baro fully in sensor model (#3829)

* consumers and api

* dead test

* baro uses sensor model

* remove old (copy of?) map lookup logic

* I guess we don't need FastInterpolation any more?

* don't double init analog input
This commit is contained in:
Matthew Kennedy 2022-01-23 06:42:11 -08:00 committed by GitHub
parent e8f980eca0
commit a1647fd66e
10 changed files with 26 additions and 234 deletions

View File

@ -953,7 +953,7 @@ void canDashboardHaltech(CanCycle cycle) {
msg[4] = 0x00;
msg[5] = 0x00;
/* Barometric pressure */
tmp = (uint16_t)(getBaroPressure()*10);
tmp = (uint16_t)(Sensor::getOrZero(SensorType::BarometricPressure) * 10);
msg[6] = (tmp >> 8);
msg[7] = (tmp & 0x00ff);
}

View File

@ -198,7 +198,7 @@ static void showLine(lcd_line_e line, int /*screenY*/) {
#if EFI_ANALOG_SENSORS
case LL_BARO:
if (Sensor::hasSensor(SensorType::BarometricPressure)) {
lcdPrintf("Baro: %.2f", getBaroPressure());
lcdPrintf("Baro: %.2f", Sensor::getOrZero(SensorType::BarometricPressure));
} else {
lcdPrintf("Baro: none");
}

View File

@ -7,164 +7,24 @@
*/
#include "pch.h"
#if EFI_PROD_CODE
#include "digital_input_icu.h"
#include "digital_input_exti.h"
#endif
#if EFI_ANALOG_SENSORS
static FastInterpolation customMap;
// See 'useFixedBaroCorrFromMap'
static float storedInitialBaroPressure = NAN;
/**
* @brief MAP value decoded for a 1.83 Honda sensor
* -6.64kPa at zero volts
* 182.78kPa at 5 volts
*
* about 3 volts at 100kPa
*
* @returns kPa value
*/
static FastInterpolation denso183(0, -6.64, 5, 182.78);
/**
* MAP sensor output voltage of 3.0v = a gauge reading of 0 in. Hg
* MAP sensor output voltage of 0.5v = a gauge reading of 27 in. Hg
*/
static FastInterpolation honda3bar(0.5, 91.422, 3.0, 0);
static FastInterpolation subyDenso(0, 0, 5, 200);
static FastInterpolation gm3bar(0.631, 40, 4.914, 304);
static FastInterpolation gm2bar(0, 8.8, 5, 208);
static FastInterpolation gm1bar(0, 10, 5, 105);
static FastInterpolation mpx4250(0, 8, 5, 260);
static FastInterpolation mpx4250A(0.25, 20, 4.875, 250);
static FastInterpolation mpxh6400(1 /*volts*/, 90 /*kPa*/, 3 /*volts*/, 250 /*kPa*/);
static FastInterpolation mpx4100(0.3, 20, 4.9, 105);
/**
* http://easyautodiagnostics.com/chrysler/2.0L-2.4L/map-sensor-diagnostic-test-1
* or maybe
* https://books.google.com/books?id=3q85p56_PxIC page 132
* https://books.google.com/books?id=3q85p56_PxIC&q=chrysler+map#v=snippet&q=chrysler%20map&f=false
*/
//static FastInterpolation dodgeNeon2003(0.5 /* volts */, 0 /* kPa */, 4.5 /* volts */ , 100 /* kPa */);
static FastInterpolation dodgeNeon2003(0.4 /* volts */, 15.34 /* kPa */, 4.5 /* volts */ , 100 /* kPa */);
static FastInterpolation densoToyota(3.7 - 2 /* volts */, 33.322271 /* kPa */, 3.7 /* volts */ , 100 /* kPa */);
/**
* Open question how to get this Miata NB2 sensor read MAP
*/
static FastInterpolation mazda1bar(0 /* volts */, 2.5 /* kPa */, 5 /* volts */ , 117 /* kPa */);
/**
* Bosch 2.5 Bar TMap Map Sensor with IAT
*/
static FastInterpolation bosch2_5(0.4 /* volts */, 20 /* kPa */, 4.65 /* volts */ , 250 /* kPa */);
static FastInterpolation *getDecoder(air_pressure_sensor_type_e type);
float decodePressure(float voltage, air_pressure_sensor_config_s * mapConfig) {
switch (mapConfig->type) {
case MT_CUSTOM:
// todo: migrate to 'FastInterpolation customMap'
return interpolateMsg("map", engineConfiguration->mapLowValueVoltage, mapConfig->lowValue,
engineConfiguration->mapHighValueVoltage, mapConfig->highValue, voltage);
case MT_DENSO183:
case MT_MPX4250:
case MT_MPX4250A:
case MT_HONDA3BAR:
case MT_DODGE_NEON_2003:
case MT_SUBY_DENSO:
case MT_GM_3_BAR:
case MT_GM_2_BAR:
case MT_GM_1_BAR:
case MT_TOYOTA_89420_02010:
case MT_MPX4100:
case MT_BOSCH_2_5:
case MT_MAZDA_1_BAR:
case MT_MPXH6400:
return getDecoder(mapConfig->type)->getValue(voltage);
default:
firmwareError(CUSTOM_ERR_MAP_TYPE, "Unknown MAP type: pressure %d", mapConfig->type);
return NAN;
}
}
/**
* This function checks if Baro/MAP sensor value is inside of expected range
* @return unchanged mapKPa parameter or NaN
*/
static float validateBaroMap(float mapKPa) {
const float atmoPressure = 100.0f;
const float atmoPressureRange = 15.0f; // 85..115
if (cisnan(mapKPa) || absF(mapKPa - atmoPressure) > atmoPressureRange) {
// Highest interstate is the Eisenhower Tunnel at 11158 feet -> 66 kpa
// Lowest point is the Dead Sea, -1411 feet -> 106 kpa
if (cisnan(mapKPa) || mapKPa > 110 || mapKPa < 60) {
warning(OBD_Barometric_Press_Circ, "Invalid start-up baro pressure = %.2fkPa", mapKPa);
return NAN;
}
return mapKPa;
}
float getBaroPressure() {
// Override the real Baro sensor with the stored initial MAP value, if the option is set.
if (engineConfiguration->useFixedBaroCorrFromMap)
return storedInitialBaroPressure;
float voltage = getVoltageDivided("baro", engineConfiguration->baroSensor.hwChannel);
return decodePressure(voltage, &engineConfiguration->baroSensor);
}
static FastInterpolation *getDecoder(air_pressure_sensor_type_e type) {
switch (type) {
case MT_DENSO183:
return &denso183;
case MT_MPX4250:
return &mpx4250;
case MT_MPX4100:
return &mpx4100;
case MT_MPX4250A:
return &mpx4250A;
case MT_MPXH6400:
return &mpxh6400;
case MT_HONDA3BAR:
return &honda3bar;
case MT_DODGE_NEON_2003:
return &dodgeNeon2003;
case MT_SUBY_DENSO:
return &subyDenso;
case MT_GM_3_BAR:
return &gm3bar;
case MT_GM_2_BAR:
return &gm2bar;
case MT_GM_1_BAR:
return &gm1bar;
case MT_TOYOTA_89420_02010:
return &densoToyota;
case MT_MAZDA_1_BAR:
return &mazda1bar;
case MT_BOSCH_2_5:
return &bosch2_5;
default:
firmwareError(CUSTOM_ERR_MAP_TYPE, "Unknown MAP type: decoder %d", type);
return &customMap;
}
}
static void applyConfiguration() {
air_pressure_sensor_config_s * apConfig = &engineConfiguration->map.sensor;
customMap.init(0, apConfig->lowValue, 5, apConfig->highValue);
}
#if EFI_PROD_CODE
extern int mapMinBufferLength;
@ -207,18 +67,18 @@ static void printMAPInfo() {
}
#endif /* EFI_PROD_CODE */
void initMapDecoder() {
applyConfiguration();
if (engineConfiguration->useFixedBaroCorrFromMap) {
// Read initial MAP sensor value and store it for Baro correction.
storedInitialBaroPressure = Sensor::get(SensorType::MapSlow).value_or(101.325);
float storedInitialBaroPressure = Sensor::get(SensorType::MapSlow).value_or(101.325);
efiPrintf("Get initial baro MAP pressure = %.2fkPa", storedInitialBaroPressure);
// validate if it's within a reasonable range (the engine should not be spinning etc.)
storedInitialBaroPressure = validateBaroMap(storedInitialBaroPressure);
if (!cisnan(storedInitialBaroPressure)) {
efiPrintf("Using this fixed MAP pressure to override the baro correction!");
// TODO: do literally anything other than this
Sensor::setMockValue(SensorType::BarometricPressure, storedInitialBaroPressure);
} else {
efiPrintf("The baro pressure is invalid. The fixed baro correction will be disabled!");
}

View File

@ -11,10 +11,6 @@ struct air_pressure_sensor_config_s;
void initMapDecoder();
float getBaroPressure();
float decodePressure(float voltage, air_pressure_sensor_config_s * mapConfig);
#define KPA_PER_PSI 6.89475728f
#define PSI2KPA(psi) (KPA_PER_PSI * (psi))

View File

@ -7,18 +7,8 @@
#include "function_pointer_sensor.h"
#include "identity_func.h"
struct GetBaroWrapper {
float getBaro() {
return ::getBaroPressure();
}
};
static GetBaroWrapper baroWrapper;
static FunctionPointerSensor baroSensor(SensorType::BarometricPressure,
[]() {
return baroWrapper.getBaro();
});
static LinearFunc baroConverter;
static FunctionalSensor baroSensor(SensorType::BarometricPressure, MS2NT(50));
// This converter is shared between both fast and slow: the only difference is
// how the *voltage* is determined, not how its converted to a pressure.
@ -51,8 +41,7 @@ struct MapCfg {
float map2;
};
static MapCfg getMapCfg() {
auto sensorType = engineConfiguration->map.sensor.type;
static MapCfg getMapCfg(air_pressure_sensor_type_e sensorType) {
switch (sensorType) {
case MT_DENSO183:
return {0, -6.64, 5, 182.78};
@ -97,10 +86,10 @@ static MapCfg getMapCfg() {
}}
}
void configureMapFunction() {
auto cfg = getMapCfg();
void configureMapFunction(LinearFunc& converter, air_pressure_sensor_type_e sensorType) {
auto cfg = getMapCfg(engineConfiguration->map.sensor.type);
mapConverter.configure(
converter.configure(
cfg.v1,
cfg.map1,
cfg.v2,
@ -111,12 +100,10 @@ void configureMapFunction() {
}
void initMap() {
auto mapChannel = engineConfiguration->map.sensor.hwChannel;
if (isAdcChannelValid(mapChannel)) {
// Set up the conversion function
configureMapFunction();
configureMapFunction(mapConverter, engineConfiguration->map.sensor.type);
slowMapSensor.setFunction(mapConverter);
fastMapSensor.setFunction(identityFunction);
@ -129,12 +116,18 @@ void initMap() {
AdcSubscription::SubscribeSensor(slowMapSensor, mapChannel, 100);
}
// Only register if configured
if (isAdcChannelValid(engineConfiguration->baroSensor.hwChannel)) {
auto baroChannel = engineConfiguration->baroSensor.hwChannel;
if (isAdcChannelValid(baroChannel)) {
configureMapFunction(baroConverter, engineConfiguration->baroSensor.type);
baroSensor.setFunction(baroConverter);
baroSensor.Register();
AdcSubscription::SubscribeSensor(baroSensor, baroChannel, 10);
}
}
void deinitMap() {
AdcSubscription::UnsubscribeSensor(slowMapSensor);
AdcSubscription::UnsubscribeSensor(baroSensor);
}

View File

@ -33,7 +33,6 @@ void deInitIfValid(const char* msg, adc_channel_e channel) {
static void initOldAnalogInputs() {
initIfValid("AFR", engineConfiguration->afr.hwChannel);
initIfValid("Baro", engineConfiguration->baroSensor.hwChannel);
initIfValid("AUXF#1", engineConfiguration->auxFastSensor1_adcChannel);
initIfValid("CJ125 UR", engineConfiguration->cj125ur);
initIfValid("CJ125 UA", engineConfiguration->cj125ua);
@ -41,7 +40,6 @@ static void initOldAnalogInputs() {
static void deInitOldAnalogInputs() {
deInitIfValid("AFR", activeConfiguration.afr.hwChannel);
deInitIfValid("Baro", activeConfiguration.baroSensor.hwChannel);
deInitIfValid("AUXF#1", activeConfiguration.auxFastSensor1_adcChannel);
deInitIfValid("CJ125 UR", activeConfiguration.cj125ur);
deInitIfValid("CJ125 UA", activeConfiguration.cj125ua);

View File

@ -60,27 +60,6 @@ static void testBinary() {
#endif
FastInterpolation::FastInterpolation() {
init(0, 0, 1, 1);
}
FastInterpolation::FastInterpolation(float x1, float y1, float x2, float y2) {
init(x1, y1, x2, y2);
}
void FastInterpolation::init(float x1, float y1, float x2, float y2) {
if (x1 == x2) {
firmwareError(CUSTOM_ERR_INTERPOLATE, "init: Same x1 and x2 in interpolate: %.2f/%.2f", x1, x2);
return;
}
a = INTERPOLATION_A(x1, y1, x2, y2);
b = y1 - a * x1;
}
float FastInterpolation::getValue(float x) const {
return a * x + b;
}
/** @brief Linear interpolation by two points
*
* @param x1 key of the first point
@ -176,5 +155,4 @@ void initInterpolation() {
#if BINARY_PERF && ! EFI_UNIT_TEST
addConsoleAction("binarytest", testBinary);
#endif
}

View File

@ -219,13 +219,3 @@ void setCurveValue(const kType bins[], VType values[], int size, float key, floa
}
void initInterpolation();
class FastInterpolation {
public:
FastInterpolation();
FastInterpolation(float x1, float y1, float x2, float y2);
void init(float x1, float y1, float x2, float y2);
float getValue(float x) const;
private:
float a, b;
};

View File

@ -1,22 +0,0 @@
/**
* @file test_sensors.cpp
*
* @date Dec 7, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "pch.h"
TEST(sensors, mapDecoding) {
EngineTestHelper eth(FORD_INLINE_6_1995);
air_pressure_sensor_config_s s;
s.type = MT_DENSO183;
assertEqualsM("denso 0 volts", -6.64, decodePressure(0, &s));
ASSERT_FLOAT_EQ(31.244, decodePressure(1, &s));
s.type = MT_MPX4250;
ASSERT_EQ( 8, decodePressure(0, &s)) << "MPX_4250 0 volts";
ASSERT_FLOAT_EQ(58.4, decodePressure(1, &s));
}

View File

@ -63,7 +63,6 @@ TESTS_SRC_CPP = \
tests/test_log_buffer.cpp \
tests/test_signal_executor.cpp \
tests/test_cpp_memory_layout.cpp \
tests/test_sensors.cpp \
tests/test_pid_auto.cpp \
tests/test_pid.cpp \
tests/test_accel_enrichment.cpp \