custom-board-bundle-sample-.../firmware/controllers/algo/fuel/injector_model.cpp

147 lines
4.1 KiB
C++
Raw Normal View History

#include "pch.h"
#include "injector_model.h"
#include "fuel_computer.h"
void InjectorModelBase::prepare() {
m_massFlowRate = getInjectorMassFlowRate();
float deadtime = getDeadtime();
m_deadtime = deadtime;
postState(deadtime);
}
constexpr float convertToGramsPerSecond(float ccPerMinute) {
return ccPerMinute * (fuelDensity / 60.f);
}
expected<float> InjectorModel::getAbsoluteRailPressure() const {
switch (engineConfiguration->injectorCompensationMode) {
case ICM_FixedRailPressure:
// Add barometric pressure, as "fixed" really means "fixed pressure above atmosphere"
return engineConfiguration->fuelReferencePressure + Sensor::get(SensorType::BarometricPressure).value_or(101.325f);
case ICM_SensedRailPressure:
if (!Sensor::hasSensor(SensorType::FuelPressureInjector)) {
firmwareError(OBD_PCM_Processor_Fault, "Fuel pressure compensation is set to use a pressure sensor, but none is configured.");
return unexpected;
}
// TODO: what happens when the sensor fails?
return Sensor::get(SensorType::FuelPressureInjector);
default: return unexpected;
}
}
2021-12-26 09:59:53 -08:00
float InjectorModel::getInjectorFlowRatio() {
// Compensation disabled, use reference flow.
if (engineConfiguration->injectorCompensationMode == ICM_None) {
return 1.0f;
}
float referencePressure = engineConfiguration->fuelReferencePressure;
expected<float> absRailPressure = getAbsoluteRailPressure();
// If sensor failed, best we can do is disable correction
if (!absRailPressure) {
return 1.0f;
}
auto map = Sensor::get(SensorType::Map);
// Map has failed, assume nominal pressure
if (!map) {
return 1.0f;
}
2021-12-26 09:59:53 -08:00
pressureDelta = absRailPressure.Value - map.Value;
// Somehow pressure delta is less than 0, assume failed sensor and return default flow
if (pressureDelta <= 0) {
return 1.0f;
}
2021-12-26 09:59:53 -08:00
pressureRatio = pressureDelta / referencePressure;
// todo: live data model?
float flowRatio = sqrtf(pressureRatio);
#if EFI_TUNER_STUDIO
engine->outputChannels.injectorFlowPressureDelta = pressureDelta;
engine->outputChannels.injectorFlowPressureRatio = pressureRatio;
#endif // EFI_TUNER_STUDIO
// TODO: should the flow ratio be clamped?
return flowRatio;
}
2021-12-26 09:59:53 -08:00
float InjectorModel::getInjectorMassFlowRate() {
// TODO: injector flow dependent upon temperature/ethanol content?
auto injectorVolumeFlow = engineConfiguration->injector.flow;
float flowRatio = getInjectorFlowRatio();
return flowRatio * convertToGramsPerSecond(injectorVolumeFlow);
}
float InjectorModel::getDeadtime() const {
return interpolate2d(
2021-03-11 20:07:18 -08:00
Sensor::get(SensorType::BatteryVoltage).value_or(VBAT_FALLBACK_VALUE),
engineConfiguration->injector.battLagCorrBins,
engineConfiguration->injector.battLagCorr
);
}
void InjectorModel::postState(float deadtime) const {
engine->engineState.running.injectorLag = deadtime;
}
float InjectorModelBase::getInjectionDuration(float fuelMassGram) const {
// TODO: support injector nonlinearity correction
floatms_t baseDuration = fuelMassGram / m_massFlowRate * 1000;
if (baseDuration <= 0) {
// If 0 duration, don't correct or add deadtime, just skip the injection.
return 0.0f;
}
// Correct short pulses (if enabled)
baseDuration = correctShortPulse(baseDuration);
return baseDuration + m_deadtime;
}
float InjectorModelBase::getFuelMassForDuration(floatms_t duration) const {
// Convert from ms -> grams
return duration * m_massFlowRate * 0.001f;
}
float InjectorModel::correctShortPulse(float baseDuration) const {
switch (engineConfiguration->injectorNonlinearMode) {
case INJ_PolynomialAdder:
return correctInjectionPolynomial(baseDuration);
case INJ_None:
default:
return baseDuration;
}
}
float InjectorModel::correctInjectionPolynomial(float baseDuration) const {
if (baseDuration > engineConfiguration->applyNonlinearBelowPulse) {
// Large pulse, skip correction.
return baseDuration;
}
auto& is = engineConfiguration->injectorCorrectionPolynomial;
float xi = 1;
float adder = 0;
// Add polynomial terms, starting with x^0
for (size_t i = 0; i < efi::size(is); i++) {
adder += is[i] * xi;
xi *= baseDuration;
}
return baseDuration + adder;
}