mirror of https://github.com/rusefi/cantact-fw.git
2497 lines
76 KiB
C
2497 lines
76 KiB
C
/**
|
|
******************************************************************************
|
|
* @file stm32f0xx_hal_spi.c
|
|
* @author MCD Application Team
|
|
* @version V1.1.0
|
|
* @date 03-Oct-2014
|
|
* @brief SPI HAL module driver.
|
|
* This file provides firmware functions to manage the following
|
|
* functionalities of the SPI peripheral:
|
|
* + Initialization/de-initialization functions
|
|
* + I/O operation functions
|
|
* + Peripheral Control functions
|
|
* + Peripheral State functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### How to use this driver #####
|
|
===============================================================================
|
|
[..]
|
|
The SPI HAL driver can be used as follows:
|
|
|
|
(#) Declare a SPI_HandleTypeDef handle structure, for example:
|
|
SPI_HandleTypeDef hspi;
|
|
|
|
(#)Initialize the SPI low level resources by implement the HAL_SPI_MspInit ()API:
|
|
(##) Enable the SPIx interface clock
|
|
(##) SPI pins configuration
|
|
(+++) Enable the clock for the SPI GPIOs
|
|
(+++) Configure these SPI pins as alternate function push-pull
|
|
(##) NVIC configuration if you need to use interrupt process
|
|
(+++) Configure the SPIx interrupt priority
|
|
(+++) Enable the NVIC SPI IRQ handle
|
|
(##) DMA Configuration if you need to use DMA process
|
|
(+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive channel
|
|
(+++) Enable the DMAx interface clock using
|
|
(+++) Configure the DMA handle parameters
|
|
(+++) Configure the DMA Tx or Rx channel
|
|
(+++) Associate the initilalized hdma_tx handle to the hspi DMA Tx or Rx handle
|
|
(+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx or Rx channel
|
|
|
|
(#) Program the Mode, BidirectionalMode , Data size, Baudrate Prescaler, NSS
|
|
management, Clock polarity and phase, FirstBit and CRC configuration in the hspi Init structure.
|
|
|
|
(#) Initialize the SPI registers by calling the HAL_SPI_Init() API:
|
|
(++) These APIs configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
|
|
by calling the customed HAL_SPI_MspInit(&hspi) API.
|
|
|
|
[..]
|
|
Using the HAL it is not possible to reach all supported SPI frequency with the differents SPI Modes,
|
|
the following table resume the max SPI frequency reached with data size 8bits/16bits:
|
|
+-----------------------------------------------------------------------------------------+
|
|
| | | 2Lines Fullduplex | 2Lines RxOnly | 1Line |
|
|
| Process | Tranfert mode |--------------------|--------------------|--------------------|
|
|
| | | Master | Slave | Master | Slave | Master | Slave |
|
|
|=========================================================================================|
|
|
| T | Polling | Fcpu/32 | Fcpu/32 | NA | NA | NA | NA |
|
|
| X |----------------|----------|---------|----------|---------|----------|---------|
|
|
| / | Interrupt | Fcpu/32 | Fcpu/32 | NA | NA | NA | NA |
|
|
| R |----------------|----------|---------|----------|---------|----------|---------|
|
|
| X | DMA | Fcpu/32 | Fcpu/16 | NA | NA | NA | NA |
|
|
|=========|================|==========|=========|==========|=========|==========|=========|
|
|
| | Polling | Fcpu/32 | Fcpu/16 | Fcpu/16 | Fcpu/16 | Fcpu/16 | Fcpu/16 |
|
|
| |----------------|----------|---------|----------|---------|----------|---------|
|
|
| R | Interrupt | Fcpu/16 | Fcpu/16 | Fcpu/16 | Fcpu/16 | Fcpu/16 | Fcpu/16 |
|
|
| X |----------------|----------|---------|----------|---------|----------|---------|
|
|
| | DMA | Fcpu/4 | Fcpu/8 | Fcpu/4 | Fcpu/4 | Fcpu/8 | Fcpu/16 |
|
|
|=========|================|==========|=========|==========|=========|==========|=========|
|
|
| | Polling | Fcpu/16 | Fcpu/16 | NA | NA | Fcpu/16 | Fcpu/16 |
|
|
| |----------------|----------|---------|----------|---------|----------|---------|
|
|
| T | Interrupt | Fcpu/32 | Fcpu/16 | NA | NA | Fcpu/16 | Fcpu/16 |
|
|
| X |----------------|----------|---------|----------|---------|----------|---------|
|
|
| | DMA | Fcpu/2 | Fcpu/16 | NA | NA | Fcpu/8 | Fcpu/16 |
|
|
+-----------------------------------------------------------------------------------------+
|
|
@note The max SPI frequency depend on SPI data size (4bits, 5bits,..., 8bits,...15bits, 16bits),
|
|
SPI mode(2 Lines fullduplex, 2 lines RxOnly, 1 line TX/RX) and Process mode (Polling, IT, DMA).
|
|
@note
|
|
(#) TX/RX processes are HAL_SPI_TransmitReceive(), HAL_SPI_TransmitReceive_IT() and HAL_SPI_TransmitReceive_DMA()
|
|
(#) RX processes are HAL_SPI_Receive(), HAL_SPI_Receive_IT() and HAL_SPI_Receive_DMA()
|
|
(#) TX processes are HAL_SPI_Transmit(), HAL_SPI_Transmit_IT() and HAL_SPI_Transmit_DMA()
|
|
|
|
@endverbatim
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* <h2><center>© COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. Neither the name of STMicroelectronics nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "stm32f0xx_hal.h"
|
|
|
|
/** @addtogroup STM32F0xx_HAL_Driver
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup SPI SPI HAL module driver
|
|
* @brief SPI HAL module driver
|
|
* @{
|
|
*/
|
|
#ifdef HAL_SPI_MODULE_ENABLED
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
|
|
/** @defgroup SPI_Private_Constants SPI Private Constants
|
|
* @{
|
|
*/
|
|
#define SPI_DEFAULT_TIMEOUT 50
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
/** @defgroup SPI_Private_Functions SPI Private Functions
|
|
* @{
|
|
*/
|
|
|
|
static void HAL_SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma);
|
|
static void HAL_SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
|
|
static void HAL_SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma);
|
|
static void HAL_SPI_DMAError(DMA_HandleTypeDef *hdma);
|
|
static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, uint32_t State, uint32_t Timeout);
|
|
static HAL_StatusTypeDef SPI_WaitFifoStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Fifo, uint32_t State, uint32_t Timeout);
|
|
static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
|
|
static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
|
|
static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
|
|
static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi);
|
|
static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
|
|
static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi);
|
|
static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
|
|
static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi);
|
|
static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
|
|
static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
|
|
static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
|
|
static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi);
|
|
static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi);
|
|
static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi);
|
|
static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi);
|
|
static HAL_StatusTypeDef SPI_EndRxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout);
|
|
static HAL_StatusTypeDef SPI_EndRxTxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout);
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Exported functions ---------------------------------------------------------*/
|
|
|
|
/** @defgroup SPI_Exported_Functions SPI Exported Functions
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup SPI_Exported_Functions_Group1 Initialization/de-initialization functions
|
|
* @brief Initialization and Configuration functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Initialization and Configuration functions #####
|
|
===============================================================================
|
|
[..] This subsection provides a set of functions allowing to initialize and
|
|
de-initialiaze the SPIx peripheral:
|
|
|
|
(+) User must Implement HAL_SPI_MspInit() function in which he configures
|
|
all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).
|
|
|
|
(+) Call the function HAL_SPI_Init() to configure the selected device with
|
|
the selected configuration:
|
|
(++) Mode
|
|
(++) Direction
|
|
(++) Data Size
|
|
(++) Clock Polarity and Phase
|
|
(++) NSS Management
|
|
(++) BaudRate Prescaler
|
|
(++) FirstBit
|
|
(++) TIMode
|
|
(++) CRC Calculation
|
|
(++) CRC Polynomial if CRC enabled
|
|
(++) CRC Length, used only with Data8 and Data16
|
|
(++) FIFO reception threshold
|
|
|
|
(+) Call the function HAL_SPI_DeInit() to restore the default configuration
|
|
of the selected SPIx periperal.
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Initializes the SPI according to the specified parameters
|
|
* in the SPI_InitTypeDef and create the associated handle.
|
|
* @param hspi: SPI handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi)
|
|
{
|
|
uint32_t frxth;
|
|
|
|
/* Check the SPI handle allocation */
|
|
if(hspi == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance));
|
|
assert_param(IS_SPI_MODE(hspi->Init.Mode));
|
|
assert_param(IS_SPI_DIRECTION(hspi->Init.Direction));
|
|
assert_param(IS_SPI_DATASIZE(hspi->Init.DataSize));
|
|
assert_param(IS_SPI_CPOL(hspi->Init.CLKPolarity));
|
|
assert_param(IS_SPI_CPHA(hspi->Init.CLKPhase));
|
|
assert_param(IS_SPI_NSS(hspi->Init.NSS));
|
|
assert_param(IS_SPI_NSSP(hspi->Init.NSSPMode));
|
|
assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler));
|
|
assert_param(IS_SPI_FIRST_BIT(hspi->Init.FirstBit));
|
|
assert_param(IS_SPI_TIMODE(hspi->Init.TIMode));
|
|
assert_param(IS_SPI_CRC_CALCULATION(hspi->Init.CRCCalculation));
|
|
assert_param(IS_SPI_CRC_POLYNOMIAL(hspi->Init.CRCPolynomial));
|
|
assert_param(IS_SPI_CRC_LENGTH(hspi->Init.CRCLength));
|
|
|
|
hspi->State = HAL_SPI_STATE_BUSY;
|
|
|
|
/* Init the low level hardware : GPIO, CLOCK, NVIC... */
|
|
HAL_SPI_MspInit(hspi);
|
|
|
|
/* Disable the selected SPI peripheral */
|
|
__HAL_SPI_DISABLE(hspi);
|
|
|
|
/* Align by default the rs fifo threshold on the data size */
|
|
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
|
{
|
|
frxth = SPI_RXFIFO_THRESHOLD_HF;
|
|
}
|
|
else
|
|
{
|
|
frxth = SPI_RXFIFO_THRESHOLD_QF;
|
|
}
|
|
|
|
/* CRC calculation is valid only for 16Bit and 8 Bit */
|
|
if(( hspi->Init.DataSize != SPI_DATASIZE_16BIT ) && ( hspi->Init.DataSize != SPI_DATASIZE_8BIT ))
|
|
{
|
|
/* CRC must be disabled */
|
|
hspi->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED;
|
|
}
|
|
|
|
/* Align the CRC Length on the data size */
|
|
if( hspi->Init.CRCLength == SPI_CRC_LENGTH_DATASIZE)
|
|
{
|
|
/* CRC Lengtht aligned on the data size : value set by default */
|
|
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
|
{
|
|
hspi->Init.CRCLength = SPI_CRC_LENGTH_16BIT;
|
|
}
|
|
else
|
|
{
|
|
hspi->Init.CRCLength = SPI_CRC_LENGTH_8BIT;
|
|
}
|
|
}
|
|
|
|
/*---------------------------- SPIx CR1 & CR2 Configuration ------------------------*/
|
|
/* Configure : SPI Mode, Communication Mode, Clock polarity and phase, NSS management,
|
|
Communication speed, First bit, CRC calculation state, CRC Length */
|
|
hspi->Instance->CR1 = (hspi->Init.Mode | hspi->Init.Direction |
|
|
hspi->Init.CLKPolarity | hspi->Init.CLKPhase | (hspi->Init.NSS & SPI_CR1_SSM) |
|
|
hspi->Init.BaudRatePrescaler | hspi->Init.FirstBit | hspi->Init.CRCCalculation);
|
|
|
|
if( hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)
|
|
{
|
|
hspi->Instance->CR1|= SPI_CR1_CRCL;
|
|
}
|
|
|
|
/* Configure : NSS management */
|
|
/* Configure : Rx Fifo Threshold */
|
|
hspi->Instance->CR2 = (((hspi->Init.NSS >> 16) & SPI_CR2_SSOE) | hspi->Init.TIMode | hspi->Init.NSSPMode |
|
|
hspi->Init.DataSize ) | frxth;
|
|
|
|
/*---------------------------- SPIx CRCPOLY Configuration --------------------*/
|
|
/* Configure : CRC Polynomial */
|
|
hspi->Instance->CRCPR = hspi->Init.CRCPolynomial;
|
|
|
|
/* Activate the SPI mode (Make sure that I2SMOD bit in I2SCFGR register is reset) */
|
|
hspi->Instance->I2SCFGR &= (uint16_t)(~SPI_I2SCFGR_I2SMOD);
|
|
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->State= HAL_SPI_STATE_READY;
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief DeInitializes the SPI peripheral
|
|
* @param hspi: SPI handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_DeInit(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Check the SPI handle allocation */
|
|
if(hspi == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance));
|
|
|
|
hspi->State = HAL_SPI_STATE_BUSY;
|
|
|
|
/* Disable the SPI Peripheral Clock */
|
|
__HAL_SPI_DISABLE(hspi);
|
|
|
|
/* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
|
|
HAL_SPI_MspDeInit(hspi);
|
|
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->State = HAL_SPI_STATE_RESET;
|
|
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief SPI MSP Init
|
|
* @param hspi: SPI handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_SPI_MspInit could be implenetd in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief SPI MSP DeInit
|
|
* @param hspi: SPI handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_SPI_MspDeInit could be implenetd in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup SPI_Exported_Functions_Group2 I/O operation functions
|
|
* @brief Data transfers functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### IO operation functions #####
|
|
===============================================================================
|
|
This subsection provides a set of functions allowing to manage the SPI
|
|
data transfers.
|
|
|
|
[..] The SPI supports master and slave mode :
|
|
|
|
(#) There are two modes of transfer:
|
|
(++) Blocking mode: The communication is performed in polling mode.
|
|
The HAL status of all data processing is returned by the same function
|
|
after finishing transfer.
|
|
(++) Non Blocking mode: The communication is performed using Interrupts
|
|
or DMA, These APIs return the HAL status.
|
|
The end of the data processing will be indicated through the
|
|
dedicated SPI IRQ when using Interrupt mode or the DMA IRQ when
|
|
using DMA mode.
|
|
The HAL_SPI_TxCpltCallback(), HAL_SPI_RxCpltCallback() and HAL_SPI_TxRxCpltCallback() user callbacks
|
|
will be executed respectivelly at the end of the transmit or Receive process
|
|
The HAL_SPI_ErrorCallback()user callback will be executed when a communication error is detected
|
|
|
|
(#) Blocking mode APIs are :
|
|
(++) HAL_SPI_Transmit()in 1Line (simplex) and 2Lines (full duplex) mode
|
|
(++) HAL_SPI_Receive() in 1Line (simplex) and 2Lines (full duplex) mode
|
|
(++) HAL_SPI_TransmitReceive() in full duplex mode
|
|
|
|
(#) Non Blocking mode APIs with Interrupt are :
|
|
(++) HAL_SPI_Transmit_IT()in 1Line (simplex) and 2Lines (full duplex) mode
|
|
(++) HAL_SPI_Receive_IT() in 1Line (simplex) and 2Lines (full duplex) mode
|
|
(++) HAL_SPI_TransmitReceive_IT()in full duplex mode
|
|
(++) HAL_SPI_IRQHandler()
|
|
|
|
(#) Non Blocking mode functions with DMA are :
|
|
(++) HAL_SPI_Transmit_DMA()in 1Line (simplex) and 2Lines (full duplex) mode
|
|
(++) HAL_SPI_Receive_DMA() in 1Line (simplex) and 2Lines (full duplex) mode
|
|
(++) HAL_SPI_TransmitReceie_DMA() in full duplex mode
|
|
|
|
(#) A set of Transfer Complete Callbacks are provided in Non Blocking mode:
|
|
(++) HAL_SPI_TxCpltCallback()
|
|
(++) HAL_SPI_RxCpltCallback()
|
|
(++) HAL_SPI_ErrorCallback()
|
|
(++) HAL_SPI_TxRxCpltCallback()
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Transmit an amount of data in blocking mode
|
|
* @param hspi: SPI handle
|
|
* @param pData: pointer to data buffer
|
|
* @param Size: amount of data to be sent
|
|
* @param Timeout: Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
|
|
{
|
|
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
|
|
|
|
if(hspi->State != HAL_SPI_STATE_READY)
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
|
|
if((pData == NULL ) || (Size == 0))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
/* Set the transaction information */
|
|
hspi->State = HAL_SPI_STATE_BUSY_TX;
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->pTxBuffPtr = pData;
|
|
hspi->TxXferSize = Size;
|
|
hspi->TxXferCount = Size;
|
|
hspi->pRxBuffPtr = NULL;
|
|
hspi->RxXferSize = 0;
|
|
hspi->RxXferCount = 0;
|
|
|
|
/* Reset CRC Calculation */
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
__HAL_SPI_RESET_CRC(hspi);
|
|
}
|
|
|
|
/* Configure communication direction : 1Line */
|
|
if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
|
{
|
|
__HAL_SPI_1LINE_TX(hspi);
|
|
}
|
|
|
|
/* Check if the SPI is already enabled */
|
|
if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
|
|
{
|
|
/* Enable SPI peripheral */
|
|
__HAL_SPI_ENABLE(hspi);
|
|
}
|
|
|
|
/* Transmit data in 16 Bit mode */
|
|
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
|
{
|
|
while (hspi->TxXferCount > 0)
|
|
{
|
|
/* Wait until TXE flag is set to send data */
|
|
if(SPI_WaitFlagStateUntilTimeout(hspi,SPI_FLAG_TXE,SPI_FLAG_TXE,Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint16_t);
|
|
hspi->TxXferCount--;
|
|
}
|
|
}
|
|
/* Transmit data in 8 Bit mode */
|
|
else
|
|
{
|
|
while (hspi->TxXferCount > 0)
|
|
{
|
|
if(hspi->TxXferCount != 0x1)
|
|
{
|
|
/* Wait until TXE flag is set to send data */
|
|
if(SPI_WaitFlagStateUntilTimeout(hspi,SPI_FLAG_TXE,SPI_FLAG_TXE,Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
hspi->Instance->DR = *((uint16_t*)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint16_t);
|
|
hspi->TxXferCount -= 2;
|
|
}
|
|
else
|
|
{
|
|
/* Wait until TXE flag is set to send data */
|
|
if(SPI_WaitFlagStateUntilTimeout(hspi,SPI_FLAG_TXE,SPI_FLAG_TXE,Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
*((__IO uint8_t*)&hspi->Instance->DR) = (*hspi->pTxBuffPtr++);
|
|
hspi->TxXferCount--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Enable CRC Transmission */
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
hspi->Instance->CR1|= SPI_CR1_CRCNEXT;
|
|
}
|
|
|
|
/* Check the end of the transaction */
|
|
if(SPI_EndRxTxTransaction(hspi,Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* Clear OVERUN flag in 2 Lines communication mode because received is not read */
|
|
if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
|
|
{
|
|
__HAL_SPI_CLEAR_OVRFLAG(hspi);
|
|
}
|
|
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
return HAL_OK;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Receive an amount of data in blocking mode
|
|
* @param hspi: SPI handle
|
|
* @param pData: pointer to data buffer
|
|
* @param Size: amount of data to be sent
|
|
* @param Timeout: Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
|
|
{
|
|
__IO uint16_t tmpreg;
|
|
|
|
if(hspi->State != HAL_SPI_STATE_READY)
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
|
|
if((pData == NULL ) || (Size == 0))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
if((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES))
|
|
{
|
|
/* the receive process is not supported in 2Lines direction master mode */
|
|
/* in this case we call the transmitReceive process */
|
|
return HAL_SPI_TransmitReceive(hspi,pData,pData,Size,Timeout);
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
hspi->State = HAL_SPI_STATE_BUSY_RX;
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->pRxBuffPtr = pData;
|
|
hspi->RxXferSize = Size;
|
|
hspi->RxXferCount = Size;
|
|
hspi->pTxBuffPtr = NULL;
|
|
hspi->TxXferSize = 0;
|
|
hspi->TxXferCount = 0;
|
|
|
|
/* Reset CRC Calculation */
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
__HAL_SPI_RESET_CRC(hspi);
|
|
}
|
|
|
|
/* Set the Rx Fido thresold */
|
|
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
|
{
|
|
/* set fiforxthresold according the reception data lenght: 16bit */
|
|
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
|
}
|
|
else
|
|
{
|
|
/* set fiforxthresold according the reception data lenght: 8bit */
|
|
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
|
}
|
|
|
|
/* Configure communication direction 1Line and enabled SPI if needed */
|
|
if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
|
{
|
|
__HAL_SPI_1LINE_RX(hspi);
|
|
}
|
|
|
|
/* Check if the SPI is already enabled */
|
|
if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
|
|
{
|
|
/* Enable SPI peripheral */
|
|
__HAL_SPI_ENABLE(hspi);
|
|
}
|
|
|
|
/* Receive data in 8 Bit mode */
|
|
if(hspi->Init.DataSize <= SPI_DATASIZE_8BIT)
|
|
{
|
|
while(hspi->RxXferCount > 1)
|
|
{
|
|
/* Wait until the RXNE flag */
|
|
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
(*hspi->pRxBuffPtr++)= *(__IO uint8_t *)&hspi->Instance->DR;
|
|
hspi->RxXferCount--;
|
|
}
|
|
}
|
|
else /* Receive data in 16 Bit mode */
|
|
{
|
|
while(hspi->RxXferCount > 1 )
|
|
{
|
|
/* Wait until RXNE flag is reset to read data */
|
|
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
*((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
|
|
hspi->pRxBuffPtr += sizeof(uint16_t);
|
|
hspi->RxXferCount--;
|
|
}
|
|
}
|
|
|
|
/* Enable CRC Transmission */
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
|
|
}
|
|
|
|
/* Wait until RXNE flag is set */
|
|
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* Receive last data in 16 Bit mode */
|
|
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
|
{
|
|
*((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
|
|
hspi->pRxBuffPtr += sizeof(uint16_t);
|
|
}
|
|
/* Receive last data in 8 Bit mode */
|
|
else
|
|
{
|
|
(*hspi->pRxBuffPtr++) = *(__IO uint8_t *)&hspi->Instance->DR;
|
|
}
|
|
hspi->RxXferCount--;
|
|
|
|
/* Read CRC from DR to close CRC calculation process */
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
/* Wait until TXE flag */
|
|
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK)
|
|
{
|
|
/* Erreur on the CRC reception */
|
|
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
|
|
}
|
|
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
|
{
|
|
tmpreg = hspi->Instance->DR;
|
|
}
|
|
else
|
|
{
|
|
tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
|
|
if((hspi->Init.DataSize == SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT))
|
|
{
|
|
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK)
|
|
{
|
|
/* Erreur on the CRC reception */
|
|
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
|
|
}
|
|
tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check the end of the transaction */
|
|
if(SPI_EndRxTransaction(hspi,Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
|
|
/* Check if CRC error occurred */
|
|
if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
|
|
{
|
|
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
|
|
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
return HAL_OK;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Transmit and Receive an amount of data in blocking mode
|
|
* @param hspi: SPI handle
|
|
* @param pTxData: pointer to transmission data buffer
|
|
* @param pRxData: pointer to reception data buffer to be
|
|
* @param Size: amount of data to be sent
|
|
* @param Timeout: Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, uint32_t Timeout)
|
|
{
|
|
__IO uint16_t tmpreg = 0;
|
|
uint32_t tickstart = 0;
|
|
|
|
assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
|
|
|
|
if(hspi->State != HAL_SPI_STATE_READY)
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
|
|
if((pTxData == NULL) || (pRxData == NULL) || (Size == 0))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->pRxBuffPtr = pRxData;
|
|
hspi->RxXferCount = Size;
|
|
hspi->RxXferSize = Size;
|
|
hspi->pTxBuffPtr = pTxData;
|
|
hspi->TxXferCount = Size;
|
|
hspi->TxXferSize = Size;
|
|
|
|
/* Reset CRC Calculation */
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
__HAL_SPI_RESET_CRC(hspi);
|
|
}
|
|
|
|
/* Set the Rx Fido threshold */
|
|
if((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || (hspi->RxXferCount > 1))
|
|
{
|
|
/* set fiforxthreshold according the reception data lenght: 16bit */
|
|
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
|
}
|
|
else
|
|
{
|
|
/* set fiforxthreshold according the reception data lenght: 8bit */
|
|
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
|
}
|
|
|
|
/* Check if the SPI is already enabled */
|
|
if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
|
|
{
|
|
/* Enable SPI peripheral */
|
|
__HAL_SPI_ENABLE(hspi);
|
|
}
|
|
|
|
/* Transmit and Receive data in 16 Bit mode */
|
|
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
|
{
|
|
while ((hspi->TxXferCount > 0 ) || (hspi->RxXferCount > 0))
|
|
{
|
|
/* Wait until TXE flag */
|
|
if((hspi->TxXferCount > 0) && ((hspi->Instance->SR & SPI_FLAG_TXE) == SPI_FLAG_TXE))
|
|
{
|
|
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint16_t);
|
|
hspi->TxXferCount--;
|
|
|
|
/* Enable CRC Transmission */
|
|
if((hspi->TxXferCount == 0) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED))
|
|
{
|
|
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
|
|
}
|
|
}
|
|
|
|
/* Wait until RXNE flag */
|
|
if((hspi->RxXferCount > 0) && ((hspi->Instance->SR & SPI_FLAG_RXNE) == SPI_FLAG_RXNE))
|
|
{
|
|
*((uint16_t *)hspi->pRxBuffPtr) = hspi->Instance->DR;
|
|
hspi->pRxBuffPtr += sizeof(uint16_t);
|
|
hspi->RxXferCount--;
|
|
}
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
|
|
{
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
__HAL_UNLOCK(hspi);
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Transmit and Receive data in 8 Bit mode */
|
|
else
|
|
{
|
|
while((hspi->TxXferCount > 0) || (hspi->RxXferCount > 0))
|
|
{
|
|
/* check if TXE flag is set to send data */
|
|
if((hspi->TxXferCount > 0) && ((hspi->Instance->SR & SPI_FLAG_TXE) == SPI_FLAG_TXE))
|
|
{
|
|
if(hspi->TxXferCount > 2)
|
|
{
|
|
hspi->Instance->DR = *((uint16_t*)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint16_t);
|
|
hspi->TxXferCount -= 2;
|
|
}
|
|
else
|
|
{
|
|
*(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr++);
|
|
hspi->TxXferCount--;
|
|
}
|
|
|
|
/* Enable CRC Transmission */
|
|
if((hspi->TxXferCount == 0) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED))
|
|
{
|
|
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
|
|
}
|
|
}
|
|
|
|
/* Wait until RXNE flag is reset */
|
|
if((hspi->RxXferCount > 0) && ((hspi->Instance->SR & SPI_FLAG_RXNE) == SPI_FLAG_RXNE))
|
|
{
|
|
if(hspi->RxXferCount > 1)
|
|
{
|
|
*((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
|
|
hspi->pRxBuffPtr += sizeof(uint16_t);
|
|
hspi->RxXferCount -= 2;
|
|
if(hspi->RxXferCount <= 1)
|
|
{
|
|
/* set fiforxthresold before to switch on 8 bit data size */
|
|
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
(*hspi->pRxBuffPtr++) = *(__IO uint8_t *)&hspi->Instance->DR;
|
|
hspi->RxXferCount--;
|
|
}
|
|
}
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
|
|
{
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
__HAL_UNLOCK(hspi);
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Read CRC from DR to close CRC calculation process */
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
/* Wait until TXE flag */
|
|
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK)
|
|
{
|
|
/* Erreur on the CRC reception */
|
|
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
|
|
}
|
|
|
|
if(hspi->Init.DataSize == SPI_DATASIZE_16BIT)
|
|
{
|
|
tmpreg = hspi->Instance->DR;
|
|
}
|
|
else
|
|
{
|
|
tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
|
|
if(hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)
|
|
{
|
|
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK)
|
|
{
|
|
/* Erreur on the CRC reception */
|
|
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
|
|
}
|
|
tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check the end of the transaction */
|
|
if(SPI_EndRxTxTransaction(hspi,Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
|
|
/* Check if CRC error occurred */
|
|
if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
|
|
{
|
|
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
|
|
/* Clear CRC Flag */
|
|
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
return HAL_OK;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Transmit an amount of data in no-blocking mode with Interrupt
|
|
* @param hspi: SPI handle
|
|
* @param pData: pointer to data buffer
|
|
* @param Size: amount of data to be sent
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
|
|
{
|
|
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
|
|
|
|
if(hspi->State == HAL_SPI_STATE_READY)
|
|
{
|
|
if((pData == NULL) || (Size == 0))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
hspi->State = HAL_SPI_STATE_BUSY_TX;
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->pTxBuffPtr = pData;
|
|
hspi->TxXferSize = Size;
|
|
hspi->TxXferCount = Size;
|
|
hspi->pRxBuffPtr = NULL;
|
|
hspi->RxXferSize = 0;
|
|
hspi->RxXferCount = 0;
|
|
|
|
/* Set the function for IT treatement */
|
|
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT )
|
|
{
|
|
hspi->RxISR = NULL;
|
|
hspi->TxISR = SPI_TxISR_16BIT;
|
|
}
|
|
else
|
|
{
|
|
hspi->RxISR = NULL;
|
|
hspi->TxISR = SPI_TxISR_8BIT;
|
|
}
|
|
|
|
/* Configure communication direction : 1Line */
|
|
if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
|
{
|
|
__HAL_SPI_1LINE_TX(hspi);
|
|
}
|
|
|
|
/* Reset CRC Calculation */
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
__HAL_SPI_RESET_CRC(hspi);
|
|
}
|
|
|
|
/* Enable TXE and ERR interrupt */
|
|
__HAL_SPI_ENABLE_IT(hspi,(SPI_IT_TXE));
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
/* Note : The SPI must be enabled after unlocking current process
|
|
to avoid the risk of SPI interrupt handle execution before current
|
|
process unlock */
|
|
|
|
/* Check if the SPI is already enabled */
|
|
if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
|
|
{
|
|
/* Enable SPI peripheral */
|
|
__HAL_SPI_ENABLE(hspi);
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Receive an amount of data in no-blocking mode with Interrupt
|
|
* @param hspi: SPI handle
|
|
* @param pData: pointer to data buffer
|
|
* @param Size: amount of data to be sent
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
|
|
{
|
|
if(hspi->State == HAL_SPI_STATE_READY)
|
|
{
|
|
if((pData == NULL) || (Size == 0))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
/* Configure communication */
|
|
hspi->State = HAL_SPI_STATE_BUSY_RX;
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->pRxBuffPtr = pData;
|
|
hspi->RxXferSize = Size;
|
|
hspi->RxXferCount = Size;
|
|
hspi->pTxBuffPtr = NULL;
|
|
hspi->TxXferSize = 0;
|
|
hspi->TxXferCount = 0;
|
|
|
|
if((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES))
|
|
{
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
/* the receive process is not supported in 2Lines direction master mode */
|
|
/* in this we call the transmitReceive process */
|
|
return HAL_SPI_TransmitReceive_IT(hspi,pData,pData,Size);
|
|
}
|
|
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
hspi->CRCSize = 1;
|
|
if((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT))
|
|
{
|
|
hspi->CRCSize = 2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hspi->CRCSize = 0;
|
|
}
|
|
|
|
/* check the data size to adapt Rx threshold and the set the function for IT treatement */
|
|
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT )
|
|
{
|
|
/* set fiforxthresold according the reception data lenght: 16 bit */
|
|
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
|
hspi->RxISR = SPI_RxISR_16BIT;
|
|
hspi->TxISR = NULL;
|
|
}
|
|
else
|
|
{
|
|
/* set fiforxthresold according the reception data lenght: 8 bit */
|
|
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
|
hspi->RxISR = SPI_RxISR_8BIT;
|
|
hspi->TxISR = NULL;
|
|
}
|
|
|
|
/* Configure communication direction : 1Line */
|
|
if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
|
{
|
|
__HAL_SPI_1LINE_RX(hspi);
|
|
}
|
|
|
|
/* Reset CRC Calculation */
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
__HAL_SPI_RESET_CRC(hspi);
|
|
}
|
|
|
|
/* Enable TXE and ERR interrupt */
|
|
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
/* Note : The SPI must be enabled after unlocking current process
|
|
to avoid the risk of SPI interrupt handle execution before current
|
|
process unlock */
|
|
|
|
/* Check if the SPI is already enabled */
|
|
if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
|
|
{
|
|
/* Enable SPI peripheral */
|
|
__HAL_SPI_ENABLE(hspi);
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Transmit and Receive an amount of data in no-blocking mode with Interrupt
|
|
* @param hspi: SPI handle
|
|
* @param pTxData: pointer to transmission data buffer
|
|
* @param pRxData: pointer to reception data buffer to be
|
|
* @param Size: amount of data to be sent
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size)
|
|
{
|
|
assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
|
|
|
|
if((hspi->State == HAL_SPI_STATE_READY) || \
|
|
((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->State == HAL_SPI_STATE_BUSY_RX)))
|
|
{
|
|
if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
hspi->CRCSize = 0;
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
hspi->CRCSize = 1;
|
|
if((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT))
|
|
{
|
|
hspi->CRCSize = 2;
|
|
}
|
|
}
|
|
|
|
if(hspi->State != HAL_SPI_STATE_BUSY_RX)
|
|
{
|
|
hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
|
|
}
|
|
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->pTxBuffPtr = pTxData;
|
|
hspi->TxXferSize = Size;
|
|
hspi->TxXferCount = Size;
|
|
hspi->pRxBuffPtr = pRxData;
|
|
hspi->RxXferSize = Size;
|
|
hspi->RxXferCount = Size;
|
|
|
|
/* Set the function for IT treatement */
|
|
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT )
|
|
{
|
|
hspi->RxISR = SPI_2linesRxISR_16BIT;
|
|
hspi->TxISR = SPI_2linesTxISR_16BIT;
|
|
}
|
|
else
|
|
{
|
|
hspi->RxISR = SPI_2linesRxISR_8BIT;
|
|
hspi->TxISR = SPI_2linesTxISR_8BIT;
|
|
}
|
|
|
|
/* Reset CRC Calculation */
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
__HAL_SPI_RESET_CRC(hspi);
|
|
}
|
|
|
|
/* check if packing mode is enabled and if there is more than 2 data to receive */
|
|
if((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || (hspi->RxXferCount >= 2))
|
|
{
|
|
/* set fiforxthresold according the reception data lenght: 16 bit */
|
|
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
|
}
|
|
else
|
|
{
|
|
/* set fiforxthresold according the reception data lenght: 8 bit */
|
|
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
|
}
|
|
|
|
/* Enable TXE, RXNE and ERR interrupt */
|
|
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
/* Check if the SPI is already enabled */
|
|
if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
|
|
{
|
|
/* Enable SPI peripheral */
|
|
__HAL_SPI_ENABLE(hspi);
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Transmit an amount of data in no-blocking mode with DMA
|
|
* @param hspi: SPI handle
|
|
* @param pData: pointer to data buffer
|
|
* @param Size: amount of data to be sent
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
|
|
{
|
|
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
|
|
|
|
if(hspi->State != HAL_SPI_STATE_READY)
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
|
|
if((pData == NULL) || (Size == 0))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
hspi->State = HAL_SPI_STATE_BUSY_TX;
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->pTxBuffPtr = pData;
|
|
hspi->TxXferSize = Size;
|
|
hspi->TxXferCount = Size;
|
|
hspi->pRxBuffPtr = NULL;
|
|
hspi->RxXferSize = 0;
|
|
hspi->RxXferCount = 0;
|
|
|
|
/* Configure communication direction : 1Line */
|
|
if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
|
{
|
|
__HAL_SPI_1LINE_TX(hspi);
|
|
}
|
|
|
|
/* Reset CRC Calculation */
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
__HAL_SPI_RESET_CRC(hspi);
|
|
}
|
|
|
|
/* Set the SPI TxDMA transfer complete callback */
|
|
hspi->hdmatx->XferCpltCallback = HAL_SPI_DMATransmitCplt;
|
|
|
|
/* Set the DMA error callback */
|
|
hspi->hdmatx->XferErrorCallback = HAL_SPI_DMAError;
|
|
|
|
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
|
|
/* packing mode is enabled only if the DMA setting is HALWORD */
|
|
if((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD))
|
|
{
|
|
/* Check the even/odd of the data size + crc if enabled */
|
|
if((hspi->TxXferCount & 0x1) == 0)
|
|
{
|
|
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
|
|
hspi->TxXferCount = (hspi->TxXferCount >> 1);
|
|
}
|
|
else
|
|
{
|
|
SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
|
|
hspi->TxXferCount = (hspi->TxXferCount >> 1) + 1;
|
|
}
|
|
}
|
|
|
|
/* Enable the Tx DMA channel */
|
|
HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount);
|
|
|
|
/* Check if the SPI is already enabled */
|
|
if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
|
|
{
|
|
/* Enable SPI peripheral */
|
|
__HAL_SPI_ENABLE(hspi);
|
|
}
|
|
|
|
/* Enable Tx DMA Request */
|
|
hspi->Instance->CR2 |= SPI_CR2_TXDMAEN;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Receive an amount of data in no-blocking mode with DMA
|
|
* @param hspi: SPI handle
|
|
* @param pData: pointer to data buffer
|
|
* @param Size: amount of data to be sent
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
|
|
{
|
|
if(hspi->State != HAL_SPI_STATE_READY)
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
|
|
if((pData == NULL) || (Size == 0))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
hspi->State = HAL_SPI_STATE_BUSY_RX;
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->pRxBuffPtr = pData;
|
|
hspi->RxXferSize = Size;
|
|
hspi->RxXferCount = Size;
|
|
hspi->pTxBuffPtr = NULL;
|
|
hspi->TxXferSize = 0;
|
|
hspi->TxXferCount = 0;
|
|
|
|
if((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES))
|
|
{
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
/* the receive process is not supported in 2Lines direction master mode */
|
|
/* in this case we call the transmitReceive process */
|
|
return HAL_SPI_TransmitReceive_DMA(hspi,pData,pData,Size);
|
|
}
|
|
|
|
/* Configure communication direction : 1Line */
|
|
if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
|
{
|
|
__HAL_SPI_1LINE_RX(hspi);
|
|
}
|
|
|
|
/* Reset CRC Calculation */
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
__HAL_SPI_RESET_CRC(hspi);
|
|
}
|
|
|
|
/* packing mode management is enabled by the DMA settings */
|
|
if((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD))
|
|
{
|
|
/* Process Locked */
|
|
__HAL_UNLOCK(hspi);
|
|
/* Restriction the DMA data received is not allowed in this mode */
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX);
|
|
if( hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
|
{
|
|
/* set fiforxthresold according the reception data lenght: 16bit */
|
|
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
|
}
|
|
else
|
|
{
|
|
/* set fiforxthresold according the reception data lenght: 8bit */
|
|
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
|
}
|
|
|
|
/* Set the SPI Rx DMA transfer complete callback */
|
|
hspi->hdmarx->XferCpltCallback = HAL_SPI_DMAReceiveCplt;
|
|
|
|
/* Set the DMA error callback */
|
|
hspi->hdmarx->XferErrorCallback = HAL_SPI_DMAError;
|
|
|
|
/* Enable Rx DMA Request */
|
|
hspi->Instance->CR2 |= SPI_CR2_RXDMAEN;
|
|
|
|
/* Enable the Rx DMA channel */
|
|
HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
/* Check if the SPI is already enabled */
|
|
if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
|
|
{
|
|
/* Enable SPI peripheral */
|
|
__HAL_SPI_ENABLE(hspi);
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Transmit and Receive an amount of data in no-blocking mode with DMA
|
|
* @param hspi: SPI handle
|
|
* @param pTxData: pointer to transmission data buffer
|
|
* @param pRxData: pointer to reception data buffer to be
|
|
* @param Size: amount of data to be sent
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size)
|
|
{
|
|
assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
|
|
|
|
if((hspi->State == HAL_SPI_STATE_READY) ||
|
|
((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->State == HAL_SPI_STATE_BUSY_RX)))
|
|
{
|
|
if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hspi);
|
|
|
|
/* check if the transmit Receive function is not called by a receive master */
|
|
if(hspi->State != HAL_SPI_STATE_BUSY_RX)
|
|
{
|
|
hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
|
|
}
|
|
|
|
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
|
hspi->pTxBuffPtr = (uint8_t *)pTxData;
|
|
hspi->TxXferSize = Size;
|
|
hspi->TxXferCount = Size;
|
|
hspi->pRxBuffPtr = (uint8_t *)pRxData;
|
|
hspi->RxXferSize = Size;
|
|
hspi->RxXferCount = Size;
|
|
|
|
/* Reset CRC Calculation + increase the rxsize */
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
__HAL_SPI_RESET_CRC(hspi);
|
|
}
|
|
|
|
/* Reset the threshold bit */
|
|
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
|
|
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX);
|
|
|
|
/* the packing mode management is enabled by the DMA settings according the spi data size */
|
|
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
|
{
|
|
/* set fiforxthreshold according the reception data lenght: 16bit */
|
|
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
|
}
|
|
else
|
|
{
|
|
/* set fiforxthresold according the reception data lenght: 8bit */
|
|
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
|
|
|
if(hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)
|
|
{
|
|
if((hspi->TxXferSize & 0x1) == 0x0 )
|
|
{
|
|
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
|
|
hspi->TxXferCount = hspi->TxXferCount >> 1;
|
|
}
|
|
else
|
|
{
|
|
SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
|
|
hspi->TxXferCount = (hspi->TxXferCount >> 1) + 1;
|
|
}
|
|
}
|
|
|
|
if(hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)
|
|
{
|
|
/* set fiforxthresold according the reception data lenght: 16bit */
|
|
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
|
|
|
/* Size must include the CRC lenght */
|
|
if((hspi->RxXferCount & 0x1) == 0x0 )
|
|
{
|
|
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX);
|
|
hspi->RxXferCount = hspi->RxXferCount >> 1;
|
|
}
|
|
else
|
|
{
|
|
SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX);
|
|
hspi->RxXferCount = (hspi->RxXferCount >> 1) + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set the SPI Rx DMA transfer complete callback because the last generated transfer request is
|
|
the reception request (RXNE) */
|
|
if(hspi->State == HAL_SPI_STATE_BUSY_RX)
|
|
{
|
|
hspi->hdmarx->XferCpltCallback = HAL_SPI_DMAReceiveCplt;
|
|
}
|
|
else
|
|
{
|
|
hspi->hdmarx->XferCpltCallback = HAL_SPI_DMATransmitReceiveCplt;
|
|
}
|
|
/* Set the DMA error callback */
|
|
hspi->hdmarx->XferErrorCallback = HAL_SPI_DMAError;
|
|
|
|
/* Enable Rx DMA Request */
|
|
hspi->Instance->CR2 |= SPI_CR2_RXDMAEN;
|
|
|
|
/* Enable the Rx DMA channel */
|
|
HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t) hspi->pRxBuffPtr, hspi->RxXferCount);
|
|
|
|
/* Set the SPI Tx DMA transfer complete callback as NULL because the communication closing
|
|
is performed in DMA reception complete callback */
|
|
hspi->hdmatx->XferCpltCallback = NULL;
|
|
|
|
/* Set the DMA error callback */
|
|
hspi->hdmatx->XferErrorCallback = HAL_SPI_DMAError;
|
|
|
|
/* Enable the Tx DMA channel */
|
|
HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount);
|
|
|
|
/* Check if the SPI is already enabled */
|
|
if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
|
|
{
|
|
/* Enable SPI peripheral */
|
|
__HAL_SPI_ENABLE(hspi);
|
|
}
|
|
|
|
/* Enable Tx DMA Request */
|
|
hspi->Instance->CR2 |= SPI_CR2_TXDMAEN;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles SPI interrupt request.
|
|
* @param hspi: SPI handle
|
|
* @retval HAL status
|
|
*/
|
|
void HAL_SPI_IRQHandler(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* SPI in mode Receiver ----------------------------------------------------*/
|
|
if((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_OVR) == RESET) &&
|
|
(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE) != RESET) && (__HAL_SPI_GET_IT_SOURCE(hspi, SPI_IT_RXNE) != RESET))
|
|
{
|
|
hspi->RxISR(hspi);
|
|
return;
|
|
}
|
|
|
|
/* SPI in mode Tramitter ---------------------------------------------------*/
|
|
if((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE) != RESET) && (__HAL_SPI_GET_IT_SOURCE(hspi, SPI_IT_TXE) != RESET))
|
|
{
|
|
hspi->TxISR(hspi);
|
|
return;
|
|
}
|
|
|
|
/* SPI in Erreur Treatment ---------------------------------------------------*/
|
|
if((hspi->Instance->SR & (SPI_FLAG_MODF | SPI_FLAG_OVR | SPI_FLAG_FRE)) != RESET)
|
|
{
|
|
/* SPI Overrun error interrupt occured -------------------------------------*/
|
|
if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_OVR) != RESET)
|
|
{
|
|
if(hspi->State != HAL_SPI_STATE_BUSY_TX)
|
|
{
|
|
hspi->ErrorCode |= HAL_SPI_ERROR_OVR;
|
|
__HAL_SPI_CLEAR_OVRFLAG(hspi);
|
|
}
|
|
else
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* SPI Mode Fault error interrupt occured -------------------------------------*/
|
|
if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_MODF) != RESET)
|
|
{
|
|
hspi->ErrorCode |= HAL_SPI_ERROR_MODF;
|
|
__HAL_SPI_CLEAR_MODFFLAG(hspi);
|
|
}
|
|
|
|
/* SPI Frame error interrupt occured ----------------------------------------*/
|
|
if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_FRE) != RESET)
|
|
{
|
|
hspi->ErrorCode |= HAL_SPI_ERROR_FRE;
|
|
__HAL_SPI_CLEAR_FREFLAG(hspi);
|
|
}
|
|
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE | SPI_IT_TXE | SPI_IT_ERR);
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
HAL_SPI_ErrorCallback(hspi);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief DMA SPI transmit process complete callback
|
|
* @param hdma : DMA handle
|
|
* @retval None
|
|
*/
|
|
static void HAL_SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
|
|
/* Disable Tx DMA Request */
|
|
hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
|
|
|
|
/* Check the end of the transaction */
|
|
SPI_EndRxTxTransaction(hspi,SPI_DEFAULT_TIMEOUT);
|
|
|
|
/* Clear OVERUN flag in 2 Lines communication mode because received data is not read */
|
|
if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
|
|
{
|
|
__HAL_SPI_CLEAR_OVRFLAG(hspi);
|
|
}
|
|
|
|
hspi->TxXferCount = 0;
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
|
|
/* Check if CRC error occurred or Error code */
|
|
if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
|
|
{
|
|
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
|
|
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
|
|
HAL_SPI_ErrorCallback(hspi);
|
|
}
|
|
else
|
|
{
|
|
if(hspi->ErrorCode == HAL_SPI_ERROR_NONE)
|
|
{
|
|
HAL_SPI_TxCpltCallback(hspi);
|
|
}
|
|
else
|
|
{
|
|
HAL_SPI_ErrorCallback(hspi);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief DMA SPI receive process complete callback
|
|
* @param hdma : DMA handle
|
|
* @retval None
|
|
*/
|
|
static void HAL_SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
__IO uint16_t tmpreg;
|
|
SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
|
|
/* CRC handling */
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
/* Wait until TXE flag */
|
|
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, SPI_DEFAULT_TIMEOUT) != HAL_OK)
|
|
{
|
|
/* Erreur on the CRC reception */
|
|
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
|
|
}
|
|
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
|
{
|
|
tmpreg = hspi->Instance->DR;
|
|
}
|
|
else
|
|
{
|
|
tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
|
|
if(hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)
|
|
{
|
|
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, SPI_DEFAULT_TIMEOUT) != HAL_OK)
|
|
{
|
|
/* Erreur on the CRC reception */
|
|
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
|
|
}
|
|
tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Disable Rx DMA Request */
|
|
hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
|
|
/* Disable Tx DMA Request (done by default to handle the case master rx direction 2 lines) */
|
|
hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
|
|
|
|
/* Check the end of the transaction */
|
|
SPI_EndRxTransaction(hspi,SPI_DEFAULT_TIMEOUT);
|
|
|
|
hspi->RxXferCount = 0;
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
|
|
/* Check if CRC error occurred */
|
|
if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
|
|
{
|
|
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
|
|
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
|
|
HAL_SPI_RxCpltCallback(hspi);
|
|
}
|
|
else
|
|
{
|
|
if(hspi->ErrorCode == HAL_SPI_ERROR_NONE)
|
|
{
|
|
HAL_SPI_RxCpltCallback(hspi);
|
|
}
|
|
else
|
|
{
|
|
HAL_SPI_ErrorCallback(hspi);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief DMA SPI transmit receive process complete callback
|
|
* @param hdma : DMA handle
|
|
* @retval None
|
|
*/
|
|
|
|
static void HAL_SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
__IO int16_t tmpreg;
|
|
SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
|
|
/* CRC handling */
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
if((hspi->Init.DataSize == SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_8BIT))
|
|
{
|
|
if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_QUARTER_FULL, SPI_DEFAULT_TIMEOUT) != HAL_OK)
|
|
{
|
|
/* Erreur on the CRC reception */
|
|
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
|
|
}
|
|
tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
|
|
}
|
|
else
|
|
{
|
|
if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_HALF_FULL, SPI_DEFAULT_TIMEOUT) != HAL_OK)
|
|
{
|
|
/* Erreur on the CRC reception */
|
|
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
|
|
}
|
|
tmpreg = hspi->Instance->DR;
|
|
}
|
|
}
|
|
|
|
/* Check the end of the transaction */
|
|
SPI_EndRxTxTransaction(hspi,SPI_DEFAULT_TIMEOUT);
|
|
|
|
/* Disable Tx DMA Request */
|
|
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
|
|
|
|
/* Disable Rx DMA Request */
|
|
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
|
|
|
|
hspi->TxXferCount = 0;
|
|
hspi->RxXferCount = 0;
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
|
|
/* Check if CRC error occurred */
|
|
if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
|
|
{
|
|
hspi->ErrorCode = HAL_SPI_ERROR_CRC;
|
|
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
|
|
HAL_SPI_ErrorCallback(hspi);
|
|
}
|
|
else
|
|
{
|
|
if(hspi->ErrorCode == HAL_SPI_ERROR_NONE)
|
|
{
|
|
HAL_SPI_TxRxCpltCallback(hspi);
|
|
}
|
|
else
|
|
{
|
|
HAL_SPI_ErrorCallback(hspi);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief DMA SPI communication error callback
|
|
* @param hdma : DMA handle
|
|
* @retval None
|
|
*/
|
|
static void HAL_SPI_DMAError(DMA_HandleTypeDef *hdma)
|
|
{
|
|
SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
hspi->TxXferCount = 0;
|
|
hspi->RxXferCount = 0;
|
|
hspi->ErrorCode|= HAL_SPI_ERROR_DMA;
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
HAL_SPI_ErrorCallback(hspi);
|
|
}
|
|
|
|
/**
|
|
* @brief Tx Transfer completed callbacks
|
|
* @param hspi: SPI handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_SPI_TxCpltCallback could be implenetd in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Rx Transfer completed callbacks
|
|
* @param hspi: SPI handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_SPI_RxCpltCallback could be implenetd in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Tx and Rx Transfer completed callbacks
|
|
* @param hspi: SPI handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_SPI_TxRxCpltCallback could be implenetd in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief SPI error callbacks
|
|
* @param hspi: SPI handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_SPI_ErrorCallback could be implenetd in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup SPI_Exported_Functions_Group3 Peripheral Control functions
|
|
* @brief SPI control functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Peripheral Control functions #####
|
|
===============================================================================
|
|
[..]
|
|
This subsection provides a set of functions allowing to control the SPI.
|
|
(+) HAL_SPI_GetState() API can be helpful to check in run-time the state of the SPI peripheral.
|
|
(+) HAL_SPI_Ctl() API can be used to update the spi configuration (only one parameter)
|
|
without calling the HAL_SPI_Init() API
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Return the SPI state
|
|
* @param hspi : SPI handle
|
|
* @retval HAL state
|
|
*/
|
|
HAL_SPI_StateTypeDef HAL_SPI_GetState(SPI_HandleTypeDef *hspi)
|
|
{
|
|
return hspi->State;
|
|
}
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @addtogroup SPI_Private_Functions SPI Private Functions
|
|
* @brief Data transfers Private functions
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Rx Handler for Transmit and Receive in Interrupt mode
|
|
* @param hspi: SPI handle
|
|
*/
|
|
static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Receive data in packing mode */
|
|
if(hspi->RxXferCount > 1)
|
|
{
|
|
*((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
|
|
hspi->pRxBuffPtr += sizeof(uint16_t);
|
|
hspi->RxXferCount -= 2;
|
|
if(hspi->RxXferCount == 1)
|
|
{
|
|
/* set fiforxthresold according the reception data lenght: 8bit */
|
|
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
|
}
|
|
}
|
|
/* Receive data in 8 Bit mode */
|
|
else
|
|
{
|
|
*hspi->pRxBuffPtr++ = *((__IO uint8_t *)&hspi->Instance->DR);
|
|
hspi->RxXferCount--;
|
|
}
|
|
|
|
/* check end of the reception */
|
|
if(hspi->RxXferCount == 0)
|
|
{
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
hspi->RxISR = SPI_2linesRxISR_8BITCRC;
|
|
return;
|
|
}
|
|
|
|
/* Disable RXNE interrupt */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE);
|
|
|
|
if(hspi->TxXferCount == 0)
|
|
{
|
|
SPI_CloseRxTx_ISR(hspi);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Rx Handler for Transmit and Receive in Interrupt mode
|
|
* @param hspi: SPI handle
|
|
*/
|
|
static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi)
|
|
{
|
|
__IO uint8_t tmpreg;
|
|
|
|
tmpreg = *((__IO uint8_t *)&hspi->Instance->DR);
|
|
hspi->CRCSize--;
|
|
|
|
/* check end of the reception */
|
|
if(hspi->CRCSize == 0)
|
|
{
|
|
/* Disable RXNE interrupt */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE);
|
|
|
|
if(hspi->TxXferCount == 0)
|
|
{
|
|
SPI_CloseRxTx_ISR(hspi);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Tx Handler for Transmit and Receive in Interrupt mode
|
|
* @param hspi: SPI handle
|
|
*/
|
|
static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Transmit data in packing Bit mode */
|
|
if(hspi->TxXferCount >= 2)
|
|
{
|
|
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint16_t);
|
|
hspi->TxXferCount -= 2;
|
|
}
|
|
/* Transmit data in 8 Bit mode */
|
|
else
|
|
{
|
|
*(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr++);
|
|
hspi->TxXferCount--;
|
|
}
|
|
|
|
/* check the end of the transmission */
|
|
if(hspi->TxXferCount == 0)
|
|
{
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
|
|
}
|
|
/* Disable TXE interrupt */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
|
|
|
|
if(hspi->RxXferCount == 0)
|
|
{
|
|
SPI_CloseRxTx_ISR(hspi);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Rx 16Bit Handler for Transmit and Receive in Interrupt mode
|
|
* @param hspi: SPI handle
|
|
*/
|
|
static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Receive data in 16 Bit mode */
|
|
*((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
|
|
hspi->pRxBuffPtr += sizeof(uint16_t);
|
|
hspi->RxXferCount--;
|
|
|
|
if(hspi->RxXferCount == 0)
|
|
{
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
hspi->RxISR = SPI_2linesRxISR_16BITCRC;
|
|
return;
|
|
}
|
|
|
|
/* Disable RXNE interrupt */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE);
|
|
|
|
if(hspi->TxXferCount == 0)
|
|
{
|
|
SPI_CloseRxTx_ISR(hspi);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Manage the CRC 16bit receive for Transmit and Receive in Interrupt mode
|
|
* @param hspi: SPI handle
|
|
*/
|
|
static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi)
|
|
{
|
|
__IO uint16_t tmpreg;
|
|
/* Receive data in 16 Bit mode */
|
|
tmpreg = hspi->Instance->DR;
|
|
|
|
/* Disable RXNE interrupt */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE);
|
|
|
|
SPI_CloseRxTx_ISR(hspi);
|
|
}
|
|
|
|
/**
|
|
* @brief Tx Handler for Transmit and Receive in Interrupt mode
|
|
* @param hspi: SPI handle
|
|
*/
|
|
static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Transmit data in 16 Bit mode */
|
|
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint16_t);
|
|
hspi->TxXferCount--;
|
|
|
|
/* Enable CRC Transmission */
|
|
if(hspi->TxXferCount == 0)
|
|
{
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
|
|
}
|
|
/* Disable TXE interrupt */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
|
|
|
|
if(hspi->RxXferCount == 0)
|
|
{
|
|
SPI_CloseRxTx_ISR(hspi);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Manage the CRC receive in Interrupt context
|
|
* @param hspi: SPI handle
|
|
*/
|
|
static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi)
|
|
{
|
|
__IO uint8_t tmpreg;
|
|
tmpreg = *((__IO uint8_t*)&hspi->Instance->DR);
|
|
hspi->CRCSize--;
|
|
|
|
if(hspi->CRCSize == 0)
|
|
{
|
|
SPI_CloseRx_ISR(hspi);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Manage the recieve in Interrupt context
|
|
* @param hspi: SPI handle
|
|
*/
|
|
static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
|
|
{
|
|
*hspi->pRxBuffPtr++ = (*(__IO uint8_t *)&hspi->Instance->DR);
|
|
hspi->RxXferCount--;
|
|
|
|
/* Enable CRC Transmission */
|
|
if((hspi->RxXferCount == 1) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED))
|
|
{
|
|
hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
|
|
}
|
|
|
|
if(hspi->RxXferCount == 0)
|
|
{
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
hspi->RxISR = SPI_RxISR_8BITCRC;
|
|
return;
|
|
}
|
|
SPI_CloseRx_ISR(hspi);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Manage the CRC 16bit recieve in Interrupt context
|
|
* @param hspi: SPI handle
|
|
*/
|
|
static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi)
|
|
{
|
|
__IO uint16_t tmpreg;
|
|
|
|
tmpreg = hspi->Instance->DR;
|
|
|
|
/* Disable RXNE and ERR interrupt */
|
|
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
|
|
|
|
SPI_CloseRx_ISR(hspi);
|
|
}
|
|
|
|
/**
|
|
* @brief Manage the 16Bit recieve in Interrupt context
|
|
* @param hspi: SPI handle
|
|
*/
|
|
static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
|
|
{
|
|
*((uint16_t *)hspi->pRxBuffPtr) = hspi->Instance->DR;
|
|
hspi->pRxBuffPtr += sizeof(uint16_t);
|
|
hspi->RxXferCount--;
|
|
|
|
/* Enable CRC Transmission */
|
|
if((hspi->RxXferCount == 1) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED))
|
|
{
|
|
hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
|
|
}
|
|
|
|
if(hspi->RxXferCount == 0)
|
|
{
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
hspi->RxISR = SPI_RxISR_16BITCRC;
|
|
return;
|
|
}
|
|
SPI_CloseRx_ISR(hspi);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Handle the data 8Bit transmit in Interrupt mode
|
|
* @param hspi: SPI handle
|
|
*/
|
|
static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
|
|
{
|
|
*(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr++);
|
|
hspi->TxXferCount--;
|
|
|
|
if(hspi->TxXferCount == 0)
|
|
{
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
/* Enable CRC Transmission */
|
|
hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
|
|
}
|
|
SPI_CloseTx_ISR(hspi);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Handle the data 16Bit transmit in Interrupt mode
|
|
* @param hspi: SPI handle
|
|
*/
|
|
static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Transmit data in 16 Bit mode */
|
|
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
|
|
hspi->pTxBuffPtr += sizeof(uint16_t);
|
|
hspi->TxXferCount--;
|
|
|
|
if(hspi->TxXferCount == 0)
|
|
{
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
/* Enable CRC Transmission */
|
|
hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
|
|
}
|
|
SPI_CloseTx_ISR(hspi);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles SPI Communication Timeout.
|
|
* @param hspi: SPI handle
|
|
* @param Flag : SPI flag to check
|
|
* @param State : flag state to check
|
|
* @param Timeout : Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, uint32_t State, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart = HAL_GetTick();
|
|
|
|
while((hspi->Instance->SR & Flag) != State)
|
|
{
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
|
|
{
|
|
/* Disable the SPI and reset the CRC: the CRC value should be cleared
|
|
on both master and slave sides in order to resynchronize the master
|
|
and slave for their respective CRC calculation */
|
|
|
|
/* Disable TXE, RXNE and ERR interrupts for the interrupt process */
|
|
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
|
|
|
|
if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
|
|
{
|
|
/* Disable SPI peripheral */
|
|
__HAL_SPI_DISABLE(hspi);
|
|
}
|
|
|
|
/* Reset CRC Calculation */
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
__HAL_SPI_RESET_CRC(hspi);
|
|
}
|
|
|
|
hspi->State= HAL_SPI_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles SPI Communication Timeout.
|
|
* @param hspi: SPI handle
|
|
* @param Fifo: Fifo to check
|
|
* @param State: Fifo state to check
|
|
* @param Timeout : Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef SPI_WaitFifoStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Fifo, uint32_t State, uint32_t Timeout)
|
|
{
|
|
__IO uint8_t tmpreg;
|
|
uint32_t tickstart = HAL_GetTick();
|
|
|
|
while((hspi->Instance->SR & Fifo) != State)
|
|
{
|
|
if((Fifo == SPI_SR_FRLVL) && (State == SPI_FRLVL_EMPTY))
|
|
{
|
|
tmpreg = *((__IO uint8_t*)&hspi->Instance->DR);
|
|
}
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
|
|
{
|
|
/* Disable the SPI and reset the CRC: the CRC value should be cleared
|
|
on both master and slave sides in order to resynchronize the master
|
|
and slave for their respective CRC calculation */
|
|
|
|
/* Disable TXE, RXNE and ERR interrupts for the interrupt process */
|
|
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
|
|
|
|
if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
|
|
{
|
|
/* Disable SPI peripheral */
|
|
__HAL_SPI_DISABLE(hspi);
|
|
}
|
|
|
|
/* Reset CRC Calculation */
|
|
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
|
|
{
|
|
__HAL_SPI_RESET_CRC(hspi);
|
|
}
|
|
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hspi);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles the check of the RX transaction complete.
|
|
* @param hspi: SPI handle
|
|
* @param Timeout : Timeout duration
|
|
*/
|
|
static HAL_StatusTypeDef SPI_EndRxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout)
|
|
{
|
|
if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
|
|
{
|
|
/* Disable SPI peripheral */
|
|
__HAL_SPI_DISABLE(hspi);
|
|
}
|
|
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout) != HAL_OK)
|
|
{
|
|
hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
|
|
return HAL_TIMEOUT;
|
|
}
|
|
if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, Timeout) != HAL_OK)
|
|
{
|
|
hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles the check of the RXTX or TX transaction complete.
|
|
* @param hspi: SPI handle
|
|
* @param Timeout : Timeout duration
|
|
*/
|
|
static HAL_StatusTypeDef SPI_EndRxTxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout)
|
|
{
|
|
/* Procedure to check the transaction complete */
|
|
if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FTLVL, SPI_FTLVL_EMPTY, Timeout) != HAL_OK)
|
|
{
|
|
hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
|
|
return HAL_TIMEOUT;
|
|
}
|
|
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout) != HAL_OK)
|
|
{
|
|
hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
|
|
return HAL_TIMEOUT;
|
|
}
|
|
if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, Timeout) != HAL_OK)
|
|
{
|
|
hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
|
|
return HAL_TIMEOUT;
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles the close of the RXTX transaction.
|
|
* @param hspi: SPI handle
|
|
*/
|
|
static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Disable ERR interrupt */
|
|
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR);
|
|
|
|
/* Check the end of the transaction */
|
|
SPI_EndRxTxTransaction(hspi,SPI_DEFAULT_TIMEOUT);
|
|
|
|
/* Check if CRC error occurred */
|
|
if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
|
|
{
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
|
|
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
|
|
HAL_SPI_ErrorCallback(hspi);
|
|
}
|
|
else
|
|
{
|
|
if(hspi->ErrorCode == HAL_SPI_ERROR_NONE)
|
|
{
|
|
if(hspi->State == HAL_SPI_STATE_BUSY_RX)
|
|
{
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
HAL_SPI_RxCpltCallback(hspi);
|
|
}
|
|
else
|
|
{
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
HAL_SPI_TxRxCpltCallback(hspi);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
HAL_SPI_ErrorCallback(hspi);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles the close of the RX transaction.
|
|
* @param hspi: SPI handle
|
|
*/
|
|
static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Disable RXNE and ERR interrupt */
|
|
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
|
|
|
|
/* Check the end of the transaction */
|
|
SPI_EndRxTransaction(hspi,SPI_DEFAULT_TIMEOUT);
|
|
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
|
|
/* Check if CRC error occurred */
|
|
if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
|
|
{
|
|
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
|
|
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
|
|
HAL_SPI_ErrorCallback(hspi);
|
|
}
|
|
else
|
|
{
|
|
if(hspi->ErrorCode == HAL_SPI_ERROR_NONE)
|
|
{
|
|
HAL_SPI_RxCpltCallback(hspi);
|
|
}
|
|
else
|
|
{
|
|
HAL_SPI_ErrorCallback(hspi);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles the close of the TX transaction.
|
|
* @param hspi: SPI handle
|
|
*/
|
|
static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi)
|
|
{
|
|
/* Disable TXE and ERR interrupt */
|
|
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR));
|
|
|
|
/* Check the end of the transaction */
|
|
SPI_EndRxTxTransaction(hspi,SPI_DEFAULT_TIMEOUT);
|
|
|
|
/* Clear OVERUN flag in 2 Lines communication mode because received is not read */
|
|
if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
|
|
{
|
|
__HAL_SPI_CLEAR_OVRFLAG(hspi);
|
|
}
|
|
|
|
hspi->State = HAL_SPI_STATE_READY;
|
|
if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
|
|
{
|
|
HAL_SPI_ErrorCallback(hspi);
|
|
}
|
|
else
|
|
{
|
|
HAL_SPI_TxCpltCallback(hspi);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
#endif /* HAL_SPI_MODULE_ENABLED */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|