bldc/util/utils_math.h

246 lines
7.3 KiB
C

/*
Copyright 2016 - 2019 Benjamin Vedder benjamin@vedder.se
This file is part of the VESC firmware.
The VESC firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef UTILS_MATH_H_
#define UTILS_MATH_H_
#include <stdbool.h>
#include <stdint.h>
#include <math.h>
float utils_map_angle(float angle, float min, float max);
void utils_deadband(float *value, float tres, float max);
float utils_angle_difference(float angle1, float angle2);
float utils_angle_difference_rad(float angle1, float angle2);
float utils_avg_angles_rad_fast(float *angles, float *weights, int angles_num);
float utils_interpolate_angles_rad(float a1, float a2, float weight_a1);
float utils_middle_of_3(float a, float b, float c);
int utils_middle_of_3_int(int a, int b, int c);
float utils_fast_atan2(float y, float x);
void utils_fast_sincos(float angle, float *sin, float *cos);
void utils_fast_sincos_better(float angle, float *sin, float *cos);
float utils_min_abs(float va, float vb);
float utils_max_abs(float va, float vb);
void utils_byte_to_binary(int x, char *b);
float utils_throttle_curve(float val, float curve_acc, float curve_brake, int mode);
uint32_t utils_crc32c(uint8_t *data, uint32_t len);
void utils_fft32_bin0(float *real_in, float *real, float *imag);
void utils_fft32_bin1(float *real_in, float *real, float *imag);
void utils_fft32_bin2(float *real_in, float *real, float *imag);
void utils_fft16_bin0(float *real_in, float *real, float *imag);
void utils_fft16_bin1(float *real_in, float *real, float *imag);
void utils_fft16_bin2(float *real_in, float *real, float *imag);
void utils_fft8_bin0(float *real_in, float *real, float *imag);
void utils_fft8_bin1(float *real_in, float *real, float *imag);
void utils_fft8_bin2(float *real_in, float *real, float *imag);
float utils_batt_liion_norm_v_to_capacity(float norm_v);
uint16_t utils_median_filter_uint16_run(uint16_t *buffer,
unsigned int *buffer_index, unsigned int filter_len, uint16_t sample);
void utils_rotate_vector3(float *input, float *rotation, float *output, bool reverse);
// Return the sign of the argument. -1.0 if negative, 1.0 if zero or positive.
#define SIGN(x) (((x) < 0.0) ? -1.0 : 1.0)
// Squared
#define SQ(x) ((x) * (x))
// Two-norm of 2D vector
//#define NORM2(x,y) (sqrt(SQ(x) + SQ(y)))
#define NORM2_f(x,y) (sqrtf(SQ(x) + SQ(y)))
// nan and infinity check for floats
#define UTILS_IS_INF(x) ((x) == (1.0 / 0.0) || (x) == (-1.0 / 0.0))
#define UTILS_IS_NAN(x) ((x) != (x))
#define UTILS_NAN_ZERO(x) (x = UTILS_IS_NAN(x) ? 0.0 : x)
// Handy conversions for radians/degrees and RPM/radians-per-second
#define DEG2RAD_f(deg) ((deg) * (float)(M_PI / 180.0))
#define RAD2DEG_f(rad) ((rad) * (float)(180.0 / M_PI))
#define RPM2RADPS_f(rpm) ((rpm) * (float)((2.0 * M_PI) / 60.0))
#define RADPS2RPM_f(rad_per_sec) ((rad_per_sec) * (float)(60.0 / (2.0 * M_PI)))
#ifndef MIN
#define MIN(a,b) (((a)<(b))?(a):(b))
#endif
#ifndef MAX
#define MAX(a,b) (((a)>(b))?(a):(b))
#endif
// For double precision literals
#define D(x) ((double)x##L)
/**
* A simple low pass filter.
*
* @param value
* The filtered value.
*
* @param sample
* Next sample.
*
* @param filter_constant
* Filter constant. Range 0.0 to 1.0, where 1.0 gives the unfiltered value.
*/
#define UTILS_LP_FAST(value, sample, filter_constant) (value -= (filter_constant) * ((value) - (sample)))
/**
* A fast approximation of a moving average filter with N samples. See
* https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
* https://en.wikipedia.org/wiki/Exponential_smoothing
*
* It is not entirely the same as it behaves like an IIR filter rather than a FIR filter, but takes
* much less memory and is much faster to run.
*/
#define UTILS_LP_MOVING_AVG_APPROX(value, sample, N) UTILS_LP_FAST(value, sample, 2.0 / ((N) + 1.0))
// Constants
#define ONE_BY_SQRT3 (0.57735026919)
#define TWO_BY_SQRT3 (2.0f * 0.57735026919)
#define SQRT3_BY_2 (0.86602540378)
#define COS_30_DEG (0.86602540378)
#define SIN_30_DEG (0.5)
#define COS_MINUS_30_DEG (0.86602540378)
#define SIN_MINUS_30_DEG (-0.5)
#define ONE_BY_SQRT2 (0.7071067811865475)
// Tables
extern const float utils_tab_sin_32_1[];
extern const float utils_tab_sin_32_2[];
extern const float utils_tab_cos_32_1[];
extern const float utils_tab_cos_32_2[];
// Inline functions
static inline void utils_step_towards(float *value, float goal, float step) {
if (*value < goal) {
if ((*value + step) < goal) {
*value += step;
} else {
*value = goal;
}
} else if (*value > goal) {
if ((*value - step) > goal) {
*value -= step;
} else {
*value = goal;
}
}
}
/**
* Make sure that 0 <= angle < 360
*
* @param angle
* The angle to normalize.
*/
static inline void utils_norm_angle(float *angle) {
*angle = fmodf(*angle, 360.0);
if (*angle < 0.0) {
*angle += 360.0;
}
}
/**
* Make sure that -pi <= angle < pi,
*
* @param angle
* The angle to normalize in radians.
* WARNING: Don't use too large angles.
*/
static inline void utils_norm_angle_rad(float *angle) {
while (*angle < -M_PI) { *angle += 2.0 * M_PI; }
while (*angle >= M_PI) { *angle -= 2.0 * M_PI; }
}
static inline void utils_truncate_number(float *number, float min, float max) {
if (*number > max) {
*number = max;
} else if (*number < min) {
*number = min;
}
}
static inline void utils_truncate_number_int(int *number, int min, int max) {
if (*number > max) {
*number = max;
} else if (*number < min) {
*number = min;
}
}
static inline void utils_truncate_number_uint32(uint32_t *number, uint32_t min, uint32_t max) {
if (*number > max) {
*number = max;
} else if (*number < min) {
*number = min;
}
}
static inline void utils_truncate_number_abs(float *number, float max) {
if (*number > max) {
*number = max;
} else if (*number < -max) {
*number = -max;
}
}
static inline float utils_map(float x, float in_min, float in_max, float out_min, float out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
static inline int utils_map_int(int x, int in_min, int in_max, int out_min, int out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
/**
* Truncate the magnitude of a vector.
*
* @param x
* The first component.
*
* @param y
* The second component.
*
* @param max
* The maximum magnitude.
*
* @return
* True if saturation happened, false otherwise
*/
static inline bool utils_saturate_vector_2d(float *x, float *y, float max) {
bool retval = false;
float mag = NORM2_f(*x, *y);
max = fabsf(max);
if (mag < 1e-10) {
mag = 1e-10;
}
if (mag > max) {
const float f = max / mag;
*x *= f;
*y *= f;
retval = true;
}
return retval;
}
#endif /* UTILS_MATH_H_ */