/** * @file fuel_math.cpp * @brief Fuel amount calculation logic * * * @date May 27, 2013 * @author Andrey Belomutskiy, (c) 2012-2020 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . * */ #include "global.h" #include "airmass.h" #include "fuel_math.h" #include "interpolation.h" #include "engine_configuration.h" #include "allsensors.h" #include "engine_math.h" #include "rpm_calculator.h" #include "speed_density.h" #include "perf_trace.h" #include "sensor.h" EXTERN_ENGINE; fuel_Map3D_t fuelMap("fuel"); fuel_Map3D_t fuelPhaseMap("fl ph"); extern fuel_Map3D_t veMap; extern afr_Map3D_t afrMap; extern baroCorr_Map3D_t baroCorrMap; #if EFI_ENGINE_CONTROL DISPLAY_STATE(Engine) DISPLAY(DISPLAY_FIELD(sparkDwell)) DISPLAY(DISPLAY_FIELD(dwellAngle)) DISPLAY(DISPLAY_FIELD(cltTimingCorrection)) DISPLAY_TEXT(eol); DISPLAY(DISPLAY_IF(isCrankingState)) floatms_t getCrankingFuel3( floatms_t baseFuel, uint32_t revolutionCounterSinceStart DECLARE_ENGINE_PARAMETER_SUFFIX) { // these magic constants are in Celsius float baseCrankingFuel; if (engineConfiguration->useRunningMathForCranking) { baseCrankingFuel = baseFuel; } else { baseCrankingFuel = engineConfiguration->cranking.baseFuel; } /** * Cranking fuel changes over time */ DISPLAY_TEXT(Duration_coef); engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(durationCoefficient) = interpolate2d("crank", revolutionCounterSinceStart, config->crankingCycleBins, config->crankingCycleCoef); DISPLAY_TEXT(eol); /** * Cranking fuel is different depending on engine coolant temperature * If the sensor is failed, use 20 deg C */ auto clt = Sensor::get(SensorType::Clt); DISPLAY_TEXT(Coolant_coef); engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(coolantTemperatureCoefficient) = interpolate2d("crank", clt.value_or(20), config->crankingFuelBins, config->crankingFuelCoef); DISPLAY_SENSOR(CLT); DISPLAY_TEXT(eol); auto tps = Sensor::get(SensorType::DriverThrottleIntent); DISPLAY_TEXT(TPS_coef); engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(tpsCoefficient) = tps.Valid ? 1 : interpolate2d("crankTps", tps.Value, engineConfiguration->crankingTpsBins, engineConfiguration->crankingTpsCoef); /* engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(tpsCoefficient) = tps.Valid ? interpolate2d("crankTps", tps.Value, engineConfiguration->crankingTpsBins, engineConfiguration->crankingTpsCoef) : 1; // in case of failed TPS, don't correct.*/ DISPLAY_SENSOR(TPS); DISPLAY_TEXT(eol); floatms_t crankingFuel = baseCrankingFuel * engine->engineState.cranking.durationCoefficient * engine->engineState.cranking.coolantTemperatureCoefficient * engine->engineState.cranking.tpsCoefficient; DISPLAY_TEXT(Cranking_fuel); engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(fuel) = crankingFuel; if (crankingFuel <= 0) { warning(CUSTOM_ERR_ZERO_CRANKING_FUEL, "Cranking fuel value %f", crankingFuel); } return crankingFuel; } /* DISPLAY_ELSE */ floatms_t getRunningFuel(floatms_t baseFuel DECLARE_ENGINE_PARAMETER_SUFFIX) { ScopePerf perf(PE::GetRunningFuel); DISPLAY_TEXT(Base_fuel); ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(baseFuel)) = baseFuel; DISPLAY_TEXT(eol); DISPLAY_TEXT(Intake_coef); float iatCorrection = ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(intakeTemperatureCoefficient)); DISPLAY_SENSOR(IAT); DISPLAY_TEXT(eol); DISPLAY_TEXT(Coolant_coef); float cltCorrection = ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(coolantTemperatureCoefficient)); DISPLAY_SENSOR(CLT); DISPLAY_TEXT(eol); DISPLAY_TEXT(Post_cranking_coef); float postCrankingFuelCorrection = ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(postCrankingFuelCorrection)); DISPLAY_TEXT(eol); efiAssert(CUSTOM_ERR_ASSERT, !cisnan(iatCorrection), "NaN iatCorrection", 0); efiAssert(CUSTOM_ERR_ASSERT, !cisnan(cltCorrection), "NaN cltCorrection", 0); efiAssert(CUSTOM_ERR_ASSERT, !cisnan(postCrankingFuelCorrection), "NaN postCrankingFuelCorrection", 0); floatms_t runningFuel = baseFuel * iatCorrection * cltCorrection * postCrankingFuelCorrection * ENGINE(engineState.running.pidCorrection); efiAssert(CUSTOM_ERR_ASSERT, !cisnan(runningFuel), "NaN runningFuel", 0); DISPLAY_TEXT(eol); DISPLAY_TEXT(Running_fuel); ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(fuel)) = runningFuel; DISPLAY_TEXT(eol); DISPLAY_TEXT(Injector_lag); DISPLAY(DISPLAY_PREFIX(running).DISPLAY_FIELD(injectorLag)); DISPLAY_SENSOR(VBATT); return runningFuel; } /* DISPLAY_ENDIF */ /** * Function block now works to create a standardised load from the cylinder filling as well as tune fuel via VE table. * @return total duration of fuel injection per engine cycle, in milliseconds */ AirmassResult getRealMafAirmass(float airSpeed, int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) { // If the engine is stopped, MAF is meaningless if (rpm == 0) { return {}; } // kg/hr -> g/s float gramPerSecond = airSpeed * 1000 / 3600; // 1/min -> 1/s float revsPerSecond = rpm / 60.0f; float airPerRevolution = gramPerSecond / revsPerSecond; // Now we have to divide among cylinders - on a 4 stroke, half of the cylinders happen every rev // This math is floating point to work properly on engines with odd cyl count float halfCylCount = CONFIG(specs.cylindersCount) / 2.0f; float cylinderAirmass = airPerRevolution / halfCylCount; //Create % load for fuel table using relative naturally aspiratedcylinder filling float airChargeLoad = 100 * cylinderAirmass / ENGINE(standardAirCharge); //Correct air mass by VE table float correctedAirmass = cylinderAirmass * veMap.getValue(rpm, airChargeLoad) / 100; return { correctedAirmass, airChargeLoad, // AFR/VE table Y axis }; } constexpr float convertToGramsPerSecond(float ccPerMinute) { float ccPerSecond = ccPerMinute / 60; return ccPerSecond * 0.72f; // 0.72g/cc fuel density } /** * @return per cylinder injection time, in seconds */ float getInjectionDurationForAirmass(float airMass, float afr DECLARE_ENGINE_PARAMETER_SUFFIX) { float gPerSec = convertToGramsPerSecond(CONFIG(injector.flow)); return airMass / (afr * gPerSec); } AirmassResult getAirmass(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) { switch (CONFIG(fuelAlgorithm)) { case LM_SPEED_DENSITY: return getSpeedDensityAirmass(getMap(PASS_ENGINE_PARAMETER_SIGNATURE) PASS_ENGINE_PARAMETER_SUFFIX); case LM_REAL_MAF: { float maf = getRealMaf(PASS_ENGINE_PARAMETER_SIGNATURE) + engine->engineLoadAccelEnrichment.getEngineLoadEnrichment(PASS_ENGINE_PARAMETER_SIGNATURE); return getRealMafAirmass(maf, rpm PASS_ENGINE_PARAMETER_SUFFIX); } default: firmwareError(CUSTOM_ERR_ASSERT, "Fuel mode %d is not airmass mode", CONFIG(fuelAlgorithm)); return {}; } } /** * per-cylinder fuel amount * todo: rename this method since it's now base+TPSaccel */ floatms_t getBaseFuel(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) { ScopePerf perf(PE::GetBaseFuel); floatms_t tpsAccelEnrich = ENGINE(tpsAccelEnrichment.getTpsEnrichment(PASS_ENGINE_PARAMETER_SIGNATURE)); efiAssert(CUSTOM_ERR_ASSERT, !cisnan(tpsAccelEnrich), "NaN tpsAccelEnrich", 0); ENGINE(engineState.tpsAccelEnrich) = tpsAccelEnrich; floatms_t baseFuel; if ((CONFIG(fuelAlgorithm) == LM_SPEED_DENSITY) || (engineConfiguration->fuelAlgorithm == LM_REAL_MAF)) { // airmass modes - get airmass first, then convert to fuel auto airmass = getAirmass(rpm PASS_ENGINE_PARAMETER_SUFFIX); // The airmass mode will tell us how to look up AFR - use the provided Y axis value float targetAfr = afrMap.getValue(rpm, airmass.EngineLoadPercent); // TODO: surface airmass.EngineLoadPercent to tunerstudio for proper display // Plop some state for others to read ENGINE(engineState.targetAFR) = targetAfr; ENGINE(engineState.sd.airMassInOneCylinder) = airmass.CylinderAirmass; ENGINE(engineState.fuelingLoad) = airmass.EngineLoadPercent; // TODO: independently selectable ignition load mode ENGINE(engineState.ignitionLoad) = airmass.EngineLoadPercent; baseFuel = getInjectionDurationForAirmass(airmass.CylinderAirmass, targetAfr PASS_ENGINE_PARAMETER_SUFFIX) * 1000; efiAssert(CUSTOM_ERR_ASSERT, !cisnan(baseFuel), "NaN baseFuel", 0); } else { float tps = Sensor::get(SensorType::Tps1).value_or(0); ENGINE(engineState.fuelingLoad) = tps; // TODO: independently selectable ignition load mode ENGINE(engineState.ignitionLoad) = tps; baseFuel = getBaseTableFuel(rpm, getEngineLoadT(PASS_ENGINE_PARAMETER_SIGNATURE)); efiAssert(CUSTOM_ERR_ASSERT, !cisnan(baseFuel), "NaN bt baseFuel", 0); } engine->engineState.baseFuel = baseFuel; return tpsAccelEnrich + baseFuel; } angle_t getInjectionOffset(float rpm, float load DECLARE_ENGINE_PARAMETER_SUFFIX) { if (cisnan(rpm)) { return 0; // error already reported } if (cisnan(load)) { return 0; // error already reported } angle_t value = fuelPhaseMap.getValue(rpm, load); if (cisnan(value)) { // we could be here while resetting configuration for example warning(CUSTOM_ERR_6569, "phase map not ready"); return 0; } angle_t result = value + CONFIG(extraInjectionOffset); fixAngle(result, "inj offset#2", CUSTOM_ERR_6553); return result; } /** * Number of injections using each injector per engine cycle * @see getNumberOfSparks */ int getNumberOfInjections(injection_mode_e mode DECLARE_ENGINE_PARAMETER_SUFFIX) { switch (mode) { case IM_SIMULTANEOUS: case IM_SINGLE_POINT: return engineConfiguration->specs.cylindersCount; case IM_BATCH: return 2; case IM_SEQUENTIAL: return 1; default: firmwareError(CUSTOM_ERR_INVALID_INJECTION_MODE, "Unexpected injection_mode_e %d", mode); return 1; } } /** * This is more like MOSFET duty cycle since durations include injector lag * @see getCoilDutyCycle */ percent_t getInjectorDutyCycle(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) { floatms_t totalInjectiorAmountPerCycle = ENGINE(injectionDuration) * getNumberOfInjections(engineConfiguration->injectionMode PASS_ENGINE_PARAMETER_SUFFIX); floatms_t engineCycleDuration = getEngineCycleDuration(rpm PASS_ENGINE_PARAMETER_SUFFIX); return 100 * totalInjectiorAmountPerCycle / engineCycleDuration; } static floatms_t getFuel(bool isCranking, floatms_t baseFuel DECLARE_ENGINE_PARAMETER_SUFFIX) { if (isCranking) { return getCrankingFuel(baseFuel PASS_ENGINE_PARAMETER_SUFFIX); } else { return getRunningFuel(baseFuel PASS_ENGINE_PARAMETER_SUFFIX); } } /** * @returns Length of each individual fuel injection, in milliseconds * in case of single point injection mode the amount of fuel into all cylinders, otherwise the amount for one cylinder */ floatms_t getInjectionDuration(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) { ScopePerf perf(PE::GetInjectionDuration); #if EFI_SHAFT_POSITION_INPUT bool isCranking = ENGINE(rpmCalculator).isCranking(PASS_ENGINE_PARAMETER_SIGNATURE); injection_mode_e mode = ENGINE(getCurrentInjectionMode(PASS_ENGINE_PARAMETER_SIGNATURE)); int numberOfInjections = getNumberOfInjections(mode PASS_ENGINE_PARAMETER_SUFFIX); if (numberOfInjections == 0) { warning(CUSTOM_CONFIG_NOT_READY, "config not ready"); return 0; // we can end up here during configuration reset } // Always update base fuel - some cranking modes use it floatms_t baseFuel = getBaseFuel(rpm PASS_ENGINE_PARAMETER_SUFFIX); floatms_t fuelPerCycle = getFuel(isCranking, baseFuel PASS_ENGINE_PARAMETER_SUFFIX); efiAssert(CUSTOM_ERR_ASSERT, !cisnan(fuelPerCycle), "NaN fuelPerCycle", 0); if (mode == IM_SINGLE_POINT) { // here we convert per-cylinder fuel amount into total engine amount since the single injector serves all cylinders fuelPerCycle *= engineConfiguration->specs.cylindersCount; } // Fuel cut-off isn't just 0 or 1, it can be tapered fuelPerCycle *= ENGINE(engineState.fuelCutoffCorrection); // If no fuel, don't add injector lag if (fuelPerCycle == 0.0f) return 0; floatms_t theoreticalInjectionLength = fuelPerCycle / numberOfInjections; floatms_t injectorLag = ENGINE(engineState.running.injectorLag); if (cisnan(injectorLag)) { warning(CUSTOM_ERR_INJECTOR_LAG, "injectorLag not ready"); return 0; // we can end up here during configuration reset } return theoreticalInjectionLength * engineConfiguration->globalFuelCorrection + injectorLag; #else return 0; #endif } /** * @brief Injector lag correction * @param vBatt Battery voltage. * @return Time in ms for injection opening time based on current battery voltage */ floatms_t getInjectorLag(float vBatt DECLARE_ENGINE_PARAMETER_SUFFIX) { if (cisnan(vBatt)) { warning(OBD_System_Voltage_Malfunction, "vBatt=%.2f", vBatt); return 0; } return interpolate2d("lag", vBatt, engineConfiguration->injector.battLagCorrBins, engineConfiguration->injector.battLagCorr); } /** * @brief Initialize fuel map data structure * @note this method has nothing to do with fuel map VALUES - it's job * is to prepare the fuel map data structure for 3d interpolation */ void initFuelMap(DECLARE_ENGINE_PARAMETER_SIGNATURE) { fuelMap.init(config->fuelTable, config->fuelLoadBins, config->fuelRpmBins); #if (IGN_LOAD_COUNT == FUEL_LOAD_COUNT) && (IGN_RPM_COUNT == FUEL_RPM_COUNT) fuelPhaseMap.init(config->injectionPhase, config->injPhaseLoadBins, config->injPhaseRpmBins); #endif /* (IGN_LOAD_COUNT == FUEL_LOAD_COUNT) && (IGN_RPM_COUNT == FUEL_RPM_COUNT) */ } /** * @brief Engine warm-up fuel correction. */ float getCltFuelCorrection(DECLARE_ENGINE_PARAMETER_SIGNATURE) { const auto [valid, clt] = Sensor::get(SensorType::Clt); if (!valid) return 1; // this error should be already reported somewhere else, let's just handle it return interpolate2d("cltf", clt, config->cltFuelCorrBins, config->cltFuelCorr); } angle_t getCltTimingCorrection(DECLARE_ENGINE_PARAMETER_SIGNATURE) { const auto [valid, clt] = Sensor::get(SensorType::Clt); if (!valid) return 0; // this error should be already reported somewhere else, let's just handle it return interpolate2d("timc", clt, engineConfiguration->cltTimingBins, engineConfiguration->cltTimingExtra); } float getIatFuelCorrection(DECLARE_ENGINE_PARAMETER_SIGNATURE) { const auto [valid, iat] = Sensor::get(SensorType::Iat); if (!valid) return 1; // this error should be already reported somewhere else, let's just handle it return interpolate2d("iatc", iat, config->iatFuelCorrBins, config->iatFuelCorr); } /** * @brief Called from EngineState::periodicFastCallback to update the state. * @note The returned value is float, not boolean - to implement taper (smoothed correction). * @return Fuel duration correction for fuel cut-off control (ex. if coasting). No correction if 1.0 */ float getFuelCutOffCorrection(efitick_t nowNt, int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) { // no corrections by default float fuelCorr = 1.0f; // coasting fuel cut-off correction if (CONFIG(coastingFuelCutEnabled)) { auto [tpsValid, tpsPos] = Sensor::get(SensorType::Tps1); if (!tpsValid) { return 1.0f; } const auto [cltValid, clt] = Sensor::get(SensorType::Clt); if (!cltValid) { return 1.0f; } float map = getMap(PASS_ENGINE_PARAMETER_SIGNATURE); // gather events bool mapDeactivate = (map >= CONFIG(coastingFuelCutMap)); bool tpsDeactivate = (tpsPos >= CONFIG(coastingFuelCutTps)); // If no CLT sensor (or broken), don't allow DFCO bool cltDeactivate = clt < (float)CONFIG(coastingFuelCutClt); bool rpmDeactivate = (rpm < CONFIG(coastingFuelCutRpmLow)); bool rpmActivate = (rpm > CONFIG(coastingFuelCutRpmHigh)); // state machine (coastingFuelCutStartTime is also used as a flag) if (!mapDeactivate && !tpsDeactivate && !cltDeactivate && rpmActivate) { ENGINE(engineState.coastingFuelCutStartTime) = nowNt; } else if (mapDeactivate || tpsDeactivate || rpmDeactivate || cltDeactivate) { ENGINE(engineState.coastingFuelCutStartTime) = 0; } // enable fuelcut? if (ENGINE(engineState.coastingFuelCutStartTime) != 0) { // todo: add taper - interpolate using (nowNt - coastingFuelCutStartTime)? fuelCorr = 0.0f; } } // todo: add other fuel cut-off checks here (possibly cutFuelOnHardLimit?) return fuelCorr; } /** * @return Fuel injection duration injection as specified in the fuel map, in milliseconds */ floatms_t getBaseTableFuel(int rpm, float engineLoad) { #if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT if (cisnan(engineLoad)) { warning(CUSTOM_NAN_ENGINE_LOAD_2, "NaN engine load"); return 0; } floatms_t result = fuelMap.getValue(rpm, engineLoad); if (cisnan(result)) { // result could be NaN in case of invalid table, like during initialization result = 0; warning(CUSTOM_ERR_FUEL_TABLE_NOT_READY, "baseFuel table not ready"); } return result; #else return 0; #endif } float getBaroCorrection(DECLARE_ENGINE_PARAMETER_SIGNATURE) { if (hasBaroSensor(PASS_ENGINE_PARAMETER_SIGNATURE)) { float correction = baroCorrMap.getValue(GET_RPM(), getBaroPressure(PASS_ENGINE_PARAMETER_SIGNATURE)); if (cisnan(correction) || correction < 0.01) { warning(OBD_Barometric_Press_Circ_Range_Perf, "Invalid baro correction %f", correction); return 1; } return correction; } else { return 1; } } #if EFI_ENGINE_CONTROL /** * @return Duration of fuel injection while craning */ floatms_t getCrankingFuel(float baseFuel DECLARE_ENGINE_PARAMETER_SUFFIX) { return getCrankingFuel3(baseFuel, engine->rpmCalculator.getRevolutionCounterSinceStart() PASS_ENGINE_PARAMETER_SUFFIX); } float getStandardAirCharge(DECLARE_ENGINE_PARAMETER_SIGNATURE) { float totalDisplacement = CONFIG(specs.displacement); float cylDisplacement = totalDisplacement / CONFIG(specs.cylindersCount); // Calculation of 100% VE air mass in g/cyl - 1 cylinder filling at 1.204/L - air density at 20C return cylDisplacement * 1.204f; } #endif float getFuelRate(floatms_t totalInjDuration, efitick_t timePeriod DECLARE_ENGINE_PARAMETER_SUFFIX) { if (timePeriod <= 0.0f) return 0.0f; float timePeriodMs = (float)NT2US(timePeriod) / 1000.0f; float fuelRate = totalInjDuration / timePeriodMs; const float cc_min_to_L_h = 60.0f / 1000.0f; return fuelRate * CONFIG(injector.flow) * cc_min_to_L_h; } #endif