Impl. narrow EGO averaging (alpha) (#545)

* Impl. narrow EGO averaging (alpha)

* Use cyclic_buffer as a generic container for CIC

* Implicit #include of cyclic_buffer.h for safety
This commit is contained in:
andreika-git 2018-01-23 15:24:13 +02:00 committed by rusefi
parent 66d7c2bd5d
commit 013b800c72
4 changed files with 117 additions and 35 deletions

View File

@ -675,6 +675,8 @@ void initEngineContoller(Logging *sharedLogger DECLARE_ENGINE_PARAMETER_SUFFIX)
}
#endif /* EFI_MAP_AVERAGING */
initEgoAveraging(PASS_ENGINE_PARAMETER_SIGNATURE);
#if EFI_ENGINE_CONTROL || defined(__DOXYGEN__)
if (boardConfiguration->isEngineControlEnabled) {
/**

View File

@ -12,9 +12,81 @@
#include "interpolation.h"
#include "engine.h"
#include "analog_input.h"
#include "cyclic_buffer.h"
EXTERN_ENGINE;
#ifdef EFI_NARROW_EGO_AVERAGING
// Needed by narrow EGOs (see updateEgoAverage()).
// getAfr() is called at ~50Hz, so we store at most (1<<3)*32 EGO values for ~5 secs.
#define EGO_AVG_SHIFT 3
#define EGO_AVG_BUF_SIZE 32 // 32*sizeof(float)
static bool useAveraging = false;
// Circular running-average buffer, used by CIC-like averaging filter
static cyclic_buffer<float, EGO_AVG_BUF_SIZE> egoAfrBuf;
// Total ego iterations (>240 days max. for 10ms update period)
static int totalEgoCnt = 0;
// We need this to calculate the real number of values stored in the buffer.
static int prevEgoCnt = 0;
// todo: move it to engineConfiguration
static const float stoichAfr = 14.7f;
static const float maxAfrDeviation = 5.0f; // 9.7..19.7
static const int minAvgSize = (EGO_AVG_BUF_SIZE / 2); // ~0.6 sec for 20ms period of 'fast' callback, and it matches a lag time of most narrow EGOs
static const int maxAvgSize = (EGO_AVG_BUF_SIZE - 1); // the whole buffer
// we store the last measured AFR value to predict the current averaging window size
static float lastAfr = stoichAfr;
void initEgoAveraging(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
// Our averaging is intended for use only with Narrow EGOs.
if (boardConfiguration->afr_type == ES_NarrowBand) {
totalEgoCnt = prevEgoCnt = 0;
egoAfrBuf.clear();
useAveraging = true;
}
}
static float updateEgoAverage(float afr) {
// use a variation of cascaded integrator-comb (CIC) filtering
totalEgoCnt++;
int localBufPos = (totalEgoCnt >> EGO_AVG_SHIFT) % EGO_AVG_BUF_SIZE;
int localPrevBufPos = ((totalEgoCnt - 1) >> EGO_AVG_SHIFT) % EGO_AVG_BUF_SIZE;
// reset old buffer cell
if (localPrevBufPos != localBufPos) {
egoAfrBuf.elements[localBufPos] = 0;
// Remove (1 << EGO_AVG_SHIFT) elements from our circular buffer (except for the 1st cycle).
if (totalEgoCnt >= (EGO_AVG_BUF_SIZE << EGO_AVG_SHIFT))
prevEgoCnt += (1 << EGO_AVG_SHIFT);
}
// integrator stage
egoAfrBuf.elements[localBufPos] += afr;
// Change window size depending on |AFR-stoich| deviation.
// The narrow EGO is very noisy when AFR is close to shoich.
// And we need the fastest EGO response when AFR has the extreme deviation (way too lean/rich).
float avgSize = maxAvgSize;//interpolateClamped(minAvgSize, maxAfrDeviation, maxAvgSize, 0.0f, absF(lastAfr - stoichAfr));
// choose the number of recently filled buffer cells for averaging
int avgCnt = (int)efiRound(avgSize, 1.0f) << EGO_AVG_SHIFT;
// limit averaging count to the real stored count
int startAvgCnt = maxI(totalEgoCnt - avgCnt, prevEgoCnt);
// return moving average of N last sums
float egoAfrSum = 0;
for (int i = (totalEgoCnt >> EGO_AVG_SHIFT); i >= (startAvgCnt >> EGO_AVG_SHIFT); i--) {
egoAfrSum += egoAfrBuf.elements[i % EGO_AVG_BUF_SIZE];
}
// we divide by a real number of stored values to get an exact average
return egoAfrSum / float(totalEgoCnt - startAvgCnt);
}
#else
void initEgoAveraging(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
}
#endif
bool hasAfrSensor(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
return engineConfiguration->afr.hwChannel != EFI_ADC_NONE;
}
@ -25,7 +97,14 @@ float getAfr(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
float volts = getVoltageDivided("ego", sensor->hwChannel);
if (boardConfiguration->afr_type == ES_NarrowBand) {
return interpolate2d("narrow", volts, engineConfiguration->narrowToWideOxygenBins, engineConfiguration->narrowToWideOxygen, NARROW_BAND_WIDE_BAND_CONVERSION_SIZE);
float afr = interpolate2d("narrow", volts, engineConfiguration->narrowToWideOxygenBins, engineConfiguration->narrowToWideOxygen, NARROW_BAND_WIDE_BAND_CONVERSION_SIZE);
#ifdef EFI_NARROW_EGO_AVERAGING
if (useAveraging)
afr = updateEgoAverage(afr);
return (lastAfr = afr);
#else
return afr;
#endif
}
return interpolate(sensor->v1, sensor->value1, sensor->v2, sensor->value2, volts)

View File

@ -17,5 +17,6 @@
float getAfr(DECLARE_ENGINE_PARAMETER_SIGNATURE);
bool hasAfrSensor(DECLARE_ENGINE_PARAMETER_SIGNATURE);
void setEgoSensor(ego_sensor_e type DECLARE_ENGINE_PARAMETER_SUFFIX);
void initEgoAveraging(DECLARE_ENGINE_PARAMETER_SIGNATURE);
#endif

View File

@ -19,7 +19,7 @@ static const short CB_MAX_SIZE = 128;
#define BUFFER_MAX_VALUE 200123
template<typename T>
template<typename T, size_t maxSize = CB_MAX_SIZE>
class cyclic_buffer
{
public:
@ -44,7 +44,7 @@ class cyclic_buffer
int getSize();
int getCount();
void clear();
volatile T elements[CB_MAX_SIZE];
volatile T elements[maxSize];
volatile int currentIndex;
private:
@ -56,24 +56,24 @@ class cyclic_buffer
int size;
};
template<typename T>
cyclic_buffer<T>::cyclic_buffer() {
baseC(CB_MAX_SIZE);
template<typename T, size_t maxSize>
cyclic_buffer<T, maxSize>::cyclic_buffer() {
baseC(maxSize);
}
template<typename T>
cyclic_buffer<T>::cyclic_buffer(int size) {
template<typename T, size_t maxSize>
cyclic_buffer<T, maxSize>::cyclic_buffer(int size) {
baseC(size);
}
template<typename T>
void cyclic_buffer<T>::baseC(int size) {
template<typename T, size_t maxSize>
void cyclic_buffer<T, maxSize>::baseC(int size) {
currentIndex = 0;
setSize(size);
}
template<typename T>
cyclic_buffer<T>::cyclic_buffer(const cyclic_buffer& cb) {
template<typename T, size_t maxSize>
cyclic_buffer<T, maxSize>::cyclic_buffer(const cyclic_buffer& cb) {
//Deep copy the data
currentIndex = cb.currentIndex;
count = cb.count;
@ -83,13 +83,13 @@ cyclic_buffer<T>::cyclic_buffer(const cyclic_buffer& cb) {
}
}
template<typename T>
cyclic_buffer<T>::~cyclic_buffer() {
template<typename T, size_t maxSize>
cyclic_buffer<T, maxSize>::~cyclic_buffer() {
//No dynamic allocation - safe to leave
}
//template<typename T>
//cyclic_buffer& cyclic_buffer<T>::operator=(const cyclic_buffer<T>& rhCb) {
//template<typename T, size_t maxSize>
//cyclic_buffer& cyclic_buffer<T, maxSize>::operator=(const cyclic_buffer<T, maxSize>& rhCb) {
// //Deep copy
// currentIndex = rhCb.currentIndex;
// count = rhCb.count;
@ -99,8 +99,8 @@ cyclic_buffer<T>::~cyclic_buffer() {
// return *this;
//}
template<typename T>
void cyclic_buffer<T>::add(T value) {
template<typename T, size_t maxSize>
void cyclic_buffer<T, maxSize>::add(T value) {
elements[currentIndex] = value;
++currentIndex;
@ -111,24 +111,24 @@ void cyclic_buffer<T>::add(T value) {
++count;
}
template<typename T>
void cyclic_buffer<T>::setSize(int size) {
template<typename T, size_t maxSize>
void cyclic_buffer<T, maxSize>::setSize(int size) {
clear();
this->size = size < CB_MAX_SIZE ? size : CB_MAX_SIZE;
this->size = size < maxSize ? size : maxSize;
}
template<typename T>
int cyclic_buffer<T>::getSize() {
template<typename T, size_t maxSize>
int cyclic_buffer<T, maxSize>::getSize() {
return size;
}
template<typename T>
int cyclic_buffer<T>::getCount() {
template<typename T, size_t maxSize>
int cyclic_buffer<T, maxSize>::getCount() {
return count;
}
template<typename T>
T cyclic_buffer<T>::get(int index) {
template<typename T, size_t maxSize>
T cyclic_buffer<T, maxSize>::get(int index) {
while (index < 0) {
index += size;
}
@ -138,8 +138,8 @@ T cyclic_buffer<T>::get(int index) {
return elements[index];
}
template<typename T>
T cyclic_buffer<T>::maxValue(int length) {
template<typename T, size_t maxSize>
T cyclic_buffer<T, maxSize>::maxValue(int length) {
if (length > count) {
// not enough data in buffer
length = count;
@ -159,8 +159,8 @@ T cyclic_buffer<T>::maxValue(int length) {
return result;
}
template<typename T>
T cyclic_buffer<T>::minValue(int length) {
template<typename T, size_t maxSize>
T cyclic_buffer<T, maxSize>::minValue(int length) {
if (length > count) {
length = count;
}
@ -179,8 +179,8 @@ T cyclic_buffer<T>::minValue(int length) {
return result;
}
template<typename T>
T cyclic_buffer<T>::sum(int length) {
template<typename T, size_t maxSize>
T cyclic_buffer<T, maxSize>::sum(int length) {
if (length > count) {
length = count;
}
@ -200,8 +200,8 @@ T cyclic_buffer<T>::sum(int length) {
return result;
}
template<typename T>
void cyclic_buffer<T>::clear() {
template<typename T, size_t maxSize>
void cyclic_buffer<T, maxSize>::clear() {
memset((void*) elements, 0, sizeof(elements)); // I would usually use static_cast, but due to the elements being volatile we cannot.
count = 0;
currentIndex = 0;