custom-board-bundle-sample-.../firmware/rusefi.cpp

389 lines
14 KiB
C++
Raw Normal View History

2015-07-10 06:01:56 -07:00
/**
* @file rusefi.cpp
* @brief Initialization code and main status reporting look
*
* @date Dec 25, 2013
2020-01-13 18:57:43 -08:00
* @author Andrey Belomutskiy, (c) 2012-2020
2015-07-10 06:01:56 -07:00
*/
/**
* @mainpage
2018-04-08 08:35:24 -07:00
* This documentation https://rusefi.com/docs/html/
*
* For version see engine_controller.cpp getRusEfiVersion
2015-07-10 06:01:56 -07:00
*
* @section sec_intro Intro
2015-07-10 06:01:56 -07:00
*
2021-03-02 19:23:17 -08:00
* rusEFI is implemented based on the idea that with modern 100+ MHz microprocessors the relatively
2015-07-10 06:01:56 -07:00
* undemanding task of internal combustion engine control could be implemented in a high-level, processor-independent
* (to some extent) manner. Thus the key concepts of rusEfi: dependency on high-level hardware abstraction layer, software-based PWM etc.
*
* @section sec_main Brief overview
*
2016-01-08 08:01:40 -08:00
* rusEfi runs on crank shaft or cam shaft ('trigger') position sensor events.
* Once per crank shaft revolution we evaluate the amount of needed fuel and
2015-07-10 06:01:56 -07:00
* the spark timing. Once we have decided on the parameters for this revolution
* we schedule all the actions to be triggered by the closest trigger event.
*
* We also have some utility threads like idle control thread and communication threads.
*
*
*
* @section sec_trigger Trigger Decoding
*
* Our primary trigger decoder is based on the idea of synchronizing the primary shaft signal and simply counting events on
2016-01-08 08:01:40 -08:00
* the secondary signal. A typical scenario would be when cam shaft positions sensor is the primary signal and crankshaft is secondary,
* but sometimes there would be two signals generated by two cam shaft sensors.
* Another scenario is when we only have crank shaft position sensor, this would make it the primary signal and there would be no secondary signal.
2015-07-10 06:01:56 -07:00
*
* There is no software filtering so the signals are expected to be valid. TODO: in reality we are still catching engine stop noise as unrealisticly high RPM.
*
* The decoder is configured to act either on the primary signal rise or on the primary signal fall. It then compares the duration
* of time from the previous signal to the duration of time from the signal before previous, and if the ratio falls into the configurable
* range between 'syncRatioFrom' and 'syncRatioTo' this is assumed to be the synchronizing event.
*
* For instance, for a 36/1 skipped tooth wheel the ratio range for synchronization is from 1.5 to 3
*
* Some triggers do not require synchronization, this case we just count signals.
* A single tooth primary signal would be a typical example when synchronization is not needed.
*
*
2018-04-08 08:35:24 -07:00
* @section sec_timers Timers
* At the moment rusEfi is build using 5 times:
* <BR>1) 1MHz microsecond_timer.cpp
* <BR>2) 10KHz fast ADC callback pwmpcb_fast adc_inputs.cpp
* <BR>3) slow ADC callback pwmpcb_slow adc_inputs.cpp
* <BR>4) periodicFastTimer engine_controller.cpp
* <BR>5) periodicSlowTimer engine_controller.cpp
2015-07-10 06:01:56 -07:00
*
*
*
* @section sec_scheduler Event Scheduler
*
2016-01-08 08:01:40 -08:00
* It is a general agreement to measure all angles in crank shaft angles. In a four stroke
* engine, a full cycle consists of two revolutions of the crank shaft, so all the angles are
2015-07-10 06:01:56 -07:00
* running between 0 and 720 degrees.
*
* Ignition timing is a great example of a process which highlights the need of a hybrid
* approach to event scheduling.
* The most important part of controlling ignition
* is firing up the spark at the right moment - so, for this job we need 'angle-based' timing,
* for example we would need to fire up the spark at 700 degrees. Before we can fire up the spark
* at 700 degrees, we need to charge the ignition coil, for example this dwell time is 4ms - that
* means we need to turn on the coil at '4 ms before 700 degrees'. Let's assume that the engine is
* current at 600 RPM - that means 360 degrees would take 100ms so 4ms is 14.4 degrees at current RPM which
* means we need to start charting the coil at 685.6 degrees.
*
* The position sensors at our disposal are not providing us the current position at any moment of time -
* all we've got is a set of events which are happening at the knows positions. For instance, let's assume that
* our sensor sends as an event at 0 degrees, at 90 degrees, at 600 degrees and and 690 degrees.
*
* So, for this particular sensor the most precise scheduling would be possible if we schedule coil charting
* as '85.6 degrees after the 600 degrees position sensor event', and spark firing as
* '10 degrees after the 690 position sensor event'. Considering current RPM, we calculate that '10 degress after' is
* 2.777ms, so we schedule spark firing at '2.777ms after the 690 position sensor event', thus combining trigger events
* with time-based offset.
*
* @section config Persistent Configuration
* engine_configuration_s structure is kept in the internal flash memory, it has all the settings. Currently rusefi.ini has a direct mapping of this structure.
*
* Please note that due to TunerStudio protocol it's important to have the total structure size in synch between the firmware and TS .ini file -
* just to make sure that this is not forgotten the size of the structure is hard-coded as PAGE_0_SIZE constant. There is always some 'unused' fields added in advance so that
2016-01-08 08:01:40 -08:00
* one can add some fields without the pain of increasing the total configuration page size.
2015-07-10 06:01:56 -07:00
* <br>See flash_main.cpp
*
*
2021-03-02 19:23:17 -08:00
* todo: merge https://github.com/rusefi/rusefi/wiki/Dev-Tips into here
*
2015-07-10 06:01:56 -07:00
* @section sec_fuel_injection Fuel Injection
*
*
* @section sec_misc Misc
2015-07-10 06:01:56 -07:00
*
* <BR>See main_trigger_callback.cpp for main trigger event handler
* <BR>See fuel_math.cpp for details on fuel amount logic
* <BR>See rpm_calculator.cpp for details on how getRpm() is calculated
*
*/
2018-09-16 19:25:17 -07:00
#include "global.h"
#include "os_access.h"
2015-07-10 06:01:56 -07:00
#include "trigger_structure.h"
#include "hardware.h"
#include "engine_controller.h"
2019-03-29 06:11:13 -07:00
#include "efi_gpio.h"
2015-07-10 06:01:56 -07:00
#include "rfi_perftest.h"
#include "rusefi.h"
#include "memstreams.h"
#include "eficonsole.h"
#include "status_loop.h"
#include "pin_repository.h"
2018-01-28 11:49:06 -08:00
#include "custom_engine.h"
2018-02-03 07:56:29 -08:00
#include "engine_math.h"
2019-08-03 16:58:38 -07:00
#include "mpu_util.h"
#include "tunerstudio.h"
#include "mmc_card.h"
#include "mass_storage_init.h"
#include "trigger_emulator_algo.h"
#include "rusefi_lua.h"
2015-07-10 06:01:56 -07:00
#include <setjmp.h>
2019-04-12 19:10:57 -07:00
#if EFI_ENGINE_EMULATOR
2015-07-10 06:01:56 -07:00
#include "engine_emulator.h"
#endif /* EFI_ENGINE_EMULATOR */
2016-01-11 16:02:19 -08:00
bool main_loop_started = false;
2015-07-10 06:01:56 -07:00
static char panicMessage[200];
static virtual_timer_t resetTimer;
EXTERN_ENGINE;
2015-07-10 06:01:56 -07:00
// todo: move this into a hw-specific file
void rebootNow(void) {
2015-07-10 06:01:56 -07:00
NVIC_SystemReset();
}
/**
* Some configuration changes require full firmware reset.
* Once day we will write graceful shutdown, but that would be one day.
*/
static void scheduleReboot(void) {
efiPrintf("Rebooting in 3 seconds...");
chibios_rt::CriticalSectionLocker csl;
2019-08-17 14:33:44 -07:00
chVTSetI(&resetTimer, TIME_MS2I(3000), (vtfunc_t) rebootNow, NULL);
2015-07-10 06:01:56 -07:00
}
// Returns false if there's an obvious problem with the loaded configuration
static bool validateConfig() {
if (CONFIG(specs.cylindersCount) > MAX_CYLINDER_COUNT) {
firmwareError(OBD_PCM_Processor_Fault, "Invalid cylinder count: %d", CONFIG(specs.cylindersCount));
return false;
}
// Fueling
{
ensureArrayIsAscending("VE load", config->veLoadBins);
ensureArrayIsAscending("VE RPM", config->veRpmBins);
ensureArrayIsAscending("Lambda/AFR load", config->lambdaLoadBins);
ensureArrayIsAscending("Lambda/AFR RPM", config->lambdaRpmBins);
ensureArrayIsAscending("Fuel CLT mult", config->cltFuelCorrBins);
ensureArrayIsAscending("Fuel IAT mult", config->iatFuelCorrBins);
ensureArrayIsAscending("Injection phase load", config->injPhaseLoadBins);
ensureArrayIsAscending("Injection phase RPM", config->injPhaseRpmBins);
ensureArrayIsAscending("TPS/TPS AE from", config->tpsTpsAccelFromRpmBins);
ensureArrayIsAscending("TPS/TPS AE to", config->tpsTpsAccelToRpmBins);
}
// Ignition
{
ensureArrayIsAscending("Dwell RPM", engineConfiguration->sparkDwellRpmBins);
ensureArrayIsAscending("Ignition load", config->ignitionLoadBins);
ensureArrayIsAscending("Ignition RPM", config->ignitionRpmBins);
ensureArrayIsAscending("Ignition CLT corr", engineConfiguration->cltTimingBins);
ensureArrayIsAscending("Ignition IAT corr IAT", config->ignitionIatCorrLoadBins);
ensureArrayIsAscending("Ignition IAT corr RPM", config->ignitionIatCorrRpmBins);
}
ensureArrayIsAscending("Map estimate TPS", config->mapEstimateTpsBins);
ensureArrayIsAscending("Map estimate RPM", config->mapEstimateRpmBins);
ensureArrayIsAscending("Ignition load", config->mafDecodingBins);
// Cranking tables
ensureArrayIsAscending("Cranking fuel mult", config->crankingFuelBins);
ensureArrayIsAscending("Cranking duration", config->crankingCycleBins);
ensureArrayIsAscending("Cranking TPS", engineConfiguration->crankingTpsBins);
// Idle tables
ensureArrayIsAscending("Idle target RPM", engineConfiguration->cltIdleRpmBins);
ensureArrayIsAscending("Idle warmup mult", config->cltIdleCorrBins);
ensureArrayIsAscending("Idle coasting position", engineConfiguration->iacCoastingBins);
ensureArrayIsAscending("Idle VE", config->idleVeBins);
ensureArrayIsAscending("Idle timing", config->idleAdvanceBins);
// Boost
ensureArrayIsAscending("Boost control TPS", config->boostTpsBins);
ensureArrayIsAscending("Boost control RPM", config->boostRpmBins);
// ETB
ensureArrayIsAscending("Pedal map pedal", config->pedalToTpsPedalBins);
ensureArrayIsAscending("Pedal map RPM", config->pedalToTpsRpmBins);
// VVT
ensureArrayIsAscending("VVT intake load", config->vvtTable1LoadBins);
ensureArrayIsAscending("VVT intake RPM", config->vvtTable1RpmBins);
ensureArrayIsAscending("VVT exhaust load", config->vvtTable2LoadBins);
ensureArrayIsAscending("VVT exhaust RPM", config->vvtTable2RpmBins);
return true;
}
static jmp_buf jmpEnv;
void onAssertionFailure() {
// There's been an assertion failure: instead of hanging, jump back to where we check
// if (setjmp(jmpEnv)) (see below for more complete explanation)
longjmp(jmpEnv, 1);
}
void runRusEfiWithConfig();
void runMainLoop();
2015-07-10 06:01:56 -07:00
void runRusEfi(void) {
2019-02-23 09:33:49 -08:00
efiAssertVoid(CUSTOM_RM_STACK_1, getCurrentRemainingStack() > 512, "init s");
2018-02-03 07:48:35 -08:00
assertEngineReference();
engine->setConfig();
#if EFI_TEXT_LOGGING
// Initialize logging system early - we can't log until this is called
startLoggingProcessor();
#endif
2019-08-03 16:58:38 -07:00
addConsoleAction(CMD_REBOOT, scheduleReboot);
addConsoleAction(CMD_REBOOT_DFU, jump_to_bootloader);
2016-04-03 16:01:59 -07:00
2016-04-15 20:01:40 -07:00
/**
* we need to initialize table objects before default configuration can set values
*/
2017-05-15 20:33:22 -07:00
initDataStructures(PASS_ENGINE_PARAMETER_SIGNATURE);
2016-04-15 20:01:40 -07:00
2021-03-25 18:12:19 -07:00
// Perform hardware initialization that doesn't need configuration
initHardwareNoConfig();
#if EFI_USB_SERIAL
startUsbConsole();
#endif
#if HAL_USE_USB_MSD
initUsbMsd();
#endif
2015-07-10 06:01:56 -07:00
/**
* Next we should initialize serial port console, it's important to know what's going on
*/
initializeConsole();
2015-07-10 06:01:56 -07:00
// Read configuration from flash memory
loadConfiguration(PASS_ENGINE_PARAMETER_SIGNATURE);
#if EFI_TUNER_STUDIO
startTunerStudioConnectivity();
#endif /* EFI_TUNER_STUDIO */
// Start hardware serial ports (including bluetooth, if present)
startSerialChannels();
runRusEfiWithConfig();
2021-07-08 16:33:42 -07:00
// periodic events need to be initialized after fuel&spark pins to avoid a warning
initPeriodicEvents(PASS_ENGINE_PARAMETER_SIGNATURE);
runMainLoop();
}
void runRusEfiWithConfig() {
// If some config operation caused an OS assertion failure, return immediately
// This sets the "unwind point" that we can jump back to later with longjmp if we have
// an assertion failure. If that happens, setjmp() will return non-zero, so we will
// return immediately from this function instead of trying to init hardware again (which failed last time)
if (setjmp(jmpEnv)) {
return;
}
2015-07-10 06:01:56 -07:00
/**
* Initialize hardware drivers
*/
initHardware();
2015-07-10 06:01:56 -07:00
2021-03-25 18:12:19 -07:00
#if EFI_FILE_LOGGING
initMmcCard();
#endif /* EFI_FILE_LOGGING */
#if HW_CHECK_ALWAYS_STIMULATE
// we need a special binary for final assembly check. We cannot afford to require too much software or too many steps
// to be executed at the place of assembly
enableTriggerStimulator();
#endif // HW_CHECK_ALWAYS_STIMULATE
#if EFI_LUA
startLua();
#endif // EFI_LUA
// Config could be completely bogus - don't start anything else!
if (validateConfig()) {
initStatusLoop();
/**
* Now let's initialize actual engine control logic
* todo: should we initialize some? most? controllers before hardware?
*/
initEngineContoller(PASS_ENGINE_PARAMETER_SIGNATURE);
2015-07-10 06:01:56 -07:00
#if EFI_ENGINE_EMULATOR
initEngineEmulator(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif
2021-03-30 04:28:22 -07:00
// This has to happen after RegisteredOutputPins are init'd: otherwise no change will be detected, and no init will happen
rememberCurrentConfiguration(PASS_ENGINE_PARAMETER_SIGNATURE);
#if EFI_PERF_METRICS
initTimePerfActions();
#endif
startStatusThreads();
2015-07-10 06:01:56 -07:00
runSchedulingPrecisionTestIfNeeded();
}
}
2018-01-28 11:03:58 -08:00
void runMainLoop() {
efiPrintf("Running main loop");
2015-07-10 06:01:56 -07:00
main_loop_started = true;
/**
* This loop is the closes we have to 'main loop' - but here we only publish the status. The main logic of engine
* control is around main_trigger_callback
*/
while (true) {
2019-02-23 09:33:49 -08:00
efiAssertVoid(CUSTOM_RM_STACK, getCurrentRemainingStack() > 128, "stack#1");
2015-07-10 06:01:56 -07:00
2019-04-12 19:10:57 -07:00
#if EFI_CLI_SUPPORT && !EFI_UART_ECHO_TEST_MODE
2019-05-02 14:52:48 -07:00
// sensor state + all pending messages for our own rusEfi console
2020-06-13 19:46:10 -07:00
// todo: is this mostly dead code?
updateDevConsoleState();
2015-07-10 06:01:56 -07:00
#endif /* EFI_CLI_SUPPORT */
2020-06-13 19:46:10 -07:00
chThdSleepMilliseconds(200);
2015-07-10 06:01:56 -07:00
}
}
2018-01-23 10:18:59 -08:00
/**
* this depends on chcore.h patch
+void chDbgStackOverflowPanic(thread_t *otp);
+
- chSysHalt("stack overflow"); \
+ chDbgStackOverflowPanic(otp); \
*
*/
2017-03-30 12:06:30 -07:00
void chDbgStackOverflowPanic(thread_t *otp) {
2017-04-12 08:28:23 -07:00
(void)otp;
2015-07-10 06:01:56 -07:00
strcpy(panicMessage, "stack overflow: ");
2019-04-12 19:10:57 -07:00
#if defined(CH_USE_REGISTRY)
2016-08-31 21:02:04 -07:00
int p_name_len = strlen(otp->p_name);
2016-09-01 20:02:44 -07:00
if (p_name_len < sizeof(panicMessage) - 2)
2016-08-31 21:02:04 -07:00
strcat(panicMessage, otp->p_name);
2015-07-10 06:01:56 -07:00
#endif
chDbgPanic3(panicMessage, __FILE__, __LINE__);
}