bldc/hwconf/drv8301.c

425 lines
9.9 KiB
C

/*
Copyright 2016 Benjamin Vedder benjamin@vedder.se
This file is part of the VESC firmware.
The VESC firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "conf_general.h"
#ifdef HW_HAS_DRV8301
#include "drv8301.h"
#include "ch.h"
#include "hal.h"
#include "stm32f4xx_conf.h"
#include "utils.h"
#include "terminal.h"
#include "commands.h"
#include <string.h>
#include <stdio.h>
#include "mc_interface.h"
// Private functions
static uint16_t spi_exchange(uint16_t x);
static void spi_transfer(uint16_t *in_buf, const uint16_t *out_buf, int length);
static void spi_begin(void);
static void spi_end(void);
static void spi_delay(void);
static void terminal_read_reg(int argc, const char **argv);
static void terminal_write_reg(int argc, const char **argv);
static void terminal_set_oc_adj(int argc, const char **argv);
static void terminal_print_faults(int argc, const char **argv);
// Private variables
static char m_fault_print_buffer[120];
static mutex_t m_spi_mutex;
void drv8301_init(void) {
chMtxObjectInit(&m_spi_mutex);
// DRV8301 SPI
palSetPadMode(DRV8301_MISO_GPIO, DRV8301_MISO_PIN, PAL_MODE_INPUT);
palSetPadMode(DRV8301_SCK_GPIO, DRV8301_SCK_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(DRV8301_CS_GPIO, DRV8301_CS_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(DRV8301_MOSI_GPIO, DRV8301_MOSI_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPad(DRV8301_MOSI_GPIO, DRV8301_MOSI_PIN);
#ifdef DRV8301_CS_GPIO2
palSetPadMode(DRV8301_CS_GPIO2, DRV8301_CS_PIN2, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
#endif
chThdSleepMilliseconds(100);
// Disable OC
drv8301_write_reg(2, 0x0430);
drv8301_write_reg(2, 0x0430);
drv8301_set_current_amp_gain(CURRENT_AMP_GAIN);
terminal_register_command_callback(
"drv8301_read_reg",
"Read a register from the DRV8301 and print it.",
"[reg]",
terminal_read_reg);
terminal_register_command_callback(
"drv8301_write_reg",
"Write to a DRV8301 register.",
"[reg] [hexvalue]",
terminal_write_reg);
terminal_register_command_callback(
"drv8301_set_oc_adj",
"Set the DRV8301 OC ADJ register.",
"[value]",
terminal_set_oc_adj);
terminal_register_command_callback(
"drv8301_print_faults",
"Print all current DRV8301 faults.",
0,
terminal_print_faults);
}
/**
* Set the threshold of the over current protection of the DRV8301. It works by measuring
* the voltage drop across drain-source of the MOSFETs and activates when it is higher than
* a set value. Notice that this current limit is not very accurate.
*
* @param val
* The value to use. Range [0 31]. A lower value corresponds to a lower current limit. See
* the drv8301 datasheet for how to convert these values to currents.
*/
void drv8301_set_oc_adj(int val) {
int reg = drv8301_read_reg(2);
reg &= 0x003F;
reg |= (val & 0x1F) << 6;
drv8301_write_reg(2, reg);
}
/**
* Set the over current protection mode of the DRV8301.
*
* @param mode
* The over current protection mode.
*/
void drv8301_set_oc_mode(drv8301_oc_mode mode) {
int reg = drv8301_read_reg(2);
reg &= 0xFFCF;
reg |= (mode & 0x03) << 4;
drv8301_write_reg(2, reg);
}
void drv8301_set_current_amp_gain(int gain) {
int reg = drv8301_read_reg(3);
reg &= ~(0x03 << 4);
switch(gain) {
case 10:
reg |= (0 & 0x03) << 2;
break;
case 20:
reg |= (1 & 0x03) << 2;
break;
case 40:
reg |= (2 & 0x03) << 2;
break;
case 80:
reg |= (3 & 0x03) << 2;
break;
default:
//gain not supported
break;
}
drv8301_write_reg(3, reg);
}
/**
* Read the fault codes of the DRV8301.
*
* @return
* The fault codes, where the bits represent the following:
* b0: FETLC_OC
* b1: FETHC_OC
* b2: FETLB_OC
* b3: FETHB_OC
* b4: FETLA_OC
* b5: FETHA_OC
* b6: OTW
* b7: OTSD
* b8: PVDD_UV
* b9: GVDD_UV
* b10: FAULT
* b11: GVDD_OV
*
*/
int drv8301_read_faults(void) {
int r0 = drv8301_read_reg(0);
int r1 = drv8301_read_reg(1);
return (r0 & 0x3FF) | ((r1 & 0x80) << 4);
}
/**
* Reset all latched faults.
*/
void drv8301_reset_faults(void) {
int reg = drv8301_read_reg(2);
reg |= 1 << 2;
drv8301_write_reg(2, reg);
drv8301_set_current_amp_gain(CURRENT_AMP_GAIN);
}
char* drv8301_faults_to_string(int faults) {
if (faults == 0) {
strcpy(m_fault_print_buffer, "No DRV8301 faults");
} else {
strcpy(m_fault_print_buffer, "|");
if (faults & DRV8301_FAULT_FETLC_OC) {
strcat(m_fault_print_buffer, " FETLC_OC |");
}
if (faults & DRV8301_FAULT_FETHC_OC) {
strcat(m_fault_print_buffer, " FETHC_OC |");
}
if (faults & DRV8301_FAULT_FETLB_OC) {
strcat(m_fault_print_buffer, " FETLB_OC |");
}
if (faults & DRV8301_FAULT_FETHB_OC) {
strcat(m_fault_print_buffer, " FETHB_OC |");
}
if (faults & DRV8301_FAULT_FETLA_OC) {
strcat(m_fault_print_buffer, " FETLA_OC |");
}
if (faults & DRV8301_FAULT_FETHA_OC) {
strcat(m_fault_print_buffer, " FETHA_OC |");
}
if (faults & DRV8301_FAULT_OTW) {
strcat(m_fault_print_buffer, " OTW |");
}
if (faults & DRV8301_FAULT_OTSD) {
strcat(m_fault_print_buffer, " OTSD |");
}
if (faults & DRV8301_FAULT_PVDD_UV) {
strcat(m_fault_print_buffer, " PVDD_UV |");
}
if (faults & DRV8301_FAULT_GVDD_UV) {
strcat(m_fault_print_buffer, " GVDD_UV |");
}
if (faults & DRV8301_FAULT_FAULT) {
strcat(m_fault_print_buffer, " FAULT |");
}
if (faults & DRV8301_FAULT_GVDD_OV) {
strcat(m_fault_print_buffer, " GVDD_OV |");
}
}
return m_fault_print_buffer;
}
unsigned int drv8301_read_reg(int reg) {
uint16_t out = 0;
out |= (1 << 15);
out |= (reg & 0x0F) << 11;
out |= 0x807F;
chMtxLock(&m_spi_mutex);
if (reg != 0) {
spi_begin();
spi_exchange(out);
spi_end();
}
spi_begin();
uint16_t res = spi_exchange(0xFFFF);
spi_end();
chMtxUnlock(&m_spi_mutex);
return res;
}
void drv8301_write_reg(int reg, int data) {
uint16_t out = 0;
out |= (reg & 0x0F) << 11;
out |= data & 0x7FF;
chMtxLock(&m_spi_mutex);
spi_begin();
spi_exchange(out);
spi_end();
chMtxUnlock(&m_spi_mutex);
}
// Software SPI
static uint16_t spi_exchange(uint16_t x) {
uint16_t rx;
spi_transfer(&rx, &x, 1);
return rx;
}
static void spi_transfer(uint16_t *in_buf, const uint16_t *out_buf, int length) {
for (int i = 0;i < length;i++) {
uint16_t send = out_buf ? out_buf[i] : 0xFFFF;
uint16_t recieve = 0;
for (int bit = 0;bit < 16;bit++) {
palWritePad(DRV8301_MOSI_GPIO, DRV8301_MOSI_PIN, send >> 15);
send <<= 1;
palSetPad(DRV8301_SCK_GPIO, DRV8301_SCK_PIN);
spi_delay();
palClearPad(DRV8301_SCK_GPIO, DRV8301_SCK_PIN);
int r1, r2, r3;
r1 = palReadPad(DRV8301_MISO_GPIO, DRV8301_MISO_PIN);
__NOP();
r2 = palReadPad(DRV8301_MISO_GPIO, DRV8301_MISO_PIN);
__NOP();
r3 = palReadPad(DRV8301_MISO_GPIO, DRV8301_MISO_PIN);
recieve <<= 1;
if (utils_middle_of_3_int(r1, r2, r3)) {
recieve |= 1;
}
spi_delay();
}
if (in_buf) {
in_buf[i] = recieve;
}
}
}
static void spi_begin(void) {
#ifdef DRV8301_CS_GPIO2
if (mc_interface_motor_now() == 2) {
palClearPad(DRV8301_CS_GPIO2, DRV8301_CS_PIN2);
} else {
palClearPad(DRV8301_CS_GPIO, DRV8301_CS_PIN);
}
#else
palClearPad(DRV8301_CS_GPIO, DRV8301_CS_PIN);
#endif
}
static void spi_end(void) {
#ifdef DRV8301_CS_GPIO2
if (mc_interface_motor_now() == 2) {
palSetPad(DRV8301_CS_GPIO2, DRV8301_CS_PIN2);
} else {
palSetPad(DRV8301_CS_GPIO, DRV8301_CS_PIN);
}
#else
palSetPad(DRV8301_CS_GPIO, DRV8301_CS_PIN);
#endif
}
static void spi_delay(void) {
for (volatile int i = 0;i < 10;i++) {
__NOP();
}
}
static void terminal_read_reg(int argc, const char **argv) {
if (argc == 2) {
int reg = -1;
sscanf(argv[1], "%d", &reg);
if (reg >= 0) {
unsigned int res = drv8301_read_reg(reg);
char bl[9];
char bh[9];
utils_byte_to_binary((res >> 8) & 0xFF, bh);
utils_byte_to_binary(res & 0xFF, bl);
commands_printf("Reg 0x%02x: %s %s (0x%04x)\n", reg, bh, bl, res);
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires one argument.\n");
}
}
static void terminal_write_reg(int argc, const char **argv) {
if (argc == 3) {
int reg = -1;
int val = -1;
sscanf(argv[1], "%d", &reg);
sscanf(argv[2], "%x", &val);
if (reg >= 0 && val >= 0) {
drv8301_write_reg(reg, val);
unsigned int res = drv8301_read_reg(reg);
char bl[9];
char bh[9];
utils_byte_to_binary((res >> 8) & 0xFF, bh);
utils_byte_to_binary(res & 0xFF, bl);
commands_printf("New reg value 0x%02x: %s %s (0x%04x)\n", reg, bh, bl, res);
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires two arguments.\n");
}
}
static void terminal_set_oc_adj(int argc, const char **argv) {
if (argc == 2) {
int val = -1;
sscanf(argv[1], "%d", &val);
if (val >= 0 && val < 32) {
drv8301_set_oc_adj(val);
unsigned int res = drv8301_read_reg(5);
char bl[9];
char bh[9];
utils_byte_to_binary((res >> 8) & 0xFF, bh);
utils_byte_to_binary(res & 0xFF, bl);
commands_printf("New reg value 0x%02x: %s %s (0x%04x)\n", 2, bh, bl, res);
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires one argument.\n");
}
}
static void terminal_print_faults(int argc, const char **argv) {
(void)argc;
(void)argv;
commands_printf(drv8301_faults_to_string(drv8301_read_faults()));
}
#endif