;
static SetpointAdjustmentType setpointAdjustmentType;
static float startup_step_size, tiltback_step_size;
static systime_t current_time, last_time, diff_time;
static systime_t startup_start_time, startup_diff_time;
static systime_t dead_start_time;
static systime_t fault_start_time;
static float adc1, adc2;
static SwitchState switch_state;
// Values read to pass in app data to GUI
static float motor_current;
static float motor_position;
void app_balance_configure(balance_config *conf, imu_config *conf2) {
balance_conf = *conf;
imu_conf = *conf2;
}
void app_balance_start(void) {
// Reset all Values
state = STARTUP;
pitch_angle = 0;
roll_angle = 0;
gyro[0] = 0;
gyro[1] = 0;
gyro[2] = 0;
duty_cycle = 0;
abs_duty_cycle = 0;
erpm = 0;
abs_erpm = 0;
avg_erpm = 0;
adc1 = 0;
adc2 = 0;
switch_state = OFF;
proportional = 0;
integral = 0;
derivative = 0;
last_proportional = 0;
pid_value = 0;
yaw_proportional = 0;
yaw_integral = 0;
yaw_derivative = 0;
yaw_last_proportional = 0;
yaw_pid_value = 0;
yaw_setpoint = 0;
setpoint = 0;
setpoint_target = 0;
setpoint_target_interpolated = 0;
setpointAdjustmentType = CENTERING;
startup_step_size = 0;
tiltback_step_size = 0;
current_time = 0;
last_time = 0;
diff_time = 0;
startup_start_time = 0;
startup_diff_time = 0;
// Start the balance thread
app_thread = chThdCreateStatic(balance_thread_wa, sizeof(balance_thread_wa), NORMALPRIO, balance_thread, NULL);
}
float app_balance_get_pid_output(void) {
return pid_value;
}
float app_balance_get_pitch_angle(void) {
return pitch_angle;
}
float app_balance_get_roll_angle(void) {
return roll_angle;
}
uint32_t app_balance_get_diff_time(void) {
return ST2US(diff_time);
}
float app_balance_get_motor_current(void) {
return motor_current;
}
float app_balance_get_motor_position(void) {
return motor_position;
}
uint16_t app_balance_get_state(void) {
return state;
}
uint16_t app_balance_get_switch_state(void) {
return switch_state;
}
float app_balance_get_adc1(void) {
return adc1;
}
float app_balance_get_adc2(void) {
return adc2;
}
float get_setpoint_adjustment_step_size(void){
switch(setpointAdjustmentType){
case (CENTERING):
return startup_step_size;
case (TILTBACK):
return tiltback_step_size;
}
return 0;
}
float apply_deadzone(float error){
if(balance_conf.deadzone == 0){
return error;
}
if(error < balance_conf.deadzone && error > -balance_conf.deadzone){
return 0;
} else if(error > balance_conf.deadzone){
return error - balance_conf.deadzone;
} else {
return error + balance_conf.deadzone;
}
}
void brake(void){
// Reset the timeout
timeout_reset();
// Set current
mc_interface_set_brake_current(balance_conf.brake_current);
if(balance_conf.multi_esc){
for (int i = 0;i < CAN_STATUS_MSGS_TO_STORE;i++) {
can_status_msg *msg = comm_can_get_status_msg_index(i);
if (msg->id >= 0 && UTILS_AGE_S(msg->rx_time) < MAX_CAN_AGE) {
comm_can_set_current_brake(msg->id, balance_conf.brake_current);
}
}
}
}
void set_current(float current, float yaw_current){
// Reset the timeout
timeout_reset();
// Set current
if(balance_conf.multi_esc){
mc_interface_set_current(current + yaw_current);
for (int i = 0;i < CAN_STATUS_MSGS_TO_STORE;i++) {
can_status_msg *msg = comm_can_get_status_msg_index(i);
if (msg->id >= 0 && UTILS_AGE_S(msg->rx_time) < MAX_CAN_AGE) {
comm_can_set_current(msg->id, current - yaw_current);// Assume 2 motors, i don't know how to steer 3 anyways
}
}
} else {
mc_interface_set_current(current);
}
}
void app_balance_stop(void) {
if(app_thread != NULL){
chThdTerminate(app_thread);
chThdWait(app_thread);
}
set_current(0, 0);
}
static THD_FUNCTION(balance_thread, arg) {
(void)arg;
chRegSetThreadName("APP_BALANCE");
// Do one off config
startup_step_size = balance_conf.startup_speed / balance_conf.hertz;
tiltback_step_size = balance_conf.tiltback_speed / balance_conf.hertz;
state = STARTUP;
while (!chThdShouldTerminateX()) {
// Update times
current_time = chVTGetSystemTimeX();
if(last_time == 0){
last_time = current_time;
}
diff_time = current_time - last_time;
last_time = current_time;
// Read values for GUI
motor_current = mc_interface_get_tot_current_directional_filtered();
motor_position = mc_interface_get_pid_pos_now();
// Get the values we want
pitch_angle = imu_get_pitch() * 180.0f / M_PI;
roll_angle = imu_get_roll() * 180.0f / M_PI;
imu_get_gyro(gyro);
duty_cycle = mc_interface_get_duty_cycle_now();
abs_duty_cycle = fabsf(duty_cycle);
erpm = mc_interface_get_rpm();
abs_erpm = fabsf(erpm);
if(balance_conf.multi_esc){
avg_erpm = erpm;
for (int i = 0;i < CAN_STATUS_MSGS_TO_STORE;i++) {
can_status_msg *msg = comm_can_get_status_msg_index(i);
if (msg->id >= 0 && UTILS_AGE_S(msg->rx_time) < MAX_CAN_AGE) {
avg_erpm += msg->rpm;
}
}
avg_erpm = avg_erpm/2;// Assume 2 motors, i don't know how to steer 3 anyways
}
adc1 = (((float)ADC_Value[ADC_IND_EXT])/4095) * V_REG;
#ifdef ADC_IND_EXT2
adc2 = (((float)ADC_Value[ADC_IND_EXT2])/4095) * V_REG;
#else
adc2 = 0.0;
#endif
// Calculate switch state from ADC values
if(balance_conf.adc1 == 0 && balance_conf.adc2 == 0){ // No Switch
switch_state = ON;
}else if(balance_conf.adc2 == 0){ // Single switch on ADC1
if(adc1 > balance_conf.adc1){
switch_state = ON;
} else {
switch_state = OFF;
}
}else if(balance_conf.adc1 == 0){ // Single switch on ADC2
if(adc2 > balance_conf.adc2){
switch_state = ON;
} else {
switch_state = OFF;
}
}else{ // Double switch
if(adc1 > balance_conf.adc1 && adc2 > balance_conf.adc2){
switch_state = ON;
}else if(adc1 > balance_conf.adc1 || adc2 > balance_conf.adc2){
switch_state = HALF;
}else{
switch_state = OFF;
}
}
// State based logic
switch(state){
case (STARTUP):
while(!imu_startup_done()){
// Disable output
brake();
// Wait
chThdSleepMilliseconds(50);
}
state = FAULT;
startup_start_time = 0;
startup_diff_time = 0;
break;
case (RUNNING):
// Check for overspeed
if(abs_duty_cycle > balance_conf.overspeed_duty){
if(ST2MS(current_time - dead_start_time) > balance_conf.overspeed_delay){
state = DEAD;
}
} else {
dead_start_time = current_time;
}
// Check for fault
if(
fabsf(pitch_angle) > balance_conf.pitch_fault || // Balnce axis tip over
fabsf(roll_angle) > balance_conf.roll_fault || // Cross axis tip over
switch_state == OFF || // Switch fully open
(switch_state == HALF && abs_erpm < balance_conf.adc_half_fault_erpm) // Switch partially open and stopped
){
if(ST2MS(current_time - fault_start_time) > balance_conf.fault_delay){
state = FAULT;
}
} else {
fault_start_time = current_time;
}
// Over speed tilt back safety
if(setpointAdjustmentType == CENTERING && setpoint_target_interpolated != setpoint_target){
// Ignore tiltback during centering sequence
}else if(abs_duty_cycle > balance_conf.tiltback_duty ||
(abs_duty_cycle > 0.05 && GET_INPUT_VOLTAGE() > balance_conf.tiltback_high_voltage) ||
(abs_duty_cycle > 0.05 && GET_INPUT_VOLTAGE() < balance_conf.tiltback_low_voltage)){
if(duty_cycle > 0){
setpoint_target = balance_conf.tiltback_angle;
} else {
setpoint_target = -balance_conf.tiltback_angle;
}
setpointAdjustmentType = TILTBACK;
}else if(abs_duty_cycle > 0.03){
// Nose angle adjustment
if(duty_cycle > 0){
setpoint_target = balance_conf.tiltback_constant;
} else {
setpoint_target = -balance_conf.tiltback_constant;
}
setpointAdjustmentType = TILTBACK;
}else{
setpointAdjustmentType = TILTBACK;
setpoint_target = 0;
}
// Adjust setpoint
if(setpoint_target_interpolated != setpoint_target){
// If we are less than one step size away, go all the way
if(fabsf(setpoint_target - setpoint_target_interpolated) < get_setpoint_adjustment_step_size()){
setpoint_target_interpolated = setpoint_target;
}else if (setpoint_target - setpoint_target_interpolated > 0){
setpoint_target_interpolated += get_setpoint_adjustment_step_size();
}else{
setpoint_target_interpolated -= get_setpoint_adjustment_step_size();
}
}
// Apply setpoint filtering
if(setpointAdjustmentType == CENTERING){
// Ignore filtering during centering
setpoint = setpoint_target_interpolated;
}else{
setpoint = (setpoint * (1-balance_conf.setpoint_pitch_filter)) + (pitch_angle * balance_conf.setpoint_pitch_filter);
setpoint = (setpoint * (1-balance_conf.setpoint_target_filter)) + (setpoint_target_interpolated * balance_conf.setpoint_target_filter);
if(setpoint > balance_conf.setpoint_clamp){
setpoint = balance_conf.setpoint_clamp;
}else if (setpoint < -balance_conf.setpoint_clamp){
setpoint = -balance_conf.setpoint_clamp;
}
}
// Do PID maths
proportional = setpoint - pitch_angle;
// Apply deadzone
proportional = apply_deadzone(proportional);
// Resume real PID maths
integral = integral + proportional;
derivative = proportional - last_proportional;
pid_value = (balance_conf.kp * proportional) + (balance_conf.ki * integral) + (balance_conf.kd * derivative);
last_proportional = proportional;
// Apply current boost
if(pid_value > 0){
pid_value += balance_conf.current_boost;
}else if(pid_value < 0){
pid_value -= balance_conf.current_boost;
}
if(balance_conf.multi_esc){
// Calculate setpoint
if(abs_duty_cycle < .02){
yaw_setpoint = 0;
} else if(avg_erpm < 0){
yaw_setpoint = (-balance_conf.roll_steer_kp * roll_angle) + (balance_conf.roll_steer_erpm_kp * roll_angle * avg_erpm);
} else{
yaw_setpoint = (balance_conf.roll_steer_kp * roll_angle) + (balance_conf.roll_steer_erpm_kp * roll_angle * avg_erpm);
}
// Do PID maths
yaw_proportional = yaw_setpoint - gyro[2];
yaw_integral = yaw_integral + yaw_proportional;
yaw_derivative = yaw_proportional - yaw_last_proportional;
yaw_pid_value = (balance_conf.yaw_kp * yaw_proportional) + (balance_conf.yaw_ki * yaw_integral) + (balance_conf.yaw_kd * yaw_derivative);
if(yaw_pid_value > balance_conf.yaw_current_clamp){
yaw_pid_value = balance_conf.yaw_current_clamp;
}else if(yaw_pid_value < -balance_conf.yaw_current_clamp){
yaw_pid_value = -balance_conf.yaw_current_clamp;
}
yaw_last_proportional = yaw_proportional;
}
// Output to motor
set_current(pid_value, yaw_pid_value);
break;
case (FAULT):
// Check for valid startup position and switch state
if(fabsf(pitch_angle) < balance_conf.startup_pitch_tolerance && fabsf(roll_angle) < balance_conf.startup_roll_tolerance && switch_state == ON){
// Clear accumulated values.
integral = 0;
last_proportional = 0;
yaw_integral = 0;
yaw_last_proportional = 0;
// Set values for startup
setpoint = pitch_angle;
setpoint_target = 0;
setpoint_target_interpolated = pitch_angle;
setpointAdjustmentType = CENTERING;
state = RUNNING;
break;
}
// Disable output
brake();
break;
case (DEAD):
// Disable output
brake();
break;
}
// Delay between loops
chThdSleepMicroseconds((int)((1000.0 / balance_conf.hertz) * 1000.0));
}
// Disable output
brake();
}